Image Classification:
K-NN and Linear Classifier

Xiaolong Wang

| ast class

» Overview of computer vision and deep learning

* The concept and goal of learning

Today: Two basic methods

* Nearest Neighbors

e Linear Classifier

Image Classification

An image is a 300 x 500 x 3
Tensor.

Each bit has value in the
range [0, 259]

Images with different background

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Images with occlusion

Images with illumination

Images with Deformation

Nearest Neighbor Classifier

Nearest Neighbor

Training set:

? o ; \ SRRl
ST P ¢ L K RO

Mushroom Dog Ant

Car

Testing: Compute the distance between a test image and training images

Nearest Neighbor

* What metric? What representation?
* Metric, L1 distance:

h,
d(xq1,x5) = Zh,w‘xl "

test image training image
56 | 32 | 10 | 18 10 | 20 | 24 | 17
90 | 23 | 128|133 8 | 10 | 89 | 100
24 | 26 | 178 | 200 12 | 16 | 178 | 170
2 | 0 |2585]|220 4 | 32 |233| N2

h,w

pixel-wise absolute value differences

46

12

14

1

82

13

39

33

12

10

0

30

2

32

22

108

add
—> 456

Recall Supervised Learning

y = f(x)
T N

output classifier input
label image

 Training (or learning): given a training set of labeled
examples {(x4,v,), ..., (xy, yy)}, train a predictor f

» Testing (or inference): apply predictor f to a new test
example x and output the predicted value y = f(x)

Nearest neighbor classifier

[]
v O
] O -
- N O Training
Training . Test data from
data from example class 2
class 1
a e
]
.
]

* f(x) = the label of the closest example (computed via a
distance metric)

« Store all the training data, search all data each test time
given a test example

K-nearest neighbor classifier

[]
v, e
(] O -
- N O Training
Training . Test data from
data from example class 2
class 1
a e
]
.
]

* 1 example is sometimes not enough.

« K-NN, K=5: Find closest 5 examples instead of 1. Follow the label of
the majority in the NN examples.

K-nearest neighbor classifier

the data NN classifier
: g
o‘: :. ° °o‘q,°°o°
o o % 0%,
3 ‘.o‘q. °
2

Larger K gives cleaner boundary between classes
Larger K is more robust to outliers

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

http://cs231n.github.io/classification/

K-NN examples (K=10), based on pixel-
wise difference

N > I s e e
E-EGEREERE®E SR
i g rS@F7x5

o = 35 i I ¥ bl R LY BN 6

K-NN examples (K=5), based on deep
feature

Nearest Neighbors

Nearest Neighbor is a great way for
visualization neural network

Two Stream

swinging-golf

{

OLBS YESIMA GHT.‘EIT :
DGO 192 . 4 -~ S 8

lifting-benchpress liﬁing-cleanandj.erk jumping-highjump

Action Recognition (Wang et al., 2016)

GANSs (Brock et al., 2019)

Goods and Bads of Nearest Neighbor

* Good:

* Do not require training
« Simple and robust to outliers

» Bad:

« Storage: needs to store the whole dataset

« Time: needs to go over each training data point, inference time grows
linearly as the training data increases

« Can we compress the training samples to a set of weights?

Learning is a way to compress NN

So it is just nearest neighbor?

-- Alyosha Efros

Linear Classifier

Linear Classifier

_ . O ® Training
Training data from
data from . class 2
class 1
u O

 Goal: Learn a d-dimentional vector of parameters W € R¢,
given a set of d-dimentional data

 Prediction: f(x) = Wix; + Wox, + ...+ Wyx,; = Wx

Linear Classifier e o ® Coss

 Prediction: f(x) = Wix; + Wox, + ...+ Wyx,; = Wx

 If f(x) > 0, x belongstoclass 1, if f(x) < 0, x belongs to class
2.

« See W as the compression of the whole training dataset, and
we only need to compute 1 multiplication for obtaining the label.

Linear Classifier: adding bias

= e
] O -
_ O Training
Training data from
data from . class 2
class 1 ‘
. o
[]
O
[]

* Prediction: f(x) = Wyxy + Wox, + ..+ Wyx; +b=Wx+b

* b € R, b is only a 1-dimentional digit for 2-class classification

Linear Classifier: Multiple Class

1 plane is not enough

* Multiple planes

=

v

airplane classifie/ &
/‘(.'. B

deer classifier

car classifier

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/

Linear Classifier: Multiple Class

* Instead of learning one vector of weights, we will need to learn
one vector of weights for each category:

» A dog classifier: f;(x) = Wlx + b?!

« A cat classifier: f,(x) = W?x + b?
» A ship classifier: f3(x) = W3x + b3

* Select the class with the max classification score

Example: Represent an image with 4 pixels

Flatten tensors into a vector

56

231

24

Input image

Example: Represent an image with 4 pixels

Visual Viewpoint

Input image
86 7231,
t,.w\
242,
y Y
0.2 | -05 1E5 |13 0 | .25
W
0.1 | 2.0 21 | 0.0 0.2 | -0.3
b i 32 -1.2
v v v
Score -96.8 437.9 61.95

fx)=Wx+b

x € R3Y72 (32x32x%3)
W =]R3072
b € R!

Example: Represent an image with 4 pixels

Visual Viewpoint

fx)=Wx+b
drnBnoRGe x € R377% (32x32x%3)
: : i 3072
b 1{.1 :.2 .L W E]:R
Score -9:.8 4!7.9 61.*95 b E]:Rl

Visualizing W in 10 different classes:

plane car bird cat deer dog frog horse ship truck
. T

Training the Linear Classifier

* Linear regression

* Logistic regression (next class)

Training with Linear Regression

» Given the training data {(x, v;), ..., (xy, Yny)}, drawn from
distribution D.

 Find predictor f(x) so that it performs well on test (unseen)
data drawn from the same distribution D.

» Potential problem: What if the data is not taken from the same
distribution D?

How to evaluate "performs well™?

* Define an expected loss as,
[E(x,y)wD [l(f) X, 3’)]

* To approximate the loss using N examples {(x, v{), ..., (xn, Vn) 1,

&
NZ L(f,x;, i)
=

Linear Regression

 Loss: Using L2 distance:
[(f,xi,y:) = (f(xp) —y)? = Wx; + b — y;)?

* Average through all the examples

N

1

NZ(WXL' +b —y;)?
i=1

Linear Regression

N

1

NZ(W'XL' +b —y;)*
i=1

* In two-class classification: y € {—1,1}. However, there is no
regulation to constrain the output range.

* |In multiple-class case, for each class we perform two-class
classification: y € {—1,1}.

 Not convenient for classification

The Sigmoid Function (2-class)

» Squash the linear response of the classifier to the interval [0,1]
to represent the prediction probability:

1

o(Wx) = 1+ exp(—Wx)

ig(t
— Slg(t) = ﬁ 1.0 Slg()
0.8
0.6

0.2

The Sigmoid Function (2-class)

1
1+exp(—Wx)

» Thus we let P(y = 1|x) = a(Wx) =

 For the other category:

Py=-1lx)=1—-P(y=1|x) =1—-0c(Wx)

_ 1 _exp(—Wx)
B 1+exp(=Wx) 1+ exp(—Wx)
- = s(-WD)
Cexp(Wx)+1 ’ *

The sigmoid function is symmetric: 1 —o(Wx) = o(—Wx)

Logistic regression: Training Objective
« Given: {(x;,v;),i =1,..,n}, y; € {—1,1}

P

N
1
L(W) = — NE log P(y;lx;)
i=1

1 1
=-7 z logo(Wx;) — N 2 log[1 —a(Wx;)]

iy =1 Lyj=—1
1 1
_ ‘Nz loga(Wx) — 3 > logla(-Wx))]
iy;=1 Ly;=—1

1
= —3 2,108 o0Wx)
l

Optimization

Gradient descent

e Start with some initial

A
estimate of W. R "
L(W Initial , _
(W) weight \ ,l'/ aradient

* At each step, compute]

the gradient VL(W). ﬂ

. . ¥ / Global cost minimum

* Move in the opposite f,[// L (W)

direction of the gradient S

w

2D Example

Take a small step in the opposite direction, using learning rate «:

W« W —aVL(W)

Source: Svetlana Lazebnik

Gradient descent for logistic regression
) 1%
Lw) = —ﬁzlloga(inxi)

N
“ 1
VL(W) = _Nz V,, logao(y;Wx;)
i=1

Derivative rule:
f'(x)
f(x)

[log(f(x))] =

Gradient descent for logistic regression
) 1%
Lw) = —ﬁzlloga(inxi)

N
“ 1
VL(W) = _Nz V,, logao(y;Wx;)
i=1

N
1 Vo (y;Wx;)

N o(y;Wx;)

=1

Derivative rule:

0'(x) =0(x)(1-0(x)) = o(x)a(~x)

Gradient descent for logistic regression

N
- 1
Lw) = -+) loga(yWx)

WG(ViWx)yx;
I

Gradient descent for logistic regression

P

N
1
L(W) = — Nz loga(y;Wx;)
i=1

N
- 1
VI(W) = — Nz V., log o (y;Wx;)
=1
N
1O Vwo(yiWx;)

N i o(yiWxi)

N
I oW x)o(=yiWx)yix;
N £ o(yiWx;)
N

1
=N, 1 o (=yiWx;)yix;
1=

Gradient descent for logistic regression

Update rule:
W« W —aVL(W)
N

. 1
VL(W) = N o(—y;Wx;)y;x;
i=1

Combine both:

N
1
WeW+ “ﬁz o(—yiWx;)yix;
i=1

We update the parameters iteratively, compute the gradient over all
examples each gradient step

Gradient descent for logistic regression
W« W —aVL(W)
* We can set a = 0.1 or other smaller number if the parameters

diverge.

* However, it might be too slow to perform one update by
calculating the gradients over all the training examples.

« Can we approximate the gradients more efficiently?

Stochastic gradient descent (SGD)

» We approximate the gradient of the whole dataset VL(W) by
using only ONE example (x;,y;) as VL(W, x;, y;)

* Instead of
1 N
WeW+ “ﬁz o(=yiWx)yx;
i=1

» Use
WeW+ao(—yWx;)yx;

 Since gradient on each example is unstable, it is “stochastic”

Stochastic gradient descent (SGD)

* Instead of using only one example, or the whole dataset, we
can try something in between.

« Sample a batch of examples (e.g., B = 128 examples) to
compute the gradients for update

1
WeW+ C(EZ o(=yiWx)yix;

* batch size: A trade off between accurate gradient approximation
and efficiency

Regularization

Overfitting

We want to estimate a function to fit the green data points.

> ~” "\

X

Price

Size Size Size

6, + 04 x 6o+ O;x + B,x2 Byt O1x + O,x2 + B,x2+ B,x2

Underfit |deal fit Overfit

Overfitting

We want to estimate a classifier to separate two types of data.

Underfit |deal fit Overfit

One trick to prevent overfitting

» Adding regularization in training objective, L2 regularization:

- 1 2 1
L(W) = E“Wll + ;Z?=1L(W;xi;3’i)

L2 regularization Loss from data

!

n
1
W « W—a(AW+VWEZL(W,Xi,yi))
i=1

To prevent overfitting

n
1
WeW—a(Aw +vW£ZL(W,xi,yi))
=1

Gradients from
L2 regularization

!

Also called weight decay

We usually set A = 0.00005 in neural networks

Compare K-NN and Linear classifier

* Do not need training * Need training

* Time consuming in test time * Time efficient in test time

* Non-parametric, explicitly « Parametric, use parameters to
search through data "memorize” the dataset

* More robust to outliers, using « Can be sensitive to outliers

larger K

Next class

* Training Multi-Layer Perceptrons

» Back-propagation

