Image Classification: K-NN and Linear Classifier

Xiaolong Wang

Last class

- Overview of computer vision and deep learning
- The concept and goal of learning

Today: Two basic methods

- Nearest Neighbors
- Linear Classifier

Image Classification

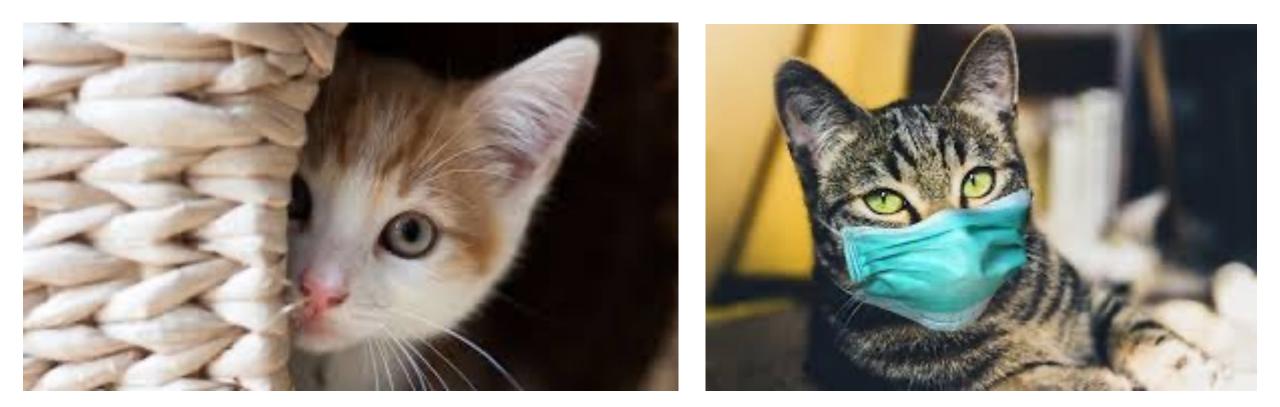
An image is a 300 x 500 x 3 Tensor.

Each bit has value in the range [0, 255]

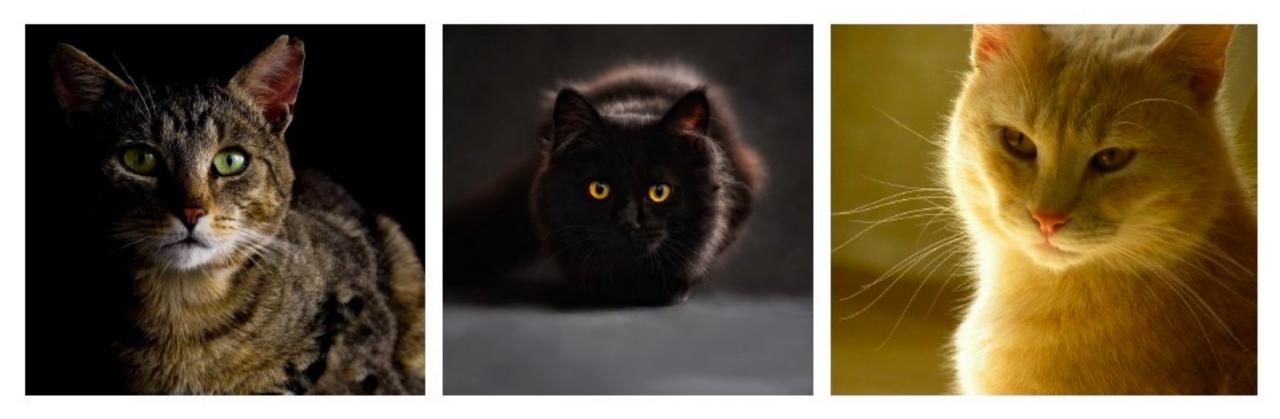
Images with different background

http://cs231n.stanford.edu/

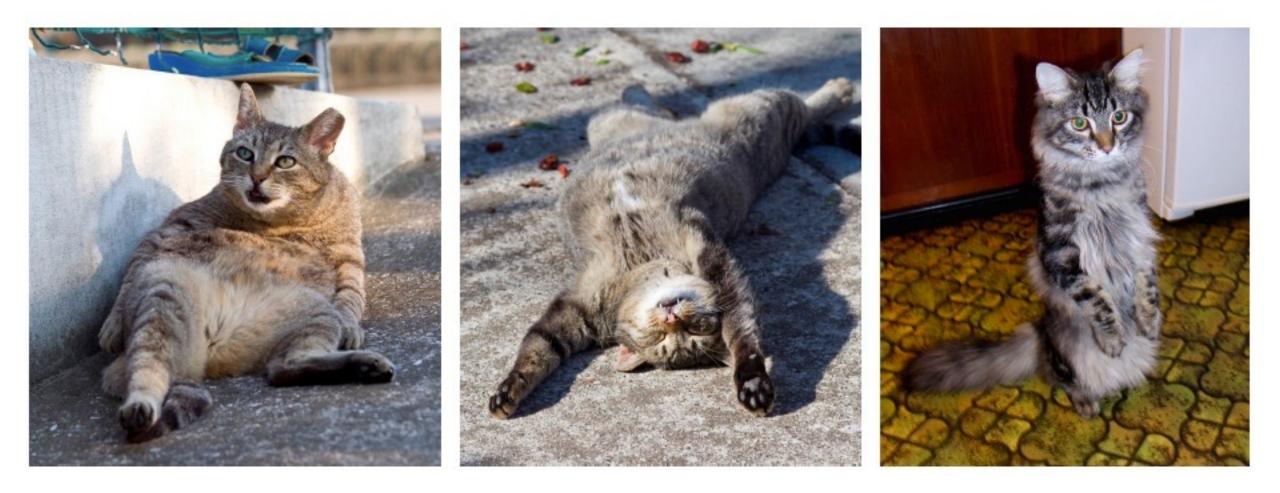
Images with occlusion



Images with illumination



Images with Deformation



Nearest Neighbor Classifier

Nearest Neighbor

Training set:

Mushroom

Dog

Ant

Cat

Car

Testing: Compute the distance between a test image and training images

Nearest Neighbor

- What metric? What representation?
- Metric, L1 distance:

$$d(x_1, x_2) = \sum_{h, w} \left| x_1^{h, w} - x_2^{h, w} \right|$$

	test i	mage	
56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

	tr	aining	g imag	je
	10	20	24	17
	8	10	89	100
-	12	16	178	170
	4	32	233	112

pixel-wise absolute value differences

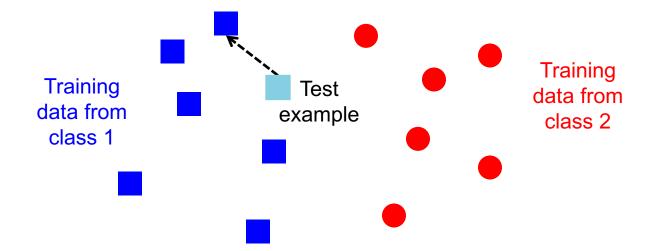
=	46	12	14	1	<u>a</u>
	82	13	39	33	
	12	10	0	30	
	2	32	22	108	
	-				

→ 456

Recall Supervised Learning y = f(x) $\int_{\text{output}} \int_{\text{classifier}} \int_{\text{input}} \int_{\text{imput}} \int_{\text{impu}} \int_{\text{impu}$

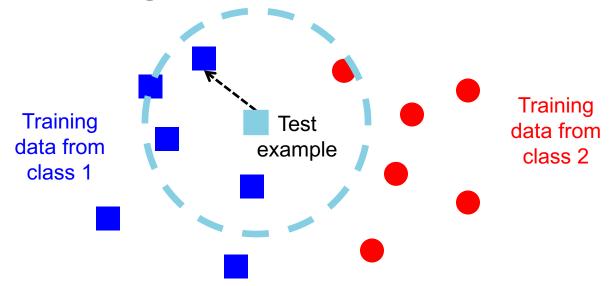
- **Training** (or **learning**): given a *training set* of labeled examples $\{(x_1, y_1), ..., (x_N, y_N)\}$, train a predictor f
- **Testing** (or **inference**): apply predictor f to a new *test* example x and output the predicted value y = f(x)

Nearest neighbor classifier



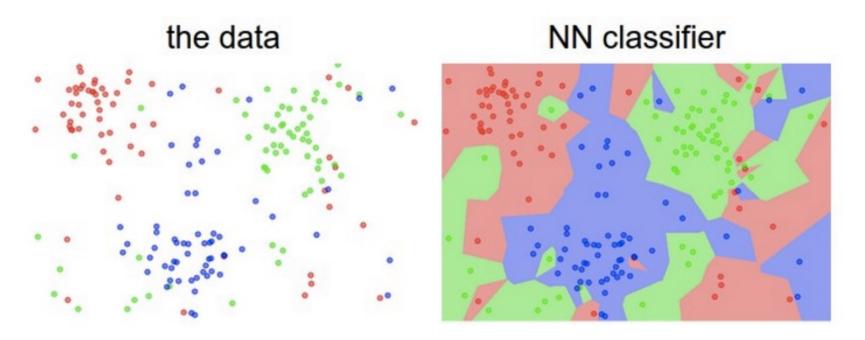
- f(x) = the label of the closest example (computed via a distance metric)
- Store all the training data, search all data each test time given a test example

K-nearest neighbor classifier



- 1 example is sometimes not enough.
- K-NN, K=5: Find closest 5 examples instead of 1. Follow the label of the majority in the NN examples.

K-nearest neighbor classifier

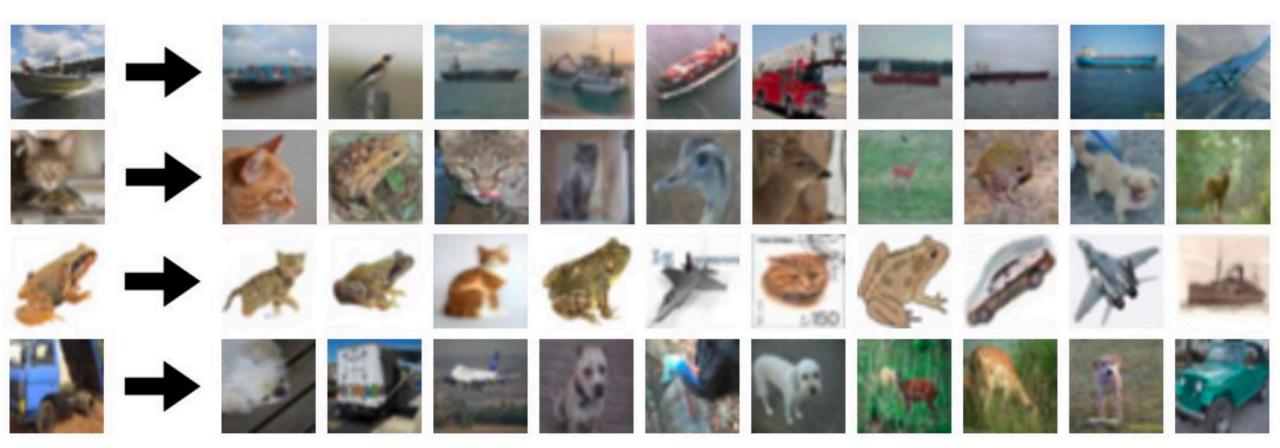


Larger K gives cleaner boundary between classes

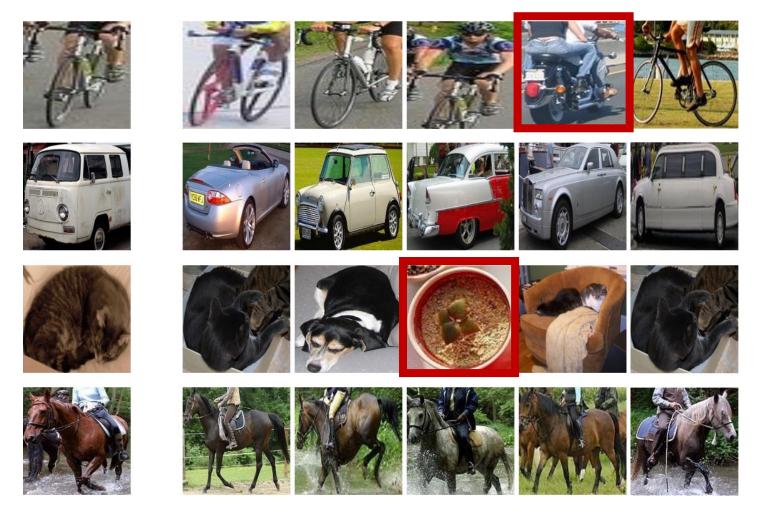
Larger K is more robust to outliers

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

K-NN examples (K=10), based on pixelwise difference



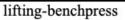
K-NN examples (K=5), based on deep feature



Query

Nearest Neighbors

Nearest Neighbor is a great way for visualization neural network



jumping-highjump

Action Recognition (Wang et al., 2016)

Query

GANs (Brock et al., 2019)

Goods and Bads of Nearest Neighbor

• Good:

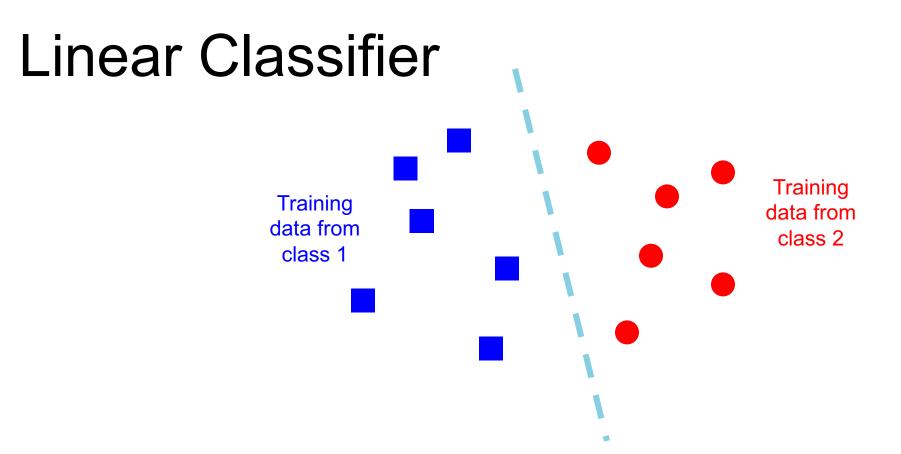
- Do not require training
- Simple and robust to outliers
- Bad:
 - Storage: needs to store the whole dataset
 - Time: needs to go over each training data point, inference time grows linearly as the training data increases
- Can we *compress* the training samples to a set of weights?

Learning is a way to compress NN

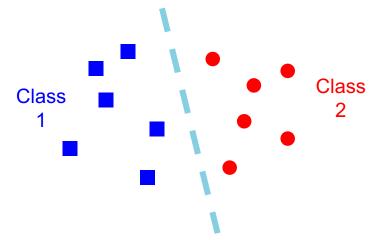
So it is just nearest neighbor?

-- Alyosha Efros

Linear Classifier



- Goal: Learn a *d*-dimentional vector of parameters $W \in \mathbb{R}^d$, given a set of *d*-dimentional data
- Prediction: $f(x) = W_1 x_1 + W_2 x_2 + ... + W_d x_d = W x$

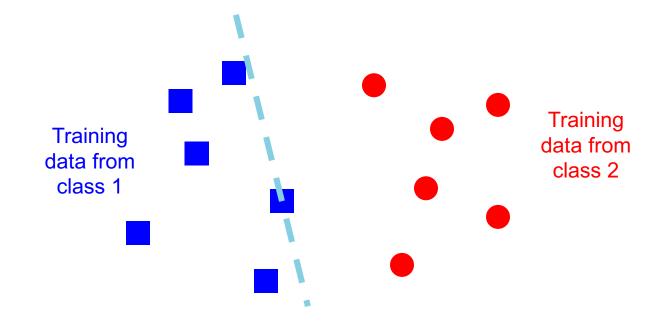


• Prediction: $f(x) = W_1 x_1 + W_2 x_2 + ... + W_d x_d = W x$

Linear Classifier

- If f(x) > 0, x belongs to class 1, if f(x) < 0, x belongs to class 2.
- See *W* as the compression of the whole training dataset, and we only need to compute 1 multiplication for obtaining the label.

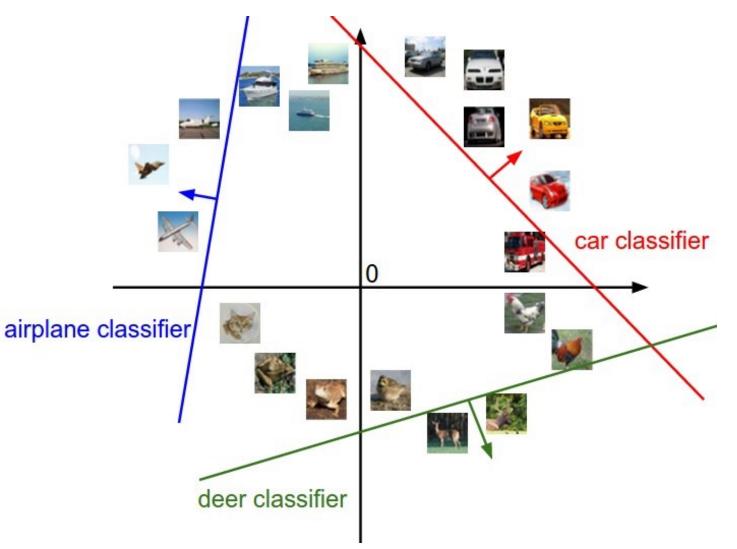
Linear Classifier: adding bias



- Prediction: $f(x) = W_1 x_1 + W_2 x_2 + ... + W_d x_d + b = Wx + b$
- $b \in \mathbb{R}^1$, b is only a 1-dimentional digit for 2-class classification

Linear Classifier: Multiple Class

- 1 plane is not enough
- Multiple planes



Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

Linear Classifier: Multiple Class

 Instead of learning one vector of weights, we will need to learn one vector of weights for each category:

airplane classifier

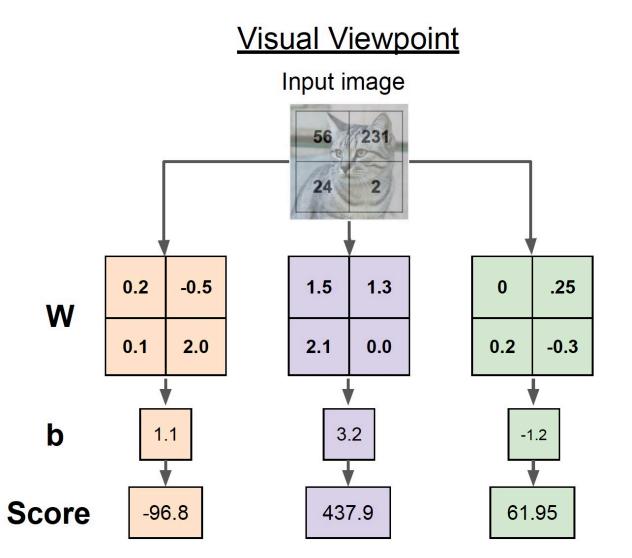
deer class

- A dog classifier: $f_1(x) = W^1 x + b^1$
- A cat classifier: $f_2(x) = W^2 x + b^2$
- A ship classifier: $f_3(x) = W^3 x + b^3$
- Select the class with the max classification score

Example: Represent an image with 4 pixels

Flatten tensors into a vector

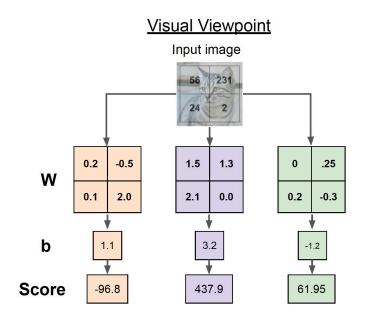
Example: Represent an image with 4 pixels



f(x) = Wx + b

```
x \in \mathbb{R}^{3072} (32 \times 32 \times 3)W \in \mathbb{R}^{3072}b \in \mathbb{R}^{1}
```

Example: Represent an image with 4 pixels



$$f(x) = Wx + b$$

$$x \in \mathbb{R}^{3072} (32 \times 32 \times 3)$$
$$W \in \mathbb{R}^{3072}$$
$$b \in \mathbb{R}^{1}$$

Visualizing *W* in 10 different classes:

Training the Linear Classifier

- Linear regression
- Logistic regression (next class)

Training with Linear Regression

- Given the training data $\{(x_1, y_1), \dots, (x_N, y_N)\}$, drawn from distribution *D*.
- Find predictor f(x) so that it performs well on test (unseen) data drawn from the same distribution D.
- Potential problem: What if the data is not taken from the same distribution *D*?

How to evaluate "performs well"?

• Define an expected loss as,

 $\mathbb{E}_{(x,y)\sim D}[l(f,x,y)]$

• To approximate the loss using N examples $\{(x_1, y_1), \dots, (x_N, y_N)\}$,

$$\frac{1}{N}\sum_{i=1}^{N}l(f,x_i,y_i)$$

Linear Regression

• Loss: Using L2 distance:

$$l(f, x_i, y_i) = (f(x_i) - y_i)^2 = (Wx_i + b - y_i)^2$$

• Average through all the examples

$$\frac{1}{N} \sum_{i=1}^{N} (Wx_i + b - y_i)^2$$

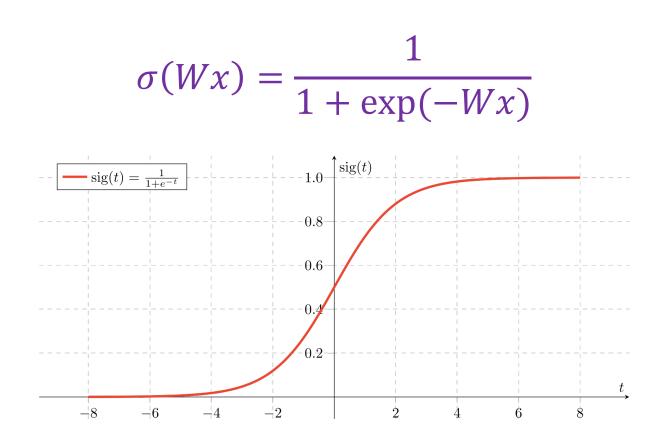
Linear Regression

$$\frac{1}{N} \sum_{i=1}^{N} (Wx_i + b - y_i)^2$$

- In two-class classification: $y \in \{-1,1\}$. However, there is no regulation to constrain the output range.
- In multiple-class case, for each class we perform two-class classification: $y \in \{-1,1\}$.
- Not convenient for classification

The Sigmoid Function (2-class)

• Squash the linear response of the classifier to the interval [0,1] to represent the prediction probability:



The Sigmoid Function (2-class)

• Thus we let
$$P(y = 1 | x) = \sigma(Wx) = \frac{1}{1 + \exp(-Wx)}$$

• For the other category:

$$P(y = -1|x) = 1 - P(y = 1|x) = 1 - \sigma(Wx)$$
$$= 1 - \frac{1}{1 + \exp(-Wx)} = \frac{\exp(-Wx)}{1 + \exp(-Wx)}$$
$$= \frac{1}{\exp(Wx) + 1} = \sigma(-Wx)$$

The sigmoid function is symmetric: $1 - \sigma(Wx) = \sigma(-Wx)$

Logistic regression: Training Objective

• Given: { $(x_i, y_i), i = 1, ..., n$ }, $y_i \in \{-1, 1\}$

$$\hat{L}(W) = -\frac{1}{N} \sum_{i=1}^{N} \log P(y_i | x_i)$$

$$= -\frac{1}{N} \sum_{i:y_i=1}^{N} \log \sigma(Wx_i) - \frac{1}{N} \sum_{i:y_i=-1}^{N} \log[1 - \sigma(Wx_i)]$$

$$= -\frac{1}{N} \sum_{i:y_i=1}^{N} \log \sigma(Wx_i) - \frac{1}{N} \sum_{i:y_i=-1}^{N} \log[\sigma(-Wx_i)]$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \log \sigma(y_i Wx_i)$$

Optimization

Gradient descent

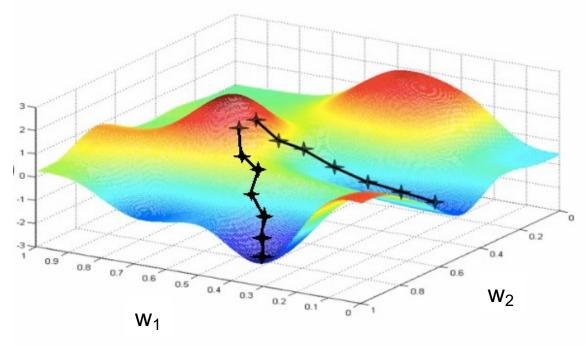
 Start with some initial estimate of W. $\widehat{L}(W$ Initial weight • At each step, compute the gradient $\nabla \hat{L}(W)$. Global cost minimum Move in the opposite $\hat{L}_{min}(W)$ direction of the gradient

Gradient

2D Example

Take a small step in the *opposite* direction, using learning rate α :

 $W \leftarrow W - \alpha \,\nabla \hat{L}(W)$



Source: Svetlana Lazebnik

$$\hat{L}(W) = -\frac{1}{N} \sum_{\substack{i=1\\N}}^{N} \log \sigma(y_i W x_i)$$

$$7\hat{L}(W) = -\frac{1}{N} \sum_{\substack{i=1\\i=1}}^{N} \nabla_W \log \sigma(y_i W x_i)$$

Derivative rule:

$$\left[\log(f(x))\right]' = \frac{f'(x)}{f(x)}$$

$$\hat{L}(W) = -\frac{1}{N} \sum_{i=1}^{N} \log \sigma(y_i W x_i)$$
$$\nabla \hat{L}(W) = -\frac{1}{N} \sum_{i=1}^{N} \nabla_w \log \sigma(y_i W x_i)$$
$$= -\frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_W \sigma(y_i W x_i)}{\sigma(y_i W x_i)}$$

Derivative rule:

$$\sigma'(x) = \sigma(x)(1 - \sigma(x)) = \sigma(x)\sigma(-x)$$

$$\hat{L}(W) = -\frac{1}{N} \sum_{i=1}^{N} \log \sigma(y_i W x_i)$$
$$\nabla \hat{L}(W) = -\frac{1}{N} \sum_{i=1}^{N} \nabla_W \log \sigma(y_i W x_i)$$
$$= -\frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_W \sigma(y_i W x_i)}{\sigma(y_i W x_i)}$$
$$= -\frac{1}{N} \sum_{i=1}^{N} \frac{\sigma(y_i W x_i) \sigma(-y_i W x_i) y_i x_i}{\sigma(y_i W x_i)}$$

$$\hat{L}(W) = -\frac{1}{N} \sum_{i=1}^{N} \log \sigma(y_i W x_i)$$

$$\nabla \hat{L}(W) = -\frac{1}{N} \sum_{i=1}^{N} \nabla_W \log \sigma(y_i W x_i)$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \frac{\nabla_W \sigma(y_i W x_i)}{\sigma(y_i W x_i)}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \frac{\sigma(y_i W x_i) \sigma(-y_i W x_i) y_i x_i}{\sigma(y_i W x_i)}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \sigma(-y_i W x_i) y_i x_i$$

Update rule:

$$W \leftarrow W - \alpha \,\nabla \hat{L}(W)$$
$$\nabla \hat{L}(W) = -\frac{1}{N} \sum_{i=1}^{N} \sigma(-y_i W x_i) y_i x_i$$

Combine both:

$$W \leftarrow W + \alpha \frac{1}{N} \sum_{i=1}^{N} \sigma(-y_i W x_i) y_i x_i$$

We update the parameters iteratively, compute the gradient over all examples each gradient step

$$W \leftarrow W - \alpha \, \nabla \hat{L}(W)$$

- We can set $\alpha = 0.1$ or other smaller number if the parameters diverge.
- However, it might be too slow to perform one update by calculating the gradients over all the training examples.
- Can we approximate the gradients more efficiently?

Stochastic gradient descent (SGD)

- We approximate the gradient of the whole dataset $\nabla \hat{L}(W)$ by using only ONE example (x_i, y_i) as $\nabla L(W, x_i, y_i)$
- Instead of

$$W \leftarrow W + \alpha \frac{1}{N} \sum_{i=1}^{N} \sigma(-y_i W x_i) y_i x_i$$

• Use

$$W \leftarrow W + \alpha \, \sigma(-y_i W x_i) y_i x_i$$

Since gradient on each example is unstable, it is "stochastic"

Stochastic gradient descent (SGD)

- Instead of using only one example, or the whole dataset, we can try something in between.
- Sample a batch of examples (e.g., B = 128 examples) to compute the gradients for update

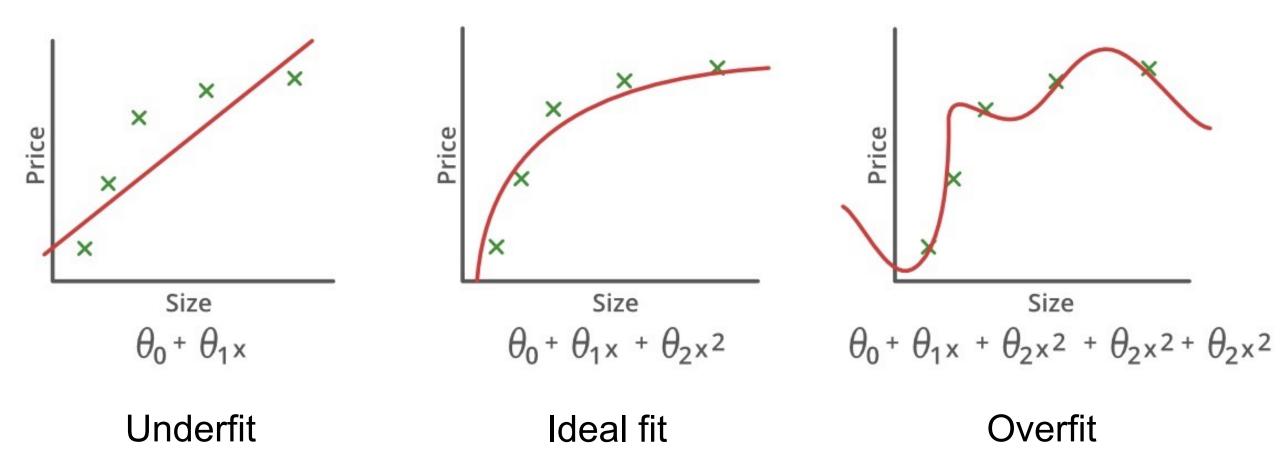
$$W \leftarrow W + \alpha \frac{1}{B} \sum_{i=1}^{B} \sigma(-y_i W x_i) y_i x_i$$

 batch size: A trade off between accurate gradient approximation and efficiency

Regularization

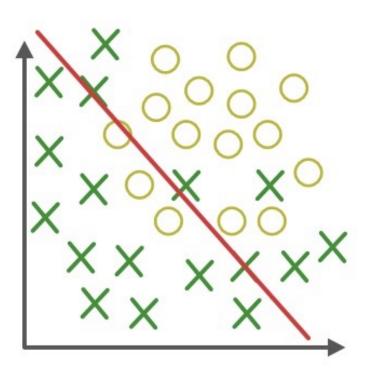
Overfitting

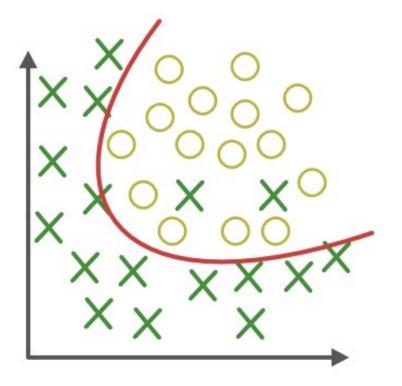
We want to estimate a function to fit the green data points.

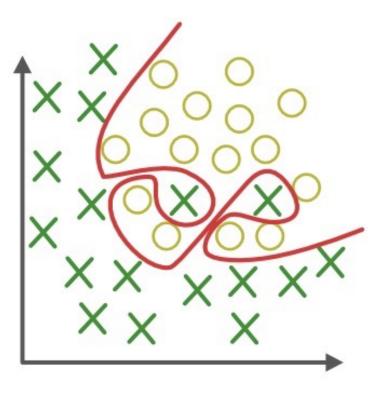


Overfitting

We want to estimate a classifier to separate two types of data.







Underfit

Ideal fit

Overfit

One trick to prevent overfitting

• Adding regularization in training objective, L2 regularization:

$$\hat{L}(W) = \frac{\lambda}{2} ||W||^{2} + \frac{1}{n} \sum_{i=1}^{n} L(W, x_{i}, y_{i})$$
L2 regularization
Loss from data
$$W \leftarrow W - \alpha \left(\lambda W + \nabla_{W} \frac{1}{n} \sum_{i=1}^{n} L(W, x_{i}, y_{i})\right)$$

To prevent overfitting

$$W \leftarrow W - \alpha \left(\lambda W + \nabla_{W} \frac{1}{n} \sum_{i=1}^{n} L(W, x_{i}, y_{i})\right)$$

Gradients from
L2 regularization

Also called weight decay

We usually set $\lambda = 0.00005$ in neural networks

Compare K-NN and Linear classifier

- Do not need training
- Time consuming in test time
- Non-parametric, explicitly search through data
- More robust to outliers, using larger K

- Need training
- Time efficient in test time
- Parametric, use parameters to "memorize" the dataset
- Can be sensitive to outliers

Next class

• Training Multi-Layer Perceptrons

Back-propagation