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Abstract: Image deblurring has gone a long way in the past decade. This paper aims to walk the path of the 

discoveries by presenting the problems faced and the solutions found. Firstly the common methods for 

deblurring are investigated. Two experiments prove that unregularized deconvolution is not practical, not even 

in an infinite precision calculation environment, and that simple regularization is enough to make user 
estimated PSF’s practical. Recent improvements and discoveries are presented at the end. 
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1 Introduction 
Blurring is the process of altering a region of a 
signal with weighted sums of neighboring regions of 

the same signal. In the case of image blurring, a 

pixel’s value is affected by the adjacent pixels. 

Blurring is usually caused by the acquisition of 
the same information from the scene on different 

receiver cells. To exemplify: 

 Echo is a kind of blurring, because the same 
sound can be localized in multiple time 

intervals;  

 Defocusing is a kind of blur because a single 
scene element is not found only on the pixels 

that is should activate, but also on 

neighboring pixels. It can either originate 

from wrongly adjusted focus distance in a 
camera, or the lack of focusing elements, like 

in the X-ray system; 

 Motion smudging is also a type of blur 
because the same signal lands on different 

receiver cells as the object or receiver is 

moving. 
Important domains where deblurring is essential 

are those in which a signal inherently cannot be 

physically focused (ex: high energy electromagnetic 

waves (X-rays), mechanical waves (sound/sonar)); a 
signal distortion varies over time (space images 

captured through the atmosphere; imperfect mirrors 

for the distances needed to be used); a signal’s 
distortion varies in space (like a car moving in front 

of a surveillance camera). In these domains other 
methods for recovery of the original signal are not 

known. 

With the popularization of cheap camera devices 
deblurring can now be integrated in nonessential 

desktop or mobile devices for recovering personal 

movies, photographs or audio recordings. 

Though methods for software restoration exist 
dating back to the Second World War, other 

inseparable processes, like noise addition and PSF 

distortion, made them applicable only for special 
devices and in limited scenarios (like fixing the 

aberration of the mirror on the Hubble telescope). 

However, this changed at the beginning of the 21
st
 

century, when research in the domain exploded. 

The image deblurring problem can be split into 

two distinct problems: recovering the Point Spread 

Function (PSF) and recovering the initial estimate 
using a known PSF. Blind deconvolution methods 

focus on recovering the PSF while non-blind 

methods rely on a known PSF for performing robust 
deconvolution. 

The PSF tells how a single point is spread on the 

receiver and it can be estimated, either from a single 

image or, more accurately, from multiple images. In 
multi-image PSF estimation methods, objects are 

either followed through the image sequence [1], or 

the problem is mathematically constrained to 
become less and less ill posed by using multiple 

blurred [2] or a blurred noisy image pair [3]. In 

single image PSF estimation, the blurred edges of 
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objects represent the sources of motion information 

[4] at local level. At global level the comparison of 

the gradients of an entire image with a known 
general estimate [5] can be used to deduce the PSF. 

On the other hand, non-blind deconvolution 

methods address the problems of minimizing the 
huge impact additive noise has in deblurring with a 

known PSF [6] or the elimination of artifacts 

originating from approximate PSF estimations 

[7][8][11] and truncation of data in the altered 
image [9][10]. 

 

 

2 The Naive Method 
The definition of convolution in discreet space is: 
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Where C is the clear source signal, P the PSF and 

* is the convolution operator. This means that every 

point in the discreet space is affected by its 
neighbors, weighted by elements of the PSF. 

Thinking back, the initial image can be estimated by 

removing the neighbors weighted by the PSF, from 
each pixel. But as the neighbors themselves are 

affected by the convolution, the mathematical 

solution is a linear system of equations. 

The problems faced with the naive method are: 
-  the system is under-determined, thus pixels 

from borders cannot be calculated precisely, because 

a clear border is missing; 
-  the actual computation needs very accurate 

precision in order not to propagate errors through 

the very large system; 
-  the process involves determining the inverse of 

a very large matrix. One of the fastest methods is 

the conjugate gradient method, which converges 

after N iterations, where N is the number of 
unknowns. Thus, the minimal complexity, speed 

and memory, is 

 

))*(**( MNLogNMO  
(2) 

 

where M is the size of the PSF kernel. Due to this 
complexity finding the solution for a large image 

becomes virtually impossible. 

In order to address these problems the following 

has been done: 
 To avoid introducing any artifacts from the 

unknown borders, a test image was generated 

from a clear photo by applying convolution 
only to the center of the image. The result is a 

blurred image with known borders. 

 The complexity was minimized by using a 

programmatic approach with events: The 

algorithm tries to find the solution of the top 
left pixel. Every time a pixel value is 

inquired, it recursively tries to find the 

solution to the inquired pixel, thus 
propagating to the bottom right corner. Every 

time the program finds the solution to a pixel, 

it generates an event telling that the respective 

pixel is now known. So, every pixel that 
needed that value, can now update it, thus 

generating more known pixels. For a fast 

propagation, every equation holds the 
unknowns in a hash table along with their 

weights, ensuring )1(O retrieval. Likewise, 

every time an unknown is assigned to an 
equation, the unknown pushes in a stack the 

reference to the respective equation, in order 

to inform it. The total complexity resembles 

that of a simple convolution: )*( MNO ( N , 

the number of equations multiplied by M , 

the number of pixels added to each equation, 

plus MN * , the number of propagations). 

 The numeric instability problem was solved 

by choosing the fraction as number element. 
The fraction's nominator and denominator are 

also integers unlimited in size. The method 

avoids all truncation. The result is that either 
the program finds a solution without any loss 

of precision, or it runs out of memory. 

The results show that this method can give 

results in a timely manner; comparable to the simple 
naive convolution method (deconvolution takes 8 

seconds, while the convolution takes 20 seconds, on 

a 2.67GHz machine) and that it is very robust to 
truncation errors. 

 

a.  b.  

c.  d.  

Fig. 1 a. Initial image, b. blurred 5 times, c. 
deblurred 5 times, d. the PSF. No loss of precision is 

evident. 
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Even though the method works inside the 

program, as soon as the image is exported, additive 

noise affects it, thus, the equation becomes: 
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where N is random noise. And even if N is very 

small, it propagates through the system, generating 

significant alterations. With every propagation, the 

error accumulates, the final pixels ending up with a 
small signal to noise ratio, dependent of the number 

of pixels that propagated the result multiplied by the 

error each pixel applies. 
 

a.  b.  

c.  

Fig. 2 a. Deblurring after bmp compression; b. 

Deblurring after jpg compression (quality 90); c. 
The propagation of noise 

 

If a more complicated kernel is used, the errors 

propagate not only along lines, but also from line to 
line, thus the image ends up being indistinguishable 

after just a few propagations. 

 

a.  b.  

Fig. 3 Deblurring using a more complicated PSF 
 

In conclusion, the naive algorithm cannot be 

used without a regularization method. 
 

 

3 Regularization Techniques 

 

 

3.1 Introduction 
It was seen that deconvolution is an ill posed 

problem, either because the convolution kernel 

cannot be deduced exactly, because clear signal 

information is missing from the edges of the image 

or because additional unknown noise signal is 
present in the source image. 

Even the smallest perturbation propagates and 

accentuates in the deconvolution process. 
Regularization techniques aim to attenuate the 

great impact these unknowns have, by introducing 

additional information in the system. 

One example is introducing a constraint in the 
equations, so the result has small total variance. 

Signals with excessive and possible fake detail have 

great total variation (the integral of the absolute 
gradient). The last result is a clear illustration of this 

case: the wanted signal was too faint compared to 

the excessive generated detail. Introducing a 
variation constrain in the system can generate 

pleasing results. 

The work done by Jalobeau et all on recovering 

signal from satellite images [13] showed that even 
in the highly noisy photo resulted from 

deconvolution resides a recoverable, separable and 

powerful enough useful signal, which they obtained 
by using oriented wavelet packets. 

 

 

3.2 Richardson-Lucy deconvolution 
As seen previously, a way of smoothing out pixels 

that explode numerically is needed. One way of 
doing this is by processing the image iteratively and 

stopping the iteration process when the photo 

becomes unstable. 

Now, since a clear image C exists, both an 
estimate P PSF and the resulting blurred image B 

are known. For every pixel, its equation can be 

written as: 
 


j

jkjk CPB

 

(4) 

 
meaning that the k-th pixel of the blurry image is 

the weighted sums of the neighbors, the weights 

being read from N. 
Because the kernel moves over every pixel, it is 

necessary to use an iterative method that restores 

little by little the information, as modifying a 

neighbor pixel influences the current pixel as well. 
The first step of the algorithm generates the 

correlation between the corrupted image and the 

PSF, localizing the elements in the image where the 
kernel is most visible. The next step is to divide the 

blurred image by the correlated one in order to 

remove the affected elements. The weighted result 
can now be combined with the image from the last 

iteration and the iterations can continue, until the 
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PSF is eliminated from the image completely or 

they can be stopped when noise becomes too 

evident. 
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where R

(i)
 is the result of iteration i, B is the blurred 

image, CB is the correlated image. 

This is the Richardson-Lucy deconvolution 
method and it gives similar results to the Wiener 

deconvolution, which will be presented in the 

following section. 

 
 

3.3 Inverse Filtering 
The convolution operation generates a signal that 

repeats the PSF characteristics over the entire input 

function. Analyzing the frequency spectrum, the 

influence of the convolution can be clearly seen. 
Another way of performing convolution is by 

applying the frequencies characteristic to the PSF on 

the initial function, and this can be done by 
multiplying the two spectra in frequency domain: 

 

pcb *  
(6) 

 

where c is the resulting convolved image, f the 

initial image and g the PSF, all in frequency 

domain. In this context, * becomes normal 
multiplication in frequency domain. 

Deconvolution is calculated the other way 

around: 
 

pbc /  
(7) 

 

a.  b.  

c.  d.  

Fig. 4 A blurred image and its Fourier transform. 

The estimated PSF and its Fourier transform. 

 
The observed noise in the naive method is very 

strong and has high frequency. Strong frequency 

elements are obtained when N is very small, thus, an 
idea of stabilizing the solution is to cut the small 

frequencies from the division. 

In order not to eliminate the small frequencies 

completely, which are an important detail factor in 

the final image, a slightly modified threshold 
function, called Inverse Filtering, is employed: 
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(8) 

 
where g represents the 1/n factor. 

This method shows great improvements, but 

generates unwanted waves, along strong edges, 

because of the missing frequencies and is still badly 
affected by additive noise. 

 

a.  b.  
 Fig. 5 a. Result of inverse filtering opposed to b. 

The naive method in deblurring with a complicated 
PSF 

 

This method is also more stable in the case of 
approximate PSF functions, as in reality one cannot 

find the exact camera trajectory. 

An experiment was performed, with a few 

images affected by motion blur, taken with a normal 
camera. The user draws with the mouse an 

estimation of the movement, following bright spots 

in the picture and also has the ability to set the time 
in each point of the motion curve. Using this curve, 

the program generates a PSF and passes it to the 

above mentioned method. 

 

a.   

b.   
Fig. 6 a. User interface for drawing an estimate PSF, 

b. and c. Input and output images of inverse filtering 
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The results show that even the user can estimate 

a good enough PSF in order to recover an image. 
 

 

3.4 Wiener Deconvolution 
During World War II, Norbert Wiener was seeking 
for a way of receiving as much useful signal as 

possible from radar machine: 

 

)]()([*)()( tntctgtr   
(9) 

 

where c(t) is the original clear signal, )(tn  is noise 

, )(tr  is the function intended to equal )( atc   and 

* is normal multiplication, all functions being in 

frequency domain. )(tg  is the function that has the 

role of transforming the received signal into a close 

estimate of the original signal. 

The error can be calculated as the difference 
between the initial signal, delayed by the time taken 

by the signal to arrive at the destination, and the 

original transmitted signal: 
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Minimizing the square error 
 

)()()(2)()( 222 trtratcatcte   
(11) 

 

generates a filter that can restore most of the 
stationary signal corrupted by stationary noise, as 

long as the signal and noise spectra are known. 

Later, this filter was adapted to work for 
functions like: 
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where p is a PSF. This is a convolution affected by 

additive noise. And the solution is the Wiener 

Deconvolution: 
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Where cs  is the clear image spectrum and ns  the 

noise spectrum. 

Given that g  has a greater power at the 

denominator, the function acts as a deconvolution, 
but has an extra filter meant for removing noise with 

a known spectrum (image signal / (image signal + 

noise signal)) 
And the estimate clear image is: 

 

gbc *  
(14) 

 
 

4 Automatic PSF Estimation 
There are images where the user cannot find a clear 

element to follow, or the PSF isn't even a camera 
path, but a combination of defocus, movement and 

intersections. To solve this, a robust automatic 

method has to be developed. 

This problem has its origins in space observation 
research, where the solution is relatively easy 

because stars are point-like elements. The 

telescopes’ PSH can therefore be deduced just by 
photographing a distant star. 

However, for a natural image, a solution could 

not be found, up until 2006, when Fergus's [5] 
research opened a big door in kernel estimation. He 

noticed that all natural clear photographs share a 

similar histogram of gradients. A blurred image 

changes the shape of the histogram. His approach 
estimates the PSF by going from small resolution to 

great resolution and tries to fit the resulting latent 

image to the mathematical gradient distribution, 
varying the PSF. 

 

 

 
Fig. 7. Top to bottom and left to right: a natural 

image; its gradients (gradient and probability) 
compared to a general natural image gradient 

distribution; blurry image; recovered image and 

kernel using Fergus' method. Image from 
“Removing Camera Shake from a Single 

Photograph” [5] 

 
An addition to the original idea is the observation 

that not all gradients are good for estimating the 

PSF [6]. Contrary to intuition, objects smaller than 

the kernel degenerate the prediction, thus, they 
should be ignored. Another small contribution is the 

usage of a better refinement method in kernel 
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generation between resolutions that keep the 

connectivity of the pixels, which should happen 

when the trajectory of the camera is a connected 
curve. 

 

 
Fig. 8. Left to right: Input image; gradients used in 

the estimation phase; deblurring result. Image from 
“Two Phase Kernel Estimation For Robust 

Deblurring” [6] 

 
Iterative methods use the result from the last step 

in order to compute the next image. A denoised 

image contains clear edges in well defined positions. 

It also doesn't contain wave artifacts generated from 
approximating missing elements from the image or 

the kernel, thus it is a great estimate for following 

iterations. The noisy/blurry image pair method [3] 
can give very good PSF estimates. The noise filtered 

sharp image is the latent image in the iterative 

kernel estimation algorithm. As the result 

converges, the deblurred image can be used to clean 
the noise from the sharp image. As well, the ill 

conditioned problem can become much less ill 

conditioned if more blurred images are given as 
input, for example, from a burst shooting or a video 

[2]. 

Most of the deblurring methods assume a shift 
invariant linear blur model, which means that the 

image is blurred the same way everywhere. This is 

true only if the photographed objects are at the same 

distance, or at great distances from the camera, in 
order not to introduce perspective blur, and the 

camera follows only a translational movement in a 

plane parallel to the objects. As seen in the 
description, not very many images fall in this class 

of alterations. Rotational motion blur is the simplest 

example to show that the blur kernel changes at 
every pixel of the image (fragments of concentric 

circles). Blur caused by individual moving objects is 

even harder to describe. 

Two approaches [4], [18] try to deblur moving 
objects from static backgrounds. Firstly they 

separate the blurred elements and use only the 

transparent edges for estimating the motion 

direction. They cut out the moving objects by means 

of spectral mating [19], thus preserving the 
transparent shading left by the blur. The authors of 

the first article try to automatically deduce the 

movement in a simple manner (reducing the local 
kernel to a line), whilst the others need the user 

input in order to get an estimate of some local 

motions, which they interpolate. 

 

 
Fig. 9. 3D kernel used to estimate nonuniform 

kernel shapes over a blurry image. Image from 

“Non-uniform Deblurring for Shaken Images” [21] 

 
Both methods give good results, with the first 

being able to correctly estimate localized movement 

whereas the second uses a better deconvolution 
method. 

Another solution, which is used in multiple 

uniform moving objects, is to break all the moving 

elements into layers, using their motion print, 
deblurring each element separately and combining 

the fragments in the final image. [20] 

 
 

5 Artifact Minimization 
 

 

5.1 Deringing 
There are now available methods for estimating the 
PSF and removing much of the amplified noise. 

Another artifact that is most unpleasant in image 

deblurring is ringing. Because the PSF mostly has 
null values, the inverses are very large values which 

amplify in excess frequencies, especially at 

borderlines, generating a periodic ripple near them. 

In spatial domain iterative methods, the initial 
estimation error propagates and accumulates 

through iterations, becoming more visible near the 

edges, where the correlation was most intense. 
Moreover, the PSF cannot be accurately estimated 

in reality. 

Photographing in dim light conditions is 
difficult, as the signal is too low compared to noise 

[3]. If one increases the exposure time in order to 

receive more useful signal, camera movement blurs 

the photograph. Various methods which correct one 
of the two exist, but with limitations: noise 

reduction algorithms eliminate fine detail whilst 
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deblur algorithms generate the artifacts mentioned 

earlier. One interesting approach is to use an 

iterative method which takes what is good from 
each image, using the other as reference [3]. In the 

first iteration, a general denoise algorithm cleans the 

noisy image. The deblur algorithm deblurs the 
moved image using the cleaned image as base. The 

difference between the clean and noisy image 

generates a noise layer and the difference between 

the deblurred and clean image reveals the artifacts, 
or wave layer. The rings can now be eliminated 

without losing precious texture information. 

 

 
Fig. 10. Description of the iterative process of the 

deblurring method which uses a blurred/noisy image 

pair. Image from “Image Deblurring With 

Blurred/Noisy Image Pairs” [3] 
 

Another similar approach is to use just the 

blurred image as a base for estimating ringing 

artifacts. [11] After a general deblur algorithm 
generates the sharp result, the deringing algorithm 

takes into consideration only the initial, affected 

image and the clarified image. Using the unclear 
photo, it deduces uniform patches that are likely to 

suffer from long range ringing resulting from far 

away strong edges. Afterwards it identifies small 
regions around edges in the clarified image, which 

can suffer from short range ringing. The waves are 

then removed by a filter that is dependent on the 

wave size, or the distance from the edge. 
 

 
Fig. 11. From left to right: input blurred image; recovered 

image with Richardson-Lucy algorithm; the RL result 

cleaned with the mentioned algorithm. 

 
One great idea that makes the ringing problem 

obsolete is to use both intra-scale (the deconvolution 

is being fine tuned inside the respective resolution) 

and inter-scale (using the result from precedent 
resolution) elements in the deconvolution process 

[8]. The method starts with a small resolution that 

represents the base clarified image for the next 

greater resolution. Afterwards it computes the 

greater resolution by an iterative Joint Bilateral 

Richardson Lucy deconvolution. The resulting edge 
detections from the coarser resolution image is a 

base for a more accurate edge detection in the finer 

resolution image. With the aid of accurate edge 
detections, a regularization method removes 

unwanted artifacts in uniform areas. Moreover, 

using the smaller resolution as guide, and a residual 

deconvolution algorithm, more and more details can 
be recovered. This method eliminates ringing 

entirely and also generates a sharp image with 

insignificant texture loss. 

 
Fig. 12. Top to bottom: input blurred image and 
kernel; result of interscale-intrascale algorithm. 

Image from “Progressive Inter-Scale Non-Blind 

Image Deconvolution” [8] 

 
 

5.2 Outliers handling 
The mathematical model presented before takes into 

account only Gaussian additive noise. In reality, 

there are other aberrations that can disturb the 

convolved image. For example: when taking 
pictures during night time, some bright spots, where 

the lights are present, appear on the photo. Those 

bright spots have intensities whose values go 
beyond the limited range of values provided by the 

image format specification, and are thus are clipped 

to the greatest value. This clipping, along with dead 

pixels or hot pixels are not taken into account in the 
original theoretical model. Other influences are 

color curves introduced by software in order to 

capture an image more similar to what can be seen. 
One proposed solution is to first remove the 

color curve by applying a gamma correction, so the 

colors vary linearly. Afterwards, the outliers 
elimination algorithm separates pixels that respect 

the model from those that could be possible errors 

(saturated and dark pixels). An Expectation 

Maximization method fills the areas where pixels 
were removed. [9] 

This model removes the very evident repetitive 

and wave like artifacts that originate from software 
truncations and hardware errors. It also generates far 

fewer rings caused by nonlinear color 

transformations, present in all photos taken by 
ordinary cameras today. 
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Fig. 13. Left to right: input image; standard 

deconvolution (waves propagate from areas where 
information is lost); outliers handling. Image from 

“Outliers in Non-Blind Image Deconvolution” [9] 

 
 

5.3 Noise reduction 

The regularization techniques presented before have 
the principal role of minimizing the influence of 

small noise signals in convolved images. The 

practical problem is that the majority of blurred 
images have a significant amount of noise, because 

they are captured in a medium where the signal is 

weak over a large period of time (space telescopes 
have the signal source very far away, medicinal 

imaging use a small quantity of radiation in order to 

minimize its impact on the patient, the photo camera 

compensates with time for a night scene). The result 
is that noise is comparable to the signal power. In 

these conditions, the regularization techniques are 

inefficient at providing a good result. 
Wohlberg and Rodrigues developed a 

mathematical model which deals with impulse noise 

alone. [12] The solution is a modified Total 
Variance (TV) regularization, which generates an 

image with the smallest variations between pixels 

that still follow the original signal's shape. The 

variance is defined as: 
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where D is the derivative and lambda the power of 

the filter. And the measure of how close the 

generated signal is to the original one is the p norm 
of: 
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(16) 

 

where K is a linear operator representing the 

forward problem and s is the altered signal. 
 Both of these functions are modified in order to 

accommodate pixels that fall over of below a 

threshold, in order to locate and eliminate salt and 
pepper noise. 

The authors of "Two-Phase Kernel Estimation 

for Robust Motion Deblurring" [6] use a similar but 

faster technique, which still produces good results 
for impulse noise and moderate results for Gaussian 

noise. 

Knowing that a natural image has most derivates 
round 0, a sparse prior that opts to concentrate the 

derivates at a small number of pixels, the rest 

leaving almost unchanged in the deconvolution 

process. [14] This way, the image has sharp edges, 
less noise and smaller ringing artifacts, but fine 

texture details are lost due to the convolution. 

One very interesting solution [13] does not use 
regularization at all and generates impressive 

results. The simplest deconvolution algorithm 

generates an unregularised result which contains the 
entire, unfiltered signal hidden in an image that 

looks just like noise. The novel idea is in filtering 

the result with a special kind of wavelet packets. 

Instead of using wavelets on lines or columns, 
which can only detect horizontal or vertical signal 

orientations, the authors developed 26 orientated 

wavelets for different scales and orientations. Being 
able to characterize the signal in 26 different ways, 

the noise at known power was very well separated 

from the orientated texture. 

 
 

6 Conclusions 
In the past years, deconvolution proved to be a 

resolvable problem that can aid in many domains, 
from medical imaging to space photography. The 

theoretical problems that made deconvolution be 

overlooked for everyday photography until the third 

millennium, like ill conditioned systems, high ratios 
of noise amplification because of inversion of small 

values in the blur kernel, artifacts originating from 

real values truncation and others, found their 
solutions with practical approaches in a very short 

time. Another very interesting domain, super 

resolution can now be enhanced by the aid of this 
new technology, by removing the blur that 

inherently is generated when the combination of 

multiple images ends [17], or by reading more 

information from the larger space occupied by the 
moved object on the image [15] . 

This domain has proven that is now ready to be 

used in everyday applications, like introducing 
special camera aperture [16] or coded camera 

exposures [15] that can aid the software editing of 

blur in photographs, modifying the medical 
instruments so that they incorporate these 

algorithms in order to give clearer results. 
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