

24 Erosion and dilation are dual operations with respect to set complementation and reflection: $(A \oplus B)^c = A^c \oplus \hat{B}$ Also, $(A \oplus B)^c = A^c \oplus \hat{B}$ The duality is useful when the SE is symmetric: The erosion of an image is the dilation of its background. <u>C.Nku-ImagAnalysis (T-14)</u>

Properties of Opening and Closing

 $A \circ B \subseteq A$ Opening:

 $C \subseteq D \Longrightarrow C \circ B \subseteq D \circ B$ $(A \circ B) \circ B = A \circ B$

Closing:

33

 $A \subseteq A \bullet B$ $C \subseteq D \Longrightarrow C \bullet B \subseteq D \bullet B$ $(A \bullet B) \bullet B = A \bullet B$

The last properties, in each case, indicate that multiple openings or closings have no effect after the first application of the operator

Extraction of connected components
(cont.)
Form a set
$$X_0$$
 with zeros everywhere except at
the seed point of the connected components.
Then,
 $X_k = (X_{k-1} \oplus B) \cap A, \ k = 1, 2, 3, ...$
Where *B* is a 3x3 square-shaped SE.
The algorithm terminates when $X_k = X_{k-1}$.
 X_k contains all the connected components.

⁷² Morphological Reconstruction (cont.)

The **geodesic dilation** of size 1 of a marker image F by a SE B, with respect to a mask image G is defined by:

$$D_G^{(1)}(F) = (F \oplus B) \cap G$$

Similarly, the **geodesic dilation** of size *n* is defined by:

$$D_G^{(n)}(F) = D_G^{(1)} \left[D_G^{(n-1)}(F) \right]$$
 with $D_G^{(0)}(F) = F$

The intersection operator at each step guarantees that the growth (dilation) of marker F is limited by the mask G.

⁷⁴ Morphological Reconstruction (cont.)

The **geodesic erosion** of size 1 of a marker image F by a SE B, with respect to a mask image G is defined by:

$$E_G^{(1)}(F) = (F \ominus B) \cup G$$

Similarly, the **geodesic erosion** of size *n* is defined by:

$$E_G^{(n)}(F) = E_G^{(1)} \left[E_G^{(n-1)}(F) \right]$$
 with $E_G^{(0)}(F) = F$

The union operator guarantees that the geodesic erosion of marker *F* remains greater than or equal to the mask *G*.

77 Morphological Reconstruction (cont.)

The **morphological reconstruction by dilation** of mask image G from a marker image F is defined as the geodesic dilation of F with respect to G, iterated until stability s achieved:

$$R_G^D(F) = D_G^{(k)}(F)$$

with k such that:

$$D_G^{(k)}(F) = D_G^{(k+1)}(F)$$

⁷⁹ Morphological Reconstruction (cont.)

The **morphological reconstruction by erosion** of mask image G from a marker image F is defined as the geodesic erosion of F with respect to G, iterated until stability is achieved:

$$R_G^E(F) = E_G^{(k)}(F)$$

with k such that:

$$E_G^{(k)}(F) = E_G^{(k+1)}(F)$$

The example is left as an exercise!

The erosion of image f by a SE b at any location (x,y) is defined as the minimum value of the image in the region coincident with b when the origin of b is at (x,y):

91

$$[f \ominus b](x, y) = \min_{(s,t) \in b} \{f(x+s, y+t)\}$$

In practice, we place the center of the SE at every pixel and select the minimum value of the image under the window of the SE.

94 Gray-Scale Morphology (nonflat SE) The erosion of image f by a nonflat SE b_N is defined as: $[f \ominus b_N](x, y) = \min_{(s,t) \in b_N} \{f(x+s, y+t) - b_N(s,t)\}$ The dilation of image f by a nonflat SE b_N is defined as: $[f \oplus b_N](x, y) = \max_{(s,t) \in b_N} \{f(x-s, y-t) + b_N(s,t)\}$ When the SE is flat the equations reduce to the previous formulas up to a constant. *C. Niku - Image Analysis (T-14)*

simplicity.

102	Gray-Scale Morphological Algorithms				
•	Morphological smoothing				
 Morphological gradient 					
 Top-hat transformation 					
 Bottom-hat transformation 					
Granulometry					
 Textural segmentation 					

Morphological Smoothing

Opening suppresses light details smaller than the SE and closing suppresses (makes lighter) dark details smaller than the SE.

They are used in combination as *morphological filters* to eliminate undesired structures.

103

Cygnus Loop supernova. We wish to extract the central light region.

108	Top-hat and Bottom-hat Transformations (cont.)						
Because the results look like the top or bottom of a hat these algorithms are called top-hat and bottom-hat transformations:							
	$T_{\rm hat}(f) = f - (f \circ b)$	Light details remain					
	$B_{\rm hat}(f) = (f \bullet b) - f$	Dark details remain					
An important application is the correction of nonuniform illumination which is a pre- segmentation step.							

110	Granulometry
•	Determination of the size distribution of particles in an image. Particles are seldom separated. The method described here measures their distribution indirectly. It applies openings with SE of increasing size. Each opening suppresses bright features where the SE does not fit. For each opening the sum of pixel values is computed and a histogram of the size of the SE vs the remaining pixel intensities is drawn.
	C. Nikou – Image Analysis (T-14)

Textural segmentation

The objective is to find a boundary between the large and the small blobs (texture segmentation). The objects of interest are darker than the background. A closing with a SE larger than the blobs would eliminate them.

113

as the geodesic dilation of f with respect to g, iterated until stability is achieved:

$$R_g^D(F) = D_g^{(k)}(F)$$

with k such that:

123

$$D_g^{(k)}(F) = D_g^{(k+1)}(F)$$

C. Nikou – Image Analysis (T-14)

¹²⁴ Gray-Scale Morphological Reconstruction (cont.) The morphological reconstruction by erosion of gray scale image g from a marker image f is defined as the geodesic erosion of f with respect to g, iterated until stability is achieved: $R_g^D(F) = E_g^{(k)}(F)$ with k such that: $E_g^{(k)}(F) = E_g^{(k+1)}(F)$

Gray-Scale Morphological Reconstruction (cont.)

The **opening by reconstruction** of size n of an image f is defined as the reconstruction by dilation of f from the erosion of size n of f:

125

$$O_R^{(n)}(f) = R_f^D \left[(f \ominus nB) \right]$$

The image f is used as the mask and the n erosions of f by b are used as the initial marker image.

Recall that the objective is to preserve the shape of the image components that remain after erosion.

134 G	ray-Sc Reco	ale Mo onstruc	orpholog	gical ont.)
Using the last image as a marker and the dilated image as a mask we perform a gray-scale reconstruction by dilation and we obtain the desired result.	E- S [#] at E+ 1/ ₂ AT STO RCL R+ ENTER X39 BIT BOLVER A 7 ST BASE CO ¥ 4	$\begin{array}{c} 10^{47} & e^{4} & 0^{10} \\ 1.06 & LN & XED \\ alls & acce & ather \\ alls & acce & ather \\ alls & cos & ather \\ alls & cos & ather \\ +/- & E & + \\ 8 & 9 & + \\ +/- & E & + \\ 8 & 9 & + \\ +/- & E & + \\ 8 & 9 & + \\ +/- & E & + \\ 8 & 9 & + \\ - & 1/A & 0 \\ 5 & 6 & \times \\ 5 & 6 & $	TO LOG LN XEQ A SIN COS TAN	9 6 1 - 1 1 1 5 × 1 ÷ 1 + 1 1 1 5
	Result	ALPHA LAST ENTER X BST SOLVER	f ∞ MODES DISP CLEAR y +/_ E ← ♪ ((x) MATRIX STAT	
		sst base (V 4	o y , convert flags prob 5 6 X	