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Last class

• Overview of computer vision and deep learning

• The concept and goal of learning



Today: Two basic methods

• Nearest Neighbors

• Linear Classifier



Image Classification

An image is a 300 x 500 x 3 
Tensor. 

Each bit has value in the 
range [0, 255]



Images with different background

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Images with occlusion



Images with illumination



Images with Deformation



Nearest Neighbor Classifier



Nearest Neighbor

Mushroom Dog Ant Cat Car

Training set: 

Testing: Compute the distance between a test image and training images

| | →, ℝ

, ℝ| | →



Nearest Neighbor

• What metric? What representation?
• Metric, L1 distance:

𝑑 𝑥!, 𝑥" = ∑#,% 𝑥!
#,% − 𝑥"

#,%



Recall Supervised Learning
𝑦 = 𝑓(𝑥)

• Training (or learning): given a training set of labeled 
examples {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦!)}, train a predictor 𝑓

• Testing (or inference): apply predictor 𝑓 to a new test 
example 𝑥 and output the predicted value 𝑦 = 𝑓(𝑥)

output 
label

classifier input 
image



Nearest neighbor classifier

• 𝑓 𝑥 = the label of the closest example (computed via a 
distance metric)

• Store all the training data, search all data each test time 
given a test example

Test 
example

Training 
data from 

class 1

Training 
data from 

class 2



K-nearest neighbor classifier

Test 
example

Training 
data from 

class 1

Training 
data from 

class 2

• 1 example is sometimes not enough.

• K-NN, K=5: Find closest 5 examples instead of 1. Follow the label of 
the majority in the NN examples.



K-nearest neighbor classifier

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

Larger K gives cleaner boundary between classes 

Larger K is more robust to outliers

http://cs231n.github.io/classification/


K-NN examples (K=10), based on pixel-
wise difference



K-NN examples (K=5), based on deep 
feature

Query Nearest Neighbors



Nearest Neighbor is a great way for 
visualization neural network

Action Recognition (Wang et al., 2016) GANs (Brock et al., 2019)

Query



Goods and Bads of Nearest Neighbor

• Good: 
• Do not require training
• Simple and robust to outliers

• Bad: 
• Storage: needs to store the whole dataset
• Time: needs to go over each training data point, inference time grows 

linearly as the training data increases

• Can we compress the training samples to a set of weights? 



Learning is a way to compress NN

So it is just nearest neighbor?

-- Alyosha Efros



Linear Classifier



Linear Classifier

Training 
data from 

class 1

Training 
data from 

class 2

• Goal: Learn a 𝑑-dimentional vector of parameters 𝑊 ∈ ℝ&, 
given a set of 𝑑-dimentional data

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& = 𝑊𝑥



Linear Classifier Class 
1

Class 
2

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& = 𝑊𝑥

• If 𝑓 𝑥 > 0, 𝑥 belongs to class 1, if 𝑓 𝑥 < 0, 𝑥 belongs to class 
2. 

• See 𝑊 as the compression of the whole training dataset, and 
we only need to compute 1 multiplication for obtaining the label.



Linear Classifier: adding bias

• Prediction: 𝑓 𝑥 = 𝑊!𝑥! +𝑊"𝑥" + …+𝑊&𝑥& + 𝑏 = 𝑊𝑥 + 𝑏

• 𝑏 ∈ ℝ!, 𝑏 is only a 1-dimentional digit for 2-class classification

Training 
data from 

class 1

Training 
data from 

class 2



Linear Classifier: Multiple Class

• 1 plane is not enough

• Multiple planes

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/


Linear Classifier: Multiple Class

• Instead of learning one vector of weights, we will need to learn 
one vector of weights for each category:

• A dog classifier: 𝑓" 𝑥 = 𝑊"𝑥 + 𝑏"
• A cat classifier: 𝑓# 𝑥 = 𝑊#𝑥 + 𝑏#
• A ship classifier: 𝑓$ 𝑥 = 𝑊$𝑥 + 𝑏$

• Select the class with the max classification score



Example: Represent an image with 4 pixels



Example: Represent an image with 4 pixels

𝑓 𝑥 = 𝑊𝑥 + 𝑏

𝑥 ∈ ℝ!"#$ 32×32×3
𝑊 ∈ ℝ!"#$
𝑏 ∈ ℝ%



Example: Represent an image with 4 pixels

𝑓 𝑥 = 𝑊𝑥 + 𝑏

𝑥 ∈ ℝ!"#$ 32×32×3
𝑊 ∈ ℝ!"#$
𝑏 ∈ ℝ%

Visualizing 𝑊 in 10 different classes:



Training the Linear Classifier

• Linear regression

• Logistic regression (next class)



Training with Linear Regression

• Given the training data {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦')}, drawn from 
distribution 𝐷. 

• Find predictor 𝑓 𝑥 so that it performs well on test (unseen) 
data drawn from the same distribution 𝐷. 

• Potential problem: What if the data is not taken from the same 
distribution 𝐷?



How to evaluate ”performs well”?

• Define an expected loss as,

𝔼(),*)∽- 𝑙 𝑓, 𝑥, 𝑦

• To approximate the loss using 𝑁 examples {(𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦')},

1
𝑁
;
./!

'

𝑙 𝑓, 𝑥. , 𝑦.



Linear Regression
• Loss: Using L2 distance:

𝑙 𝑓, 𝑥. , 𝑦. = 𝑓 𝑥. − 𝑦. " = 𝑊𝑥. + 𝑏 − 𝑦. "

• Average through all the examples

1
𝑁
;
./!

'

𝑊𝑥. + 𝑏 − 𝑦. "



Linear Regression
1
𝑁
;
./!

'

𝑊𝑥. + 𝑏 − 𝑦. "

• In two-class classification: 𝑦 ∈ −1,1 . However, there is no 
regulation to constrain the output range.

• In multiple-class case, for each class we perform two-class 
classification: 𝑦 ∈ −1,1 .

• Not convenient for classification



The Sigmoid Function (2-class)

• Squash the linear response of the classifier to the interval [0,1]
to represent the prediction probability:

𝜎 𝑊𝑥 =
1

1 + exp(−𝑊𝑥)



The Sigmoid Function (2-class)
• Thus we let 𝑃 𝑦 = 1 𝑥 = 𝜎 𝑊𝑥 = !

!0123(45))

• For the other category: 

𝑃 𝑦 = −1 𝑥 = 1 − 𝑃 𝑦 = 1 𝑥 = 1 − 𝜎 𝑊𝑥

= 1 −
1

1 + exp −𝑊𝑥
=

exp −𝑊𝑥
1 + exp −𝑊𝑥

=
1

exp 𝑊𝑥 + 1
= 𝜎 −𝑊𝑥

The sigmoid function is symmetric:  1 − 𝜎 𝑊𝑥 = 𝜎 −𝑊𝑥



Logistic regression: Training Objective
• Given: 𝑥%, 𝑦% , 𝑖 = 1,… , 𝑛 , 𝑦% ∈ {−1,1}

8𝐿 𝑊 = −
1
𝑁
;
%&"

!

log 𝑃 𝑦% 𝑥%

= −
1
𝑁

;
%:(!&"

log 𝜎 𝑊𝑥% −
1
𝑁

;
%:(!&)"

log[1 −𝜎(𝑊𝑥%)]

= −
1
𝑁

;
%:(!&"

log 𝜎 𝑊𝑥% −
1
𝑁

;
%:(!&)"

log[ 𝜎(−𝑊𝑥%)]

= −
1
𝑁
;
%

log 𝜎 𝑦%𝑊𝑥%



Optimization



Gradient descent

• Start with some initial 
estimate of 𝑊.

• At each step, compute 
the gradient ∇D𝐿(𝑊). 

• Move in the opposite 
direction of the gradient

!𝐿 𝑊

!𝐿*%+ 𝑊



2D Example

Take a small step in the opposite direction, using learning rate 𝛼:

𝑊 ← 𝑊 − 𝛼 ∇D𝐿(𝑊)

w1

w2

Source: Svetlana Lazebnik



Gradient descent for logistic regression 

D𝐿 𝑊 = −
1
𝑁
;
./!

'

log 𝜎 𝑦.𝑊𝑥.

∇D𝐿 𝑊 = −
1
𝑁
;
./!

'

∇% log 𝜎 𝑦.𝑊𝑥.

Derivative rule:

log 𝑓 𝑥 6 =
𝑓′(𝑥)
𝑓(𝑥)



Gradient descent for logistic regression 

D𝐿 𝑊 = −
1
𝑁
;
./!

'

log 𝜎 𝑦.𝑊𝑥.

∇D𝐿 𝑊 = −
1
𝑁
;
./!

'

∇% log 𝜎 𝑦.𝑊𝑥.

= −
1
𝑁
;
./!

'
∇5𝜎 𝑦.𝑊𝑥.
𝜎 𝑦.𝑊𝑥.

Derivative rule:
𝜎6 𝑥 = 𝜎 𝑥 1 − 𝜎(𝑥) = 𝜎 𝑥 𝜎 −𝑥



Gradient descent for logistic regression 

D𝐿 𝑊 = −
1
𝑁
;
./!

'

log 𝜎 𝑦.𝑊𝑥.

∇D𝐿 𝑊 = −
1
𝑁
;
./!

'

∇% log 𝜎 𝑦.𝑊𝑥.

= −
1
𝑁
;
./!

'
∇5𝜎 𝑦.𝑊𝑥.
𝜎 𝑦.𝑊𝑥.

= −
1
𝑁
;
./!

'
𝜎 𝑦.𝑊𝑥. 𝜎 −𝑦.𝑊𝑥. 𝑦.𝑥.

𝜎 𝑦.𝑊𝑥.



Gradient descent for logistic regression 
8𝐿 𝑊 = −

1
𝑁
;
%&"

!

log 𝜎 𝑦%𝑊𝑥%

∇8𝐿 𝑊 = −
1
𝑁
;
%&"

!

∇, log 𝜎 𝑦%𝑊𝑥%

= −
1
𝑁
;
%&"

!
∇-𝜎 𝑦%𝑊𝑥%
𝜎 𝑦%𝑊𝑥%

= −
1
𝑁
;
%&"

!
𝜎 𝑦%𝑊𝑥% 𝜎 −𝑦%𝑊𝑥% 𝑦%𝑥%

𝜎 𝑦%𝑊𝑥%

= −
1
𝑁
;
%&"

!

𝜎 −𝑦%𝑊𝑥% 𝑦%𝑥%



Gradient descent for logistic regression 
Update	rule:

𝑊 ← 𝑊 − 𝛼 ∇1𝐿(𝑊)

∇1𝐿(𝑊) = −
1
𝑁
8
#$%

&

𝜎 −𝑦#𝑊𝑥# 𝑦#𝑥#

Combine both:

𝑊 ←𝑊 + 𝛼
1
𝑁8

#$%

&

𝜎 −𝑦#𝑊𝑥# 𝑦#𝑥#

We update the parameters iteratively, compute the gradient over all 
examples each gradient step



Gradient descent for logistic regression 

𝑊 ← 𝑊 − 𝛼 ∇D𝐿(𝑊)
• We can set 𝛼 = 0.1 or other smaller number if the parameters 

diverge.

• However, it might be too slow to perform one update by 
calculating the gradients over all the training examples.

• Can we approximate the gradients more efficiently? 



Stochastic gradient descent (SGD)

• We approximate the gradient of the whole dataset ∇D𝐿(𝑊) by 
using only ONE example 𝑥. , 𝑦. as ∇𝐿(𝑊, 𝑥. , 𝑦.)

• Instead of

𝑊 ← 𝑊 + 𝛼
1
𝑁
;
./!

'

𝜎 −𝑦.𝑊𝑥. 𝑦.𝑥.

• Use
𝑊 ← 𝑊 + 𝛼 𝜎 −𝑦.𝑊𝑥. 𝑦.𝑥.

• Since gradient on each example is unstable, it is “stochastic”



Stochastic gradient descent (SGD)
• Instead of using only one example, or the whole dataset, we 

can try something in between.

• Sample a batch of examples (e.g., 𝐵 = 128 examples) to 
compute the gradients for update

𝑊 ← 𝑊 + 𝛼
1
𝐵
;
./!

7

𝜎 −𝑦.𝑊𝑥. 𝑦.𝑥.

• batch size: A trade off between accurate gradient approximation 
and efficiency



Regularization



Overfitting
We want to estimate a function to fit the green data points.

Underfit Ideal fit Overfit



Overfitting
We want to estimate a classifier to separate two types of data.

Underfit Ideal fit Overfit



One trick to prevent overfitting

• Adding regularization in training objective, L2 regularization: 

D𝐿 𝑊 = 8
"
𝑊 " + !

9
∑./!9 𝐿(𝑊, 𝑥. , 𝑦.)

𝑊 ← 𝑊 − 𝛼 (𝜆 𝑊 + ∇5
1
𝑛
;
./!

9

𝐿 𝑊, 𝑥. , 𝑦. )

L2 regularization Loss from data



To prevent overfitting

𝑊 ← 𝑊 − 𝛼 (𝜆 𝑊 + ∇5
1
𝑛
;
./!

9

𝐿 𝑊, 𝑥. , 𝑦. )

Gradients from 
L2 regularization

Also called weight decay

We usually set 𝜆 = 0.00005 in neural networks



Compare K-NN and Linear classifier

• Need training

• Time efficient in test time

• Parametric, use parameters to 
”memorize” the dataset

• Can be sensitive to outliers

• Do not need training

• Time consuming in test time

• Non-parametric, explicitly 
search through data

• More robust to outliers, using 
larger K



Next class

• Training Multi-Layer Perceptrons

• Back-propagation 


