Image Classification:
K-NN and Linear Classifier

Xiaolong Wang



| ast class

» Overview of computer vision and deep learning

* The concept and goal of learning



Today: Two basic methods

* Nearest Neighbors

e Linear Classifier



Image Classification

An image is a 300 x 500 x 3
Tensor.

Each bit has value in the
range [0, 259]




Images with different background

http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Images with occlusion




Images with illumination




Images with Deformation




Nearest Neighbor Classifier



Nearest Neighbor

Training set:
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Testing: Compute the distance between a test image and training images




Nearest Neighbor

* What metric? What representation?
* Metric, L1 distance:
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Recall Supervised Learning

y = f(x)
T N

output classifier input
label image

 Training (or learning): given a training set of labeled
examples {(x4,v,), ..., (xy, yy)}, train a predictor f

» Testing (or inference): apply predictor f to a new test
example x and output the predicted value y = f(x)



Nearest neighbor classifier
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* f(x) = the label of the closest example (computed via a
distance metric)

« Store all the training data, search all data each test time
given a test example



K-nearest neighbor classifier
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* 1 example is sometimes not enough.

« K-NN, K=5: Find closest 5 examples instead of 1. Follow the label of
the majority in the NN examples.



K-nearest neighbor classifier

the data NN classifier
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Larger K gives cleaner boundary between classes
Larger K is more robust to outliers

Credit: Andrej Karpathy, http://cs231n.github.io/classification/



http://cs231n.github.io/classification/

K-NN examples (K=10), based on pixel-
wise difference
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K-NN examples (K=5), based on deep
feature

Nearest Neighbors



Nearest Neighbor is a great way for
visualization neural network

Two Stream
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Action Recognition (Wang et al., 2016)

GANSs (Brock et al., 2019)



Goods and Bads of Nearest Neighbor

* Good:

* Do not require training
« Simple and robust to outliers

» Bad:

« Storage: needs to store the whole dataset

« Time: needs to go over each training data point, inference time grows
linearly as the training data increases

« Can we compress the training samples to a set of weights?



Learning is a way to compress NN

So it is just nearest neighbor?

-- Alyosha Efros




Linear Classifier



Linear Classifier

_ . O ® Training
Training data from
data from . class 2
class 1
u O

 Goal: Learn a d-dimentional vector of parameters W € R¢,
given a set of d-dimentional data

 Prediction: f(x) = Wix; + Wox, + ...+ Wyx,; = Wx



Linear Classifier e o ® Coss

 Prediction: f(x) = Wix; + Wox, + ...+ Wyx,; = Wx

 If f(x) > 0, x belongstoclass 1, if f(x) < 0, x belongs to class
2.

« See W as the compression of the whole training dataset, and
we only need to compute 1 multiplication for obtaining the label.



Linear Classifier: adding bias
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* Prediction: f(x) = Wyxy + Wox, + ..+ Wyx; +b=Wx+b

* b € R, b is only a 1-dimentional digit for 2-class classification



Linear Classifier: Multiple Class

1 plane is not enough

* Multiple planes

=
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airplane classifie/ &
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deer classifier

car classifier

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/



http://cs231n.github.io/linear-classify/

Linear Classifier: Multiple Class

* Instead of learning one vector of weights, we will need to learn
one vector of weights for each category:

» A dog classifier: f;(x) = Wlx + b?!

« A cat classifier: f,(x) = W?x + b?
» A ship classifier: f3(x) = W3x + b3

* Select the class with the max classification score



Example: Represent an image with 4 pixels

Flatten tensors into a vector
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Example: Represent an image with 4 pixels

Visual Viewpoint

Input image
86 7231,
t,.w\
242,
y Y
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W
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b i 32 -1.2
v v v
Score -96.8 437.9 61.95

fx)=Wx+b

x € R3Y72 (32x32x%3)
W = ]R3072
b € R!



Example: Represent an image with 4 pixels

Visual Viewpoint

fx)=Wx+b
drnBnoRGe x € R377% (32x32x%3)
: : i 3072
b 1{.1 :.2 .L W E ]:R
Score -9:.8 4!7.9 61.*95 b E ]:Rl

Visualizing W in 10 different classes:

plane car bird cat deer dog frog horse ship truck
. T




Training the Linear Classifier

* Linear regression

* Logistic regression (next class)



Training with Linear Regression

» Given the training data {(x, v;), ..., (xy, Yny)}, drawn from
distribution D.

 Find predictor f(x) so that it performs well on test (unseen)
data drawn from the same distribution D.

» Potential problem: What if the data is not taken from the same
distribution D?



How to evaluate "performs well™?

* Define an expected loss as,
[E(x,y)wD [l(f) X, 3’)]

* To approximate the loss using N examples {(x, v{), ..., (xn, Vn) 1,

&
NZ L(f,x;, i)
=



Linear Regression

 Loss: Using L2 distance:
[(f,xi,y:) = (f(xp) —y)? = Wx; + b — y;)?

* Average through all the examples

N

1

NZ(WXL' +b —y;)?
i=1



Linear Regression

N

1

NZ(W'XL' +b —y;)*
i=1

* In two-class classification: y € {—1,1}. However, there is no
regulation to constrain the output range.

* |In multiple-class case, for each class we perform two-class
classification: y € {—1,1}.

 Not convenient for classification



The Sigmoid Function (2-class)

» Squash the linear response of the classifier to the interval [0,1]
to represent the prediction probability:

1

o(Wx) = 1+ exp(—Wx)
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The Sigmoid Function (2-class)

1
1+exp(—Wx)

» Thus we let P(y = 1|x) = a(Wx) =

 For the other category:

Py=-1lx)=1—-P(y=1|x) =1—-0c(Wx)

_ 1 _exp(—Wx)
B 1+exp(=Wx) 1+ exp(—Wx)
- = s(-WD)
Cexp(Wx)+1 ’ *

The sigmoid function is symmetric: 1 —o(Wx) = o(—Wx)



Logistic regression: Training Objective
« Given: {(x;,v;),i =1,..,n}, y; € {—1,1}

P

N
1
L(W) = — NE log P(y;lx;)
i=1
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iy =1 Lyj=—1
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Optimization



Gradient descent

e Start with some initial

A
estimate of W. R "
L(W Initial , _
(W) weight \ ,l'/ aradient

* At each step, compute ]

the gradient VL(W). ﬂ

. . ¥ / Global cost minimum

* Move in the opposite f,[// L (W)

direction of the gradient S

w



2D Example

Take a small step in the opposite direction, using learning rate «:

W« W —aVL(W)

Source: Svetlana Lazebnik



Gradient descent for logistic regression
) 1%
Lw) = —ﬁzlloga(inxi)

N
“ 1
VL(W) = _Nz V,, logao(y;Wx;)
i=1

Derivative rule:
f'(x)
f(x)

[log(f(x))] =



Gradient descent for logistic regression
) 1%
Lw) = —ﬁzlloga(inxi)

N
“ 1
VL(W) = _Nz V,, logao(y;Wx;)
i=1

N
1 Vo (y;Wx;)

N o(y;Wx;)

=1

Derivative rule:

0'(x) =0(x)(1-0(x)) = o(x)a(~x)



Gradient descent for logistic regression

N
- 1
Lw) = -+ ) loga(yWx)

WG( ViWx)yx;
I




Gradient descent for logistic regression
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Gradient descent for logistic regression

Update rule:
W« W —aVL(W)
N

. 1
VL(W) = N o(—y;Wx;)y;x;
i=1

Combine both:

N
1
WeW+ “ﬁz o(—yiWx;)yix;
i=1

We update the parameters iteratively, compute the gradient over all
examples each gradient step



Gradient descent for logistic regression
W« W —aVL(W)
* We can set a = 0.1 or other smaller number if the parameters

diverge.

* However, it might be too slow to perform one update by
calculating the gradients over all the training examples.

« Can we approximate the gradients more efficiently?



Stochastic gradient descent (SGD)

» We approximate the gradient of the whole dataset VL(W) by
using only ONE example (x;,y;) as VL(W, x;, y;)

* Instead of
1 N
WeW+ “ﬁz o(=yiWx)yx;
i=1

» Use
WeW+ao(—yWx;)yx;

 Since gradient on each example is unstable, it is “stochastic”



Stochastic gradient descent (SGD)

* Instead of using only one example, or the whole dataset, we
can try something in between.

« Sample a batch of examples (e.g., B = 128 examples) to
compute the gradients for update

1
WeW+ C(EZ o(=yiWx)yix;

* batch size: A trade off between accurate gradient approximation
and efficiency



Regularization



Overfitting

We want to estimate a function to fit the green data points.
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Underfit |deal fit Overfit



Overfitting

We want to estimate a classifier to separate two types of data.

Underfit |deal fit Overfit



One trick to prevent overfitting

» Adding regularization in training objective, L2 regularization:

- 1 2 1
L(W) = E“Wll + ;Z?=1L(W;xi;3’i)

L2 regularization Loss from data

!

n
1
W « W—a(AW+VWEZL(W,Xi,yi))
i=1




To prevent overfitting

n
1
WeW—a(Aw +vW£ZL(W,xi,yi))
=1

Gradients from
L2 regularization

!

Also called weight decay

We usually set A = 0.00005 in neural networks



Compare K-NN and Linear classifier

* Do not need training * Need training

* Time consuming in test time * Time efficient in test time

* Non-parametric, explicitly « Parametric, use parameters to
search through data "memorize” the dataset

* More robust to outliers, using « Can be sensitive to outliers

larger K



Next class

* Training Multi-Layer Perceptrons

» Back-propagation



