

Image guided interventions: rigid and deformable image registration, fusion, visualization, and augmented reality *Dave Hawkes University College London*

<u>d.hawkes@ucl.ac.uk</u> www.ucl.ac.uk/cmic

UCL

Outline of Talk

- Role of Image Registration in IGI
- Dealing with Deforming and Moving Tissues
 - Development of non-rigid registration algorithms
 - Fast free form deformation
 - Biomechanical models
 - A combination of the two
 - Dimension Reduction
 - Local Rigid Body Approximation
 - Motion Modelling
 - Shape Modelling
 - A combination of the two

[•]UCI

MAGI system in the Operating Room:

Overlay of 3D preoperative image data on stereo field of view of binocular operating microscope

(Edwards et al IEEE-Trans Med Imag 2000)

Compensation for Deformation During Surgery

- Local Rigid Body Approximation

Registration of 3D Plan with 2D Intraoperative Imaging

Intraoperative 3D Power Doppler US

1. Marker-based Registration

2. Updated US-based Registration

MACING SCIENCES, KCI	1 17-5 38 Cvieso/Neuro	18 Feb 05 14:32:09	The 0.4 MD 0.9 5 Hz T.9 cm
MACING SCIENCES, KCI Alago 2 Tradesc 5 Persist CRI 20 Opt65m CPA 77% Map 1 VF Bad Per Joco Ho Fer Joco Ho Fer Joco Ho Fer Joco Ho Few Opt Med V Bew Opt Alago Cel Pa	112-534 Coleo Meuro	14:32:09	5 H2 I3 on -1

Dean Barratt, Neil Kitchen and Dave Hawkes, UCL and Queen Square, London

DCL

Fully automated non-rigid registration based on FFDs defined by cubic B-splines: DCE-MR Mammography Rueckert et al IEEE-Trans Med Imag, 1999

Difference of original images

Difference of aligned images

[±]UCL

From Free-Form Deformation (FFD) to Fast Free-Form Deformation (F³D)

Marc Modat, ..., Seb Ourselin, Computer Methods and Programs in Biomedicine, 2009 (in press)

- Update all control points for each resampling
- Parzen Window estimation of Joint Histogram
- Convolution of gradient field of the cost function (NMI)
- Conjugate Gradient
 Optimisation
- 10 fold speed up from CPU to GPU implementation

Lung Target – 4DCT end-inhale phase

(lungs segmented, images windowed to highlight internal lung structures) Jamie McClelland and Marc Modat

Lung Source – 4DCT end-exhale phase

Lung Target – FFD registration result

Compensation for Deformation in Image Guided Surgery Using Biomechanical Modelling

Finite Element Modelling

- Hexahedral mesh
- Finite strain formulation (large displacements)
- Neo-Hookean constitutive relationship
- At chest wall only allow tangential displacements
- Ansys software

(Carter et al MIAR, 2006, MICCAI 2008)

Guidance for breast surgery

Registration of Prone Pre-op to Supine MR Image: (Carter et al MICCAI, 2008)

Prone target

UCL

Rigid + FEM

Supine source

Rigid only: 20mm (TRE RMS) Rigid + FEM + Fluid TRE: 3mm (TRE RMS)

Rigid + Fluid

Rigid + FEM + Fluid

Guidance for breast surgery

Tim Carter, Nick Beechy-Newman (Guy's Hospital) and Dave Hawkes

Image-Guided Breast Surgery

2 Biomechanical model used to calculate displacement of cancer between prone DCE-MRI and surgery

3 Position of cancer displayed intraoperatively

(Carter et al MICCAI 2008)

Compensation for Deformation and Motion in Image Directed Ablative Therapies

- Radiofrequency Ablation
- Photodynamic Therapy
- High Intensity Focussed Ultrasound
- Targetted Radiotherapy

"Real-time" update of plan

- Efficient implementations
- Fast processors (e.g. GPUs)
- Dimension Reduction

Image Targetted Radiotherapy in the Lung

McClelland, Tarte, Blackwell and Hawkes, UCL Webb and Brada, Institute of Cancer Research Landau and Hughes, Guy's and St. Thomas

McClelland et al Medical Physics 2006

Constructing the Motion Models – Temporal Fitting

Motion modelling in lung radiotherapy

Blackall et al WCOMP 2003, McClelland et al SPIE Med Imag 2005, ESTRO 2005, Medical Physics 2006

UC

Model error 1.7mm (RMS), slice thickness 1.5mm (McClelland et al AAPM 2008)

Visually Assessing Motion Models Session 1 vs Session 2 – Patient 1

Sagittal view: Session 1 - Red, Session 2 - Cyan

Coronal view: Session 1 - Red, Session 2 - Cyan

Visually Assessing Motion Models Session 1 vs Session 2 – Patient 5

Sagittal view: Session 1 - Red, Session 2 - Cyan

Coronal view: Session 1 - Red, Session 2 - Cyan

Breathing patterns: 'DRRs' of THRIVE data

deep breathing

normal breathing

Motion compensation during reconstruction

Verification of Motion Model

- + Predicted position using model
- o Measured position using registration

White et al ISMRM 2007 Coollens et al ICCR 2007

Shape modelling

Using shape model to replace CT scan

Chan et al SPIE 2003, MICCAI 2004, Barratt et al MedIA 2008

UC

Complete 3D model instantiated from a series of ultrasound images

Error Maps of Instantiation Against CT of Cadaver

Gold Standard Registration

MR Guided Endoscopic Prostatectomy (Steve Thompson, Prokar Dasgupta et al 2008)

Overlay of MRI on Endoscopic view

• : tracked feature in consecutive direction

• : tracked feature in corresponding direction

Stereo tracking

Left image sequence

: new detected feature

• : stereo pair

• Filter out points with poor correspondence using criterion:

 $\varepsilon = \left\| \mathbf{x}_{I(k)} - \mathbf{x}_{J(k)}^{I} \right\|_{F} + \left\| \mathbf{x}_{J(k)} - \mathbf{x}_{I(k)}^{J} \right\|_{F} \le \delta$

Mingxing Hu et al MICCAI 2007, 2008, 2009

3D Reconstruction from endoscopy images using Structure From Motion (SFM)

Mingxing Hu et al MICCAI 2007

3D point cloud

ICP registration, residual 1.87mm

Generating statistical deformation models from multiple FE simulations

Statistical Motion Models (SMMs): Application to focal therapy in the prostate

Yipeng Hu, Dean Barratt, Mark Emberton et al Ultrasound derived model to intra-operative ultrasound (MICCAI 2008)

UCL

Image Directed Partial Prostate Ablation

Cancer accurately targeted and critical structures avoided.

SMM built from 100's of FEM examples

- Pelvic anatomy
- Rectal anatomy
- Insufflations
- Mechanical properties

TRE 5 patients, 48 landmarks 1.8mm (RMS) +/- 0.7mm

The Future of Interventions is Imaging

- Integration of learnt models (shape, motion and biomechanics):
 - Reduce dimensionality of optimisation
 - Constrain possible solutions
 - New algorithm based on combination of image similarity and biomechanics (TLED)
- Next steps
 - Integration of Functional Information
 - Novel intra-operative Imaging and Sensing Devices for Navigation
 - Mechanical Devices for Improved Manipulation across Scales
 - Integration with Targeted Therapies
- Image Registration will remain the key enabling technology
- Systems must be Validated and Validation is hard

Acknowledgements

- All members of CMIC and our clinical collaborators, in particular:
 - Mike Gleeson, Neil Kitchen, Mark Emberton, Hash Ahmed, Steve Halligan (UCLH);
 - Nick Beechy-Newman, David Landau (GSTT);
 - Steve Webb, Mike Brada, Gail ter Haar, Martin Leach (ICH)
- Funding support
 - EPSRC, MRC, CRUK, TSB-DTI, DoH, Philips, Brainlab, VisionRT, Carestream, Siemens

Thank you

An Excellent Book:

Image Guided Interventions Ed: Terry Peters and Kevin Cleary Publ: Springer 2008

An Excellent Meeting:

