

MASTER'S THESIS

Image Processing Software developed with

MATLAB®

(Graphic Design Software - GDS)

Study: Master in Electronic Engineering (MEE)

Author: Llorenç Guerrero Pueyo

Director: Antoni Gasull

Year: 2015

Image Processing Software Developed With MATLAB® 1

Index

Index ... 1

Collaborations ... 4

Thanks ... 5

Resum del Projecte .. 6

Resumen del Proyecto ... 7

Abstract ... 8

1. Introduction... 9

1.1 Context of the project .. 9

1.2 Objectives ... 10

1.3 Structure of the report ... 12

2. GDS; main features .. 13

2.1 App development with MATLAB® GUIDE 13

2.2 Graphic Design Software - general overview of the application 16

2.2.1 Application window .. 16

2.2.2 Apps interaction .. 19

2.3 Image Processing Tools .. 20

2.3.1 Toolbar .. 20

Open Image .. 21

Image Information ... 22

RGB to gray .. 23

Binary Threshold ... 23

Erode & Dilate Image ... 24

Horizontal & Vertical Flip ... 28

Cylinder & Sphere Deformation ... 28

Image Profile .. 30

Histogram ... 31

Rotation ... 32

2 Image Processing Software Developed With MATLAB®

Resize .. 33

Crop .. 33

Brightness .. 34

Auto Contrast .. 35

Geometrical shapes .. 36

Invert Image ... 37

Stitch Images .. 38

Image Combination .. 40

Image Shear Transformation ... 42

Edges ... 43

Colors Reduction.. 44

Filter .. 45

Structure Propagation .. 56

Copy & Paste tools ... 58

Magic Wand .. 61

Eraser & Selection ... 63

2.3.2 Left Properties Bar... 64

Tool size ... 64

Empty/Fill option ... 64

Color options ... 65

Colormap .. 67

RGB pixel value ... 69

Pencil options .. 69

2.3.3 Right Properties Bar... 75

Text options .. 75

Clipboard .. 78

2.3.4 Zoom ... 79

Zoom ... 79

2.3.5 Save options ... 81

Save .. 81

Save As .. 82

Image Processing Software Developed With MATLAB® 3

2.4 File format compatibility ... 83

2.5 Standalone Application ... 84

3. Gannt chart ... 89

4. Conclusions ... 90

5. Annexes .. 92

6. References .. 93

4 Image Processing Software Developed With MATLAB®

Collaborations

Departament de Teoria del Senyal i Comunicacions

ETSETB

Image Processing Software Developed With MATLAB® 5

Thanks

To my wife Sara.

6 Image Processing Software Developed With MATLAB®

Resum del Projecte

El present projecte de fi de carrera descriu la definició i el

desenvolupament del Graphic Design Software o GDS, concebut com una

aplicació per al processament d'imatges i implementat amb MATLAB®.

El GDS està destinat a proporcionar un rendiment i un comportament

similar al de programaris comercials com PhotoShop, CorelPHOTO-Paint,

Gimp.

Encara que usuaris comuns de software de processament d'imatges

esporàdicament podrien recórrer a MATLAB® per aplicar algunes

característiques, filtres o efectes, la complexitat d'algunes de les opcions i

pre-processament de la imatge són un clar inconvenient.

L'aplicació creada permet a qualsevol usuari, fins i tot sense

coneixements previs del llenguatge MATLAB® o les seves eines

específiques, l'execució de processos de tractament d'imatge complexos.

També ofereix la interactivitat i facilitat d'ús que ofereixen programaris

comercials per a les mateixes finalitats.

Utilitzant la potència de càlcul numèric que MATLAB® proporciona per

al processament d'imatge s'ha creat una aplicació que inclou algunes de

les funcions més comunes i unes altres que no es troben tan fàcilment als

programaris comercials actuals.

El codi proporciona una bona solidesa; els problemes durant l'execució

de l'aplicació s'han reduït al mínim.

Al moment d'escriure aquest resum encara no hi ha cap aplicació

similar en internet ni en el MATLAB® CENTRAL File Exchange, on la

MATLAB® community comparteix les seves pròpies aplicacions

personalitzades.

Image Processing Software Developed With MATLAB® 7

Resumen del Proyecto

El presente proyecto de fin de carrera describe la definición y el

desarrollo del Graphic Design Software o GDS, concebido como una

aplicación para el procesamiento de imágenes e implementado con

MATLAB®.

El GDS está destinado a proporcionar un rendimiento y un

comportamiento similar al de software comerciales como PhotoShop,

CorelPHOTO-Paint, Gimp.

Aunque usuarios comunes de software de procesamiento de imágenes

esporádicamente podrían recurrir a MATLAB® para aplicar algunas

características, filtros o efectos, la complejidad de algunas de las opciones

y pre-procesamiento de la imagen son un claro inconveniente.

La aplicación creada permite a cualquier usuario, incluso sin

conocimientos previos del lenguaje MATLAB® o sus herramientas

específicas, la ejecución de procesos de tratamiento de imágen

complejos. También ofrece la interactividad y facilidad de uso que ofrecen

software comerciales para los mismos fines.

Utilizando la potencia de cálculo numérico que MATLAB® proporciona

para el procesamiento de imagen se ha creado una aplicación que incluye

algunas de las funciones más comunes, y otras que no se encuentran tan

fácilmente en los software comerciales actuales.

El código proporciona una buena solidez; problemas durante la

ejecución de la aplicación se han reducido al mínimo.

En el momento de escribir este resumen todavía no hay ninguna

aplicación similar en internet ni en el MATLAB® CENTRAL File Exchange,

donde la MATLAB® community comparte sus propias aplicaciones

personalizadas.

8 Image Processing Software Developed With MATLAB®

Abstract

The present master‟s thesis describes the definition and development of

the Graphic Design Software or GDS, conceived as an application for

image processing and implemented with MATLAB®.

The GDS is intended to provide similar performance and behavior than

commercial software solutions such as PhotoShop, CorelPhoto-Paint,

Gimp.

Although common users of image processing software sporadically

could turn to MATLAB® to apply some features, filters or effects, the

complexity of some options and the need of image pre-processing would

be a clear turn back.

The created application allows any user, even with no previous

knowledge of MATLAB® language or its specific tools, the execution of

complex image treatment tasks. It also offers the interactivity and user

friendliness of commercial software for the same purposes.

Using the powerful numerical computation that MATLAB® provides for

image processing, an application has been created that includes some of

the most common functions, and others not so easily found, in the current

commercial software.

The code provides good robustness; issues during the execution of the

application have been reduced to the minimum.

At the moment of writing this abstract there is still no similar

application to be found neither in the internet nor in the MATLAB®

CENTRAL File Exchange, where the MATLAB® community shares its own

custom apps.

Image Processing Software Developed With MATLAB® 9

1. Introduction

As introduction for this master's thesis below are explained the context

of the project as well as main goals and the structure of the document.

1.1 Context of the project

Introducing the reader to the initial motivations of this work shall begin

explaining my personal interest in the image design programs. So my

curiosity brought me to learn about how these programs applies filters

and effects to images and in resume how they internally work.

My collaboration with the Firmware Department in my current company

for the development of the graphical designs for several products related

with the fire & security increased this initial interest.

Nowadays the software solutions and user interfaces must provide not

just an intuitive understanding of the application but also attractive

graphics in order to give a potential advantage above their competitors.

Among the many programming languages available, I was particularly

interested in MATLAB®. This software is widely used in the engineering

industry; it is easy to learn and very versatile and applicable to a wide

range of applications. Besides the fact that using MATLAB® for the

deployment of the application has several compelling reasons. In one

hand the powerful numerical computation and some built-in algorithms

for image processing. All together give the opportunity to combine it with

your own algorithms and therefore develop even more complex programs

and applications.

In the other hand the MATLAB® language enhances the development

and code execution because it supports matrix and vector operations.

Also there is no need to use some low level task practices as specifying

data type, declare variables, memory allocation or the for-loops when

operating over matrices & vectors. As a result we obtain a more compact

and quick written code.

MATLAB® also offers the data acquisition and results visualization

through the MATLAB® GUIDE (Graphical User Interface Development

Environment) for design and customization of the application interface.

10 Image Processing Software Developed With MATLAB®

1.2 Objectives

The Graphic Design Software shall accomplish the next main

objectives:

1- Create a fully Windows compatible software for image processing

based on MATLAB®:

 It is required as one of the principal objectives to create a

standalone application so the GDS software can be

distributed easily to any user, although no MATLAB®

version were installed on the target PC. Required for

Windows 32bits and Windows 64bits.

2- Add typical functionalities found in the common processing image

software for easily retouch and enhance pictures.

3- Create an interface that allows user friendly management of the

MATLAB® Image Processing Tools as:

 Image Filtering:

average Averaging filter

disk Circular averaging filter (pillbox)

gaussian Gaussian lowpass filter

laplacian Approximates the two-dimensional Laplacian operator

log Laplacian of Gaussian filter

motion Approximates the linear motion of a camera

prewitt Prewitt horizontal edge-emphasizing filter

sobel Sobel horizontal edge-emphasizing filter

 ROI-Based Processing: define and operate on Regions Of

Interest.

4- Complex functions to be developed:

 Stitch Images; create panoramic pictures from images with

coincident landscape. Imitate the functions behavior found

in digital cameras firmware.

 Combine images; mix two images together changing their

opacity.

 Shear Transformation; modify a picture through Affine

transformations, that are generalizations of Euclidean

transformations. Length and angle are not preserved. The

Image Processing Software Developed With MATLAB® 11

effect of a shear transformation looks like "pushing'' a

picture in a direction parallel to a coordinate axis.

 Structure Propagation or filling gaps effect.

 Copy & Paste tools; copy a region of an image and paste it

in another image.

5- Programming code oriented to avoid incompatibilities due image

types; RGB, grayscale, binary...

6- Optimize the code and make it robust.

12 Image Processing Software Developed With MATLAB®

1.3 Structure of the report

Throughout the second chapter of this master's thesis the reader will

found the different main themes structured as in the list below:

App development based in MATLAB® GUIDE: introduction

to the MATLAB® Graphical User Interface Design Environment.

Graphic Design Software - general overview of the

application: describes the different work areas of the User

Interface window and presents a block diagram explaining the

different apps interaction.

Image Processing Tools: resume of the tools included in

the application, expected behavior, code extracts and MATLAB®

Functions used for their development.

File format compatibility: list of the compatible image

formats.

Standalone Application: generate the standalone

application, create a distribution package and silent installation

batch file.

Image Processing Software Developed With MATLAB® 13

2. GDS; main features

The GUIs (also known as graphical user interfaces or UIs) provide

point-and-click control of software applications, making easy for a

standard user to use more complex instructions and learn the specific

language in order to run the application.(1)

2.1 App development with MATLAB®

GUIDE

It is suitable to begin with a description of a MATLAB® app:

Apps are self-contained MATLAB® programs with Graphical User

Interface or GUI front ends that automate a task or calculation. (2)

The GUI typically contains controls such as menus, sliders, toolbars,

buttons...

The GDS application has been developed using the MATLAB® GUIDE

(Graphical User Interface Development Environment), which provides a

set of tools for creating graphical user interfaces (GUIs).

Many MATLAB® products, such as Curve Fitting Toolbox, Signal

Processing Toolbox, and Control System Toolbox, include apps with

custom user interfaces.

MATLAB® users can also create their own custom apps, including their

corresponding UIs, and upload them in the MATLAB® CENTRAL File

Exchange (3) for others to use.

The main feature of an app is the inherent interaction with the user;

therefore the code development is related with software programming

methods.

The app is an event driven program, and once is running it remains

quiescent until the user produces an event by interacting with the app

through clicking on a button, introducing a text, choosing in a drop down

menu etc.

14 Image Processing Software Developed With MATLAB®

The app answers to any action running a specified callback function

that executes the pertinent code in response to the event that triggered

it. So the callback is conceived as a short function that must obtain the

data required to perform its task, update the app when necessary, and

store its results for other callbacks access them. The underlying app is

essentially a collection of small functions working together to accomplish

a larger task.

It is implied then that when writing in an event driven program all

actions performed over the app through the controls added must be

linked to its corresponding callback, as well as the data transferring

between callbacks.

The apps in MATLAB® can be written either programmatically using

MATLAB functions or be created using GUIDE, the MATLAB® Graphical

User Interface Design Environment

Most users find easier to use GUIDE to graphically lay out the GUI and

generate an event-driven lay out for the app. Some, however, prefer the

extra control they get from authoring apps from scratch. (2)

The GDS itself has been in its origin developed using the GUIDE but

during the process, for exceptional necessities of some of the functions, it

was needed to write the code programmatically.

Creating the app begins by running the guide command in the

MATLAB® command window to open the GUIDE Layout Editor. The Figure

2.1 shows how the default FIG-file looks like:

Figure 2.1: default FIG-file

Image Processing Software Developed With MATLAB® 15

The GUIDE Layout Editor enables to define a GUI by clicking and

dragging GUI components into the layout area. The different elements

can be resized; buttons can be grouped and aligned, customized text

fields, sliders, axes, and add several other components. Other tools

accessible from the Layout Editor enable to:

 Create menus and context menus

 Create toolbars

 Modify the appearance of components

 Set tab order

 View a hierarchical list of the component objects

 Set GUI options

Once the UI has been defined the layout could be saved.

When a GUI is saved or run for the first time the GUIDE stores the GUI

in two files:

A FIG-file, with extension .fig, that contains a complete

description of the GUI layout and each UI component, such as push

buttons, axes, panels, menus, etc. The FIG-file is a non-modifiable

binary file, except by changing in the GUIDE the layout itself. FIG-

files are specializations of MAT-files.

A code file, with extension .m, that contains initialization

code and templates for some callbacks that control GUI behavior.

The user generally adds callbacks written for the UI components to

this file. As the callbacks are functions, the GUI code file can never

be a MATLAB® script.

The FIG-file and the code file must have the same name and are

usually placed in the same folder. Both files respectively correspond to

the tasks of laying out and programming the GUI. When the user designs

the layout of the GUI in the Layout Editor, their components and layout is

stored in the FIG-file. When the user programs the GUI, the code is

stored in the corresponding code file.(4)

16 Image Processing Software Developed With MATLAB®

2.2 Graphic Design Software - general

overview of the application

This section makes an introduction to the functional behavior of the

application beginning with a quick overview of the User Interface window

with a description of the different work areas.

Following there is a block diagram explaining the different apps

interaction. The GDS interacts with several simpler UIs developed to

configure the tool or preview the results before applying to the picture

and send the result back to the main application, the GDS.

2.2.1 Application window

When launching the GDS application appears the UI window. The Figure

2.2 shows the GDS application window and numbers its different parts for

making a quick explanation.

Figure 2.2: Graphic Design Software User Interface

2
1

5 7

6

3 4

Image Processing Software Developed With MATLAB® 17

1- Menu bar: contains drop down menu options for the File

management, Edit, Tools and Help.

2- Toolbar: grouped buttons bar that contains shortcuts to different

tools.

3- Zoom & Undo/Redo buttons: the Undo/Redo allows 10 stored

actions.

4- Save, Close & Exit buttons.

5- Left Properties Bar: contains the next options.

 Tool Size: is a drop down menu that applies the specified size or

amount when using several tools. Selected 1 by default.

 Empty/Fill option: in some of the tools that use the line & fill

colors selected can be determined if the Fill option is activated or

not. Selected Empty by default.

 Color options:

o Line Color & Fill Color: shows the current colors selected.

Both are white by default.

o Choose Color button: opens a chromatic table where Line

Color & Fill Color can interactively be selected.

o Choose Color Image button: select interactively the Line

Color & Fill Color in the current image.

 Colormap: the drop down menu applies the selected colormap.

See more detailed information in the annex 5.1 Colormap

Information.

 RGB pixel value: Pressing the Get button allows interactively

clicking on the current image and shows the RGB pixel value.

 Pencil Options:

o Brush: follows the cursor movement when pressing the left

mouse button performing a draw from the color chosen in

Line Color and the size selected in Tool Size.

18 Image Processing Software Developed With MATLAB®

o Blur: follows the cursor movement when pressing the left

mouse button performing a blurring effect from the size

selected in Tool Size.

6- Workspace: area where the current image is placed and also for

performing the selected effects.

7- Right Properties Bar: include the Text and Clipboard options.

 Text: pressing the Text button allows to enter a text on the

current image. Using the drop down menus to choose the font

type, weight and angle settings. The color chosen in Line Color

is the text color, the Fill Color is the background color, if the Fill

bullet is selected. The text size is selected in Tool Size.

 Clipboard: the clipboard axes shows a saved image when:

o Using Copy option: the main picture in the Worskpace

axes is saved in the Clipboard axes. The saved undo/redo

actions are erased.

o Using Paste option: the main picture is restored to the

Workspace axes and the image to be pasted is saved in the

clipboard axes.

The Clear Clipboard button erases any image saved in the

clipboard axes.

Image Processing Software Developed With MATLAB® 19

2.2.2 Apps interaction

There are several functions that work as separate apps and shares

information with the GDS main app.

The GDS calls these other apps in order to set configuration options

and effects previsualization and gets from them the resultant image or

parameters for the consequent effect execution. Figure 2.3 shows the

block diagram of these different apps:

Figure 2.3: Graphic Design Software block diagram

GDS
Graphic Design
Software app

Binary Threshold app

Rotation app

Brightness app

Combine Images app Shear Transform app

Colors Reduction app

Filter app

Magic Wand app

20 Image Processing Software Developed With MATLAB®

2.3 Image Processing Tools

This section presents a complete description of all the tools developed

for the GDS application.

The tool descriptions are grouped according to the GDS GUI parts from

section 2.2.1 Application window. It is shown the icon that represents the

tool, the MATLAB® functions used for the implementation and extracts

from the code to explain the programming.

It is described in detail the specific behavior or step sequences for

running the more complex tools.

The code extracts in most cases are a simplified version of the code for

a better quick comprehension, but the complete code of the GDS

application is in annex 5.7 GDS.m code.

2.3.1 Toolbar

The Toolbar shown in Figure 2.4 contains the group of buttons that

represent part of the GDS functionality and work as shortcuts to the top

menu options.

Figure 2.4: Toolbar buttons

A tool tip string appears when the mouse cursor is on top of any button

from the GDS as shown in Figure 2.5.

Figure 2.5: tip string sample

Following there is a complete description of the functions included in

the Toolbar:

Image Processing Software Developed With MATLAB® 21

Open Image: based on the imgetfile MATLAB® function. Opens an

image dialog box. While the Open Image dialog box is running the GDS

remains inactive until the user responds.

If the GDS has a current image in the Workspace a dialog box asks the

user if the current image shall be saved.

The Open Image dialog box includes only files using supported image

file formats. The file types listed in the dialog are the described in section

2.4 File format compatibility.

Figure 2.6: Open Image window

The MATLAB® function imfinfo returns a structure whose fields

contain information about an image in a graphics file.(5) Below is shown a

sample of the imfinfo structure:

 info = imfinfo('ngc6543a.jpg')

info =

 Filename:

'matlabroot\toolbox\matlab\demos\ngc6543a.jpg'

 FileModDate: '01-Oct-1996 16:19:44'

 FileSize: 27387

 Format: 'jpg'

 FormatVersion: ''

 Width: 600

 Height: 650

22 Image Processing Software Developed With MATLAB®

 BitDepth: 24

 ColorType: 'truecolor'

 FormatSignature: ''

 NumberOfSamples: 3

 CodingMethod: 'Huffman'

 CodingProcess: 'Sequential'

 Comment: {'CREATOR: XV Version 3.00b Rev:

6/15/94 Quality = 75, Smoothing = 0'}

The BitDepth means the bits per sampled pixel images and it is needed

in other tools as Brightness or Binary Threshold.

Image Information: provides the path & name of the current open

file. It is indicated also the bits per sampled pixel, if the image is in color,

grayscale or binary and the image pixels size. A sample is shown in Figure

2.7.

Figure 2.7: Image Information pop-up

Image Processing Software Developed With MATLAB® 23

RGB to gray: converts a color image to grayscale.

The tool is based on the rgb2gray MATLAB® function. A conversion

from RGB image or colormap to grayscale by eliminating the hue and

saturation information while retaining the luminance.(6) If the image is

already in grayscale appears a warning pop-up message. See section 5.1

Colormap Information.

Binary Threshold: opens a pop-up FIG-file that shows the image in

binary accordingly to the slider value of the binary threshold. If the image

is already in binary appears a warning pop-up message.

The Binary tool opens images no matter the bits per sample. Examples

are shown in Figure 2.8 of Binary transform for 8 bits per sampled pixel

images, which allows 256 different intensities; and also 16 bits per

sample images, that are 65536 levels. See annex 5.6 Grayscale Images

for more information about pixel intensity.

Figure 2.8: Binary Threshold tool for 8bit and 16bit sampled pixel images

%obtains the slider value from the slider component
sliderValue = ceil(get(handles.sliderThreshold,'Value'));

%conversion to bits per sampled pixel levels

sliderValue = ...

...ceil((((2^BitsPerSample)-1)*sliderValue)/100000);

%binary image from the grayscale according to slider value

binary_image= grayscale_image>sliderValue;

24 Image Processing Software Developed With MATLAB®

Erode & Dilate Image: perform erosion and dilation effects in the

image. The intensity of the effect is related and consistent with the Tool

Size chosen in the Left Properties Bar.

A base image to work with is shown in Figure 2.9.

Figure 2.9: base image

Erode

The image erosion is based on the imerode and uses the strel

MATLAB® function.

SE = strel('diamond',tool_size);

IMAGE2 =imerode(IMAGE,SE);

That instruction erodes a color, grayscale or binary image IMAGE,

returning the eroded image in IMAGE2. SE is a structuring element object

returned by the strel function.

The strel function creates morphological structuring element. A

„diamond‟ structure has been set because it is a flat structure. A flat

structure is needed to run this tool not just in color or grayscale images

but also in binary images as well.

Image Processing Software Developed With MATLAB® 25

A sample of the erosion effect is shown in Figure 2.10.

Figure 2.10: Image erosion

Erosion mathematical definition

The binary erosion of A by B, denoted A⊖B, is defined as the set

operation, see (Eq. 2.1):

𝐴⊖𝐵 = 𝑧 (𝐵)𝑧 ⊆ 𝐴
(Eq. 2.1)

In other words, it is the set of pixel locations z, where the structuring

element translated to location z overlaps only with foreground pixels in A.

In the general form of gray-scale erosion, the structuring element has a

height. The gray-scale erosion of A(x, y) by B(x, y) is defined as (Eq.

2.2):

 𝐴 ⊖ 𝐵 (𝑥, 𝑦) = 𝑚𝑖𝑛 𝐴 𝑥 + 𝑥′ , 𝑦 + 𝑦′ − 𝐵(𝑥′ , 𝑦′) (𝑥 ′ , 𝑦′) ∈ 𝐷𝐵
(Eq. 2.2)

26 Image Processing Software Developed With MATLAB®

Where DB is the domain of the structuring element B and A(x,y) is

assumed to be +∞ outside the domain of the image. To create a

structuring element with nonzero height values, use the

syntax strel(nhood,height), where height gives the height values

and nhood corresponds to the structuring element domain, DB.

Most commonly, gray-scale erosion is performed with a flat structuring

element (B(x,y)=0). Gray-scale erosion using such a structuring element

is equivalent to a local-minimum operator, see (Eq. 2.3):

 𝐴 ⊖ 𝐵 (𝑥, 𝑦) = 𝑚𝑖𝑛 𝐴 𝑥 + 𝑥′ , 𝑦 + 𝑦′ (𝑥′ , 𝑦′) ∈ 𝐷𝐵

(Eq. 2.3)

(7)

Dilate

The image dilation is based on the imdilate and use the strel

MATLAB® function.

SE = strel('diamond',tool_size);

IMAGE2 = imdilate(IMAGE,SE);

That instruction dilates a color, grayscale or binary image IMAGE,

returning the dilated image in IMAGE2. SE is a structuring element object

returned by the strel function.

The strel function creates morphological structuring element. A

„diamond‟ structure has been set because it is a flat structure. A flat

structure is needed to run this tool not just in color or grayscale images

but also in binary images as well.

Image Processing Software Developed With MATLAB® 27

A sample of the dilation effect is shown in Figure 2.11.

Figure 2.11: Image dilation

Dilation mathematical definition

The binary dilation of A by B, denoted A⊕B, is defined as the set

operation, see (Eq. 2.4):

𝐴⊕𝐵 = 𝑧 (𝐵)𝑧 ∩ 𝐴 ≠ ∅

(Eq. 2.4)

Where 𝐵 is the reflection of the structuring element B. In other words, it

is the set of pixel locations z, where the reflected structuring element

overlaps with foreground pixels in A when translated to z. Note that some

people use a definition of dilation in which the structuring element is not

reflected.

In the general form of gray-scale dilation, the structuring element has a

height. The gray-scale dilation of A(x,y) by B(x,y) is defined as (Eq. 2.5):

 𝐴⊕𝐵 (𝑥, 𝑦) = 𝑚𝑎𝑥 𝐴 𝑥 − 𝑥′ , 𝑦 − 𝑦′ + 𝐵(𝑥′ , 𝑦′) (𝑥′ , 𝑦′) ∈ 𝐷𝐵
(Eq. 2.5)

28 Image Processing Software Developed With MATLAB®

Where DB is the domain of the structuring element B and A(x,y) is

assumed to be −∞ outside the domain of the image. To create a

structuring element with nonzero height values, use the

syntax strel(nhood,height), where height gives the height values

and nhood corresponds to the structuring element domain, DB.

Most commonly, gray-scale dilation is performed with a flat structuring

element (B(x,y)=0). Gray-scale dilation using such a structuring element

is equivalent to a local-maximum operator, see (Eq. 2.6):

 𝐴⊕𝐵 (𝑥, 𝑦) = 𝑚𝑎𝑥 𝐴(𝑥 − 𝑥′, 𝑦 − 𝑦′) (𝑥′ , 𝑦′) ∈ 𝐷𝐵
(Eq. 2.6)

(8)

Horizontal & Vertical Flip: execute a flip in the horizontal or vertical

axe of the image.

The flipping is based on the flipdim MATLAB® function; it flips an

array along the specified dimension:

IMAGE2 = flipdim(IMAGE,dim)

When the value of dim is 1, the array is flipped row-wise down. When

dim is 2, the array is flipped column-wise left to right.(9)

Cylinder & Sphere Deformation: create a new window with the

current image placed on to a cylinder or a sphere shape, a 3D rotation

can be performed to choose the position desired.

Both effects are based on cylinder, sphere respectively and warp

MATLAB® functions.

Cylinder Deformation

[X,Y,Z] = cylinder(R,N);

Image Processing Software Developed With MATLAB® 29

Generates the unit cylinder based on the generator curve in the vector

R. Vector R contains the radius at equally spaced points along the unit

height of the cylinder. The cylinder has N points around the

circumference.(10)

After the generation of the chosen shape the warp function displays the

current image as texture-mapped surface.

warp(x,y,z,image);

Displays the image on the surface (x,y,z) previously generated.

See the resultant effect in Figure 2.12.

Figure 2.12: cylinder deformation

Sphere Deformation

[X,Y,Z] = sphere(N);

Generates three (N+1)-by-(N+1) matrices so that produces a unit

sphere.(11)

The Figure 2.13 is an example of the resulting effect after warping the

image on to the generated shape.

30 Image Processing Software Developed With MATLAB®

Figure 2.13: sphere deformation

Image Profile: shows Pixel-value cross-sections along line segments

drawn interactively on the current image.

Based on the improfile MATLAB® function, computes the intensity

values along a line or a multiline path in an image. It selects equally

spaced points along the specified, and then uses interpolation to find the

intensity value for each point. The improfile function works with

grayscale intensity, RGB, and binary images.(12)

The result shall indicate color (RGB), grayscale or binary values

(depending on the current image) along the traced line in the current

image.

Figure 2.14: Image profile samples for color, B&W and binary images

from left to right

Image Processing Software Developed With MATLAB® 31

Histogram: shows the histogram from the current image in grayscale.

It is based on the imhist MATLAB® function. If the image is a grayscale

image, imhist uses a default value of 256 bins. If image is a binary

image uses two bins.(13)

Figure 2.15: Histogram sample

32 Image Processing Software Developed With MATLAB®

Rotation: opens a pop-up FIG-file that shows the image rotation

accordingly to the slider value, from 0 to 360 degrees.

The new corners created in the rotation acquire the color from the Fill

Color in the Left Properties Bar.

Figure 2.16: Rotation app

This tool is based on the maketform and imtransform MATLAB®

functions. The extract of the code is:

tform = maketform('affine',[cos(sliderValueRadians)…

…sin(sliderValueRadians) 0; -sin(sliderValueRadians)…

…cos(sliderValueRadians) 0; 0 0 1]);

IMAGE2 = imtransform(IMAGE,tform,'FillValues',…

…[colorFill(1);colorFill(2);colorFill(3)]);

maketform creates a multidimensional spatial transformation structure

(called a TFORM struct) that can be used with the imtransform. The

transform type used is 'affine', so it is applied an Affine transformation

in 2-D.(14) For more information about affine transform type see annex

5.5 Function maketform transform types.

Image Processing Software Developed With MATLAB® 33

imtransform applies 2-D spatial transformation to image. The

parameter 'FillValues' consist in an optional comma-separated pairs of

Name/Value arguments. It is an array containing one or several fill

values. The imtransform function uses fill values for output pixels when

the corresponding transformed location in the input image is completely

outside the input image boundaries, and uses the Fill Color selected in the

Left Properties Bar. If IMAGE was 2-D,'FillValues' requires a scalar.

However, if IMAGE's dimension is greater than two, then could be specified

'FillValues' as an array whose size satisfies the following constraint:

size(fill_values,k) must equal either size(A,k+2) or 1.(15)

Resize: based on the imresize MATLAB® function to resize images.

IMAGE2 = imresize(IMAGE, SCALE);

Returns IMAGE2 that is SCALE times the size of IMAGE, which is a

grayscale, RGB, or binary image.(16)

For computing reasons it is limited to values between 1 and 10 to

enlarge and between 0 and 1 to reduce.

Crop: based on the imcrop MATLAB® function to crop images. Creates

an interactive image cropping tool. It is a moveable, resizable rectangle

that is interactively placed and manipulated using the mouse. After

positioning the tool, the user crops the target image by either double

clicking on the tool or choosing 'Crop Image' from the tool's context

menu. The cropped image is returned.

The cropping tool can be deleted by pressing backspace, escape, or

delete, or via the 'Cancel' option from the context menu. If the tool is

deleted, all return values are set to empty.(17)

34 Image Processing Software Developed With MATLAB®

Brightness: opens a pop-up FIG-file that shows the brightness

accordingly to the slider value, from 0% to 100%.

The Brightness works with images regardless of the bits per sample

pixel. To apply brightness in a color or grayscale image is just necessary

to add the required value within the range from -2^Bitspersample to

2^Bitspersample. Examples are shown in Figure 2.17 of Brightness for 8

bits and 16 bits per sample images. See annex 5.6 Grayscale Images for

more information about pixel intensity.

Figure 2.17: Brightness tool for 8bit and 16bit sampled pixel images

The Brightness code extract is:

%obtains the slider value from the slider component
sliderValue = ceil(get(handles.sliderThreshold,'Value'));

%conversion to bits per sampled pixel levels

sliderValue = ...

...ceil((((2^BitsPerSample)-1)*sliderValue)/100000);

%brightness applied according to slider value

IMAGE2 = IMAGE + sliderValue;

If the image is in binary appears a warning pop-up message.

Image Processing Software Developed With MATLAB® 35

Auto Contrast: based on the max(x) & min(x) MATLAB® functions.

Applying these in matrices max(X) & max(X) returns a row vector

containing the maximum or minimum element from each column. Both

functions are used to find the higher & lower pixel value in the current

picture. For RGB images this procedure is applied in the 3 matrices.

To perform the auto contrast the matrix that is our image is scaled

within zero and 2^Bits per Sample. To do so the original picture is

subtracted the minimum value and multiplied by the 2^Bits per Sample

divided the bit value range to produce the auto contrast enhancement.

mx = max(max(picture)) ;

mn = min(min(picture));

IMAGE_MN = IMAGE-mn;

RATIO=2^(BitsPerSample)/(mx-mn);

Auto_Contrast_IMAGE = IMAGE_MN *RATIO;

In case the image has already a proper contrast a pop-up warning is

shown.

36 Image Processing Software Developed With MATLAB®

Geometrical shapes: the tool creates lines, ellipses or rectangles in

the current image. From the Left Properties Bar the current shape

acquires the chosen Line Color and the Fill Color, when the Fill option is

chosen. The edge thickness is according to the Tool Size selected in the

Left Properties Bar.

Figure 2.18: geometrical shapes

The function uses the next interactive tools:

GeometricShape = imline

GeometricShape = imellipse

GeometricShape = imrect

All three tool runs interactive placement of the corresponding geometric

form on the current axes. The function returns a handle to the shape

object in GeometricShape.(18) The geometric shapes have a context

menu associated with it that controls aspects of its appearance and

behavior. For more information check the annex 5.4 Interactive Behavior

that is specific from the imellipse but works for imline and imrect

likewise.

Image Processing Software Developed With MATLAB® 37

Once the geometric shape is created on the Workspace a mask is

created for the edge of the shape and for the fill shape:

mask = GeometricShape.createMask();

mask_edge = edge(mask);

The tool size is applied to the edge mask through dilation.

w = strel('diamond',tool_size);

mask_edge = imdilate(mask_edge,w);

Invert Image: this effect is equivalent to make the inversion of the

current image, as shown in Figure 2.19.

Figure 2.19: inverted image sample

As the image is a matrix, for inverting a RGB image is just necessary to

negate it. And for grayscale or binary images is just the subtraction from

the intensity levels:

IMAGE=~IMAGE; %RGB image inversion

IMAGE=2^(BitsPerSample)-IMAGE; %binary/grayscale inversion

38 Image Processing Software Developed With MATLAB®

Stitch Images: is an approximation to the tool that could be found in

the digital cameras firmware nowadays for creating panoramic pictures,

also known as stitching.

This tool has a specific behavior because works with two images. First

of all, if there is any current image in the working area appears the

closing image dialog.

Right after that there are four steps for guiding the user:

1 Open the 1st image.

2 Open the 2nd image.

3 Select interactively 4 points in the 1st image that exist in the 2nd

image as well.

4 Select interactively 4 points in the 2nd image that correlate with the

ones chosen in the 1st image.

As examples in Figure 2.20 are shown two homemade pictures that

share part of the landscape:

Figure 2.20: stitching pictures sample

Image Processing Software Developed With MATLAB® 39

Finally the result obtained using the stitching tool is shown in the Figure

2.21:

Figure 2.21: stitching images tool result

This effect is based in the deformation of the second image using the

imtransform and the maketform MATLAB® functions in order to get a

coincidence between the 4 points selected in the first image with the 4

points from the second one. The tool is based in the Stitching Images

program from www.leet.it (19).

maketform creates a multidimensional spatial transformation structure

(called a TFORM struct) that can be used with the imtransform. The

transform type used is 'projective', so it is applied a Projective

transformation in 2-D or N-D.(14) For more information about projective

transform type see annex 5.5 Function maketform transform types.

imtransform applies 2-D spatial transformation to image.(15)

The extract of the code is:

T = maketform('projective',[x2 y2],[x1 y1]);

[im2t,xdataim2t,ydataim2t]=imtransform(im2,T);

40 Image Processing Software Developed With MATLAB®

%now xdataim2t & ydataim2t store the bounds...

... of the transformed im2

xdataout = [min(1,xdataim2t(1))…

…max(size(im1,2),xdataim2t(2))];

ydataout = [min(1,ydataim2t(1))…

…max(size(im1,1),ydataim2t(2))];

%transform both images with the computed xdata and ydata

im2t = imtransform(im2,T,'XData',xdataout,'YData',ydataout);

im1t = imtransform(im1,maketform('affine',eye(3)),'XData',…

…xdataout,'YData',ydataout);

picture=max(im1t,im2t);

Image Combination: performs a combination of two images changing

inversely proportional the opacity in both images.

This tool has a specific behavior because works with two images. First

of all, if there is any current image in the working area appears the

closing image dialog.

Right after that there are three steps for guiding the user:

1 Open the background image.

2 Open the foreground image.

3 Then a pop-up FIG-file is shown, where both images are combined

accordingly to the slider value for the opacity, from 0 to 1.

The image resulting of the combination preserves the size, path and

name of the background image.

If both images do not have the same dimensions because one image is

RGB and the other is binary the tool modifies the binary creating a 3

dimensional matrix to match with an RGB image. The process is

transparent to the user.

Image Processing Software Developed With MATLAB® 41

The tool result is shown in Figure 2.22.

Figure 2.22: Combination images sample

Thus for performing the combination between two images first of all is

resized the foreground image to the size of the background.

Next is necessary to multiply the foreground image for the slider value

within the range of 0 until 1 and multiply the background for (1 - slider

value).

Therefore just is needed to add both images together.

FOREGROUND = imresize(FOREGROUND,[rowsBGcolsBG]);

FOREGROUND = SLIDERVALUE .* FOREGROUND;

BACKGROUND = (1 - SLIDERVALUE) .* BACKGROUND;

COMBINATION = FOREGROUND + BACKGROUND;

42 Image Processing Software Developed With MATLAB®

Image Shear Transformation: deforms the current image applying a

vertical or horizontal shear. A pop-up FIG-file shows the deformation

accordingly to the horizontal and the vertical sliders.

The new corners created in the transformation acquire the color from

the Fill Color in the Left Properties Bar. The tool result is shown in Figure

2.23.

Figure 2.23: Image Shear Transformation app

This tool is based on the maketform and imtransform MATLAB®

functions. The extract of the code is:

tform = maketform('affine',…

…[1 sliderValueX 0; sliderValueY 1 0; 0 0 1]);

IMAGE2 = imtransform(IMAGE,tform,…

…'FillValues', [colorFill(1);colorFill(2);colorFill(3)]);

maketform creates a multidimensional spatial transformation structure

(called a TFORM struct) that can be used with the imtransform. The

transform type used is 'affine', so it is applied an Affine transformation

in 2-D or N-D.(14) For more information about affine transform type see

annex 5.5 Function maketform transform types.

Image Processing Software Developed With MATLAB® 43

imtransform applies 2-D spatial transformation to image. The

parameter 'FillValues' consist in an optional comma-separated pairs of

Name/Value arguments. It is an array containing one or several fill

values. The imtransform function uses fill values for output pixels when

the corresponding transformed location in the input image is completely

outside the input image boundaries, and uses the Fill Color selected in the

Left Properties Bar. If IMAGE was 2-D,'FillValues' requires a scalar.

However, if IMAGE's dimension is greater than two, then could be

specified 'FillValues' as an array whose size satisfies the following

constraint: size(fill_values,k) must equal either size(A,k+2)

or 1.(15)

Edges: find the edges in the current image. Based on the edge

MATLAB® function takes an intensity or a binary image as its input, and

returns a binary image BW of the same size as the original, with 1's

where the function finds edges and 0's elsewhere.(20)

Figure 2.24: original image and Edges tool result from left to right

IMAGE2 = edge(IMAGE,'canny');

Used the Canny method from the six different edge-finding methods

supported. The Canny method finds edges by looking for local maxima of

the gradient of the image. The gradient is calculated using the derivative

of a Gaussian filter. The method uses two thresholds, to detect strong and

weak edges, and includes the weak edges in the output only if they are

connected to strong edges. This method is therefore less likely than the

44 Image Processing Software Developed With MATLAB®

others to be "fooled" by noise, and more likely to detect true weak

edges.(21)

If the image is already in binary appears a warning pop-up message.

Colors Reduction: performs a color reduction in a RGB image. A pop-

up FIG-file shows the color reduction accordingly to the slider value.

Figure 2.25: original image and 7 colors reduction result from left to right

This effect is based on the rgb2ind MATLAB® function that convert

RGB image to indexed image. The rgb2ind uses one of three different

methods: uniform quantization, minimum variance quantization, and

colormap approximation. The rgb2ind dithers the image unless specified

'nodither' for DITHER_OPTION.

[X,MAP] = rgb2ind(RGB,N,'nodither');

No dithering is performed; 'nodither' maps each color in the original

image to the closest color in the new map. Converts the RGB image to an

indexed image X using minimum variance quantization.(22) MAP contains

at most N colors. N must be <= 65536 but for computing reasons N is

limited to 100.

If the current image is grayscale or binary appears a warning pop-up

message.

Image Processing Software Developed With MATLAB® 45

Filter: consist in a pop-up FIG-file with eleven radio buttons to select

the filter to be applied.

The previsualization window shows the effects chosen. It is possible to

concatenate the different filters or reload the original image by pressing

the Cancel button.

When pressed the Help button info pop-ups appear to guide the user to

choose the settings for every filter selected.

Input dialogs appears to introduce the different parameters.

Warning pop-ups appears when wrong parameters are introduced.

Figure 2.26: Filter tool app

The filters supported, parameters to be determined and a sample of the

effects achieved are shown below:

46 Image Processing Software Developed With MATLAB®

'average': Averaging filter.

h = fspecial('average', hsize) returns an averaging filter h of size

hsize. The argument hsize can be a vector specifying the number of rows

and columns in h, or it can be a scalar, in which case h is a square matrix.

The default value for hsize is [3 3].

See the algorithm used to create averaging filters (Eq. 2.7):

𝑜𝑛𝑒𝑠(𝑛(1), 𝑛(2))/(𝑛(1) ∗ 𝑛(2))

(Eq. 2.7)

Figure 2.27: average filter result

'disk': Circular averaging filter (pillbox).

h = fspecial('disk', radius) returns a circular averaging filter

(pillbox) within the square matrix of side 2*radius+1. The default radius

is 5.

Figure 2.28: disk filter result

Image Processing Software Developed With MATLAB® 47

'gaussian': Gaussian lowpass filter.

h = fspecial('gaussian', hsize, sigma) returns a rotationally

symmetric Gaussian lowpass filter of size hsize with standard deviation

sigma (positive). hsize can be a vector specifying the number of rows and

columns in h, or it can be a scalar, in which case h is a square matrix. The

default value for hsize is [3 3]; the default value for sigma is 0.5.

See the algorithms used to create Gaussian filters (Eq. 2.8 & 2.9):

ℎ𝑔(𝑛1, 𝑛2) = 𝑒
−(𝑛1

2+𝑛2
2)

2𝜎2

(Eq. 2.8)

ℎ(𝑛1, 𝑛2) =
ℎ𝑔(𝑛1, 𝑛2)

 ℎ𝑔𝑛2𝑛1

(Eq. 2.9)

Figure 2.29: gaussian filter result

'laplacian': Approximates the two-dimensional Laplacian operator.

h = fspecial('laplacian', alpha) returns a 3-by-3 filter

approximating the shape of the two-dimensional Laplacian operator. The

parameter alpha controls the shape of the Laplacian and must be in the

range 0.0 to 1.0. The default value for alpha is 0.2.

48 Image Processing Software Developed With MATLAB®

See the algorithms used to create Gaussian filters (Eq. 2.10 & 2.11):

∇2=
𝛿2

𝛿𝑥2
+

𝛿2

𝛿𝑦2

(Eq. 2.10)

∇2=
4

(𝛼 + 1)

𝛼

4

1 − 𝛼

4

𝛼

4
1 − 𝛼

4
−1

1 − 𝛼

4
𝛼

4

1 − 𝛼

4

𝛼

4

(Eq. 2.11)

Figure 2.30: laplacian filter result

'log': Laplacian of Gaussian filter.

h = fspecial('log', hsize, sigma) returns a rotationally symmetric

Laplacian of Gaussian filter of size hsize with standard deviation sigma

(positive). hsize can be a vector specifying the number of rows and

columns in h, or it can be a scalar, in which case h is a square matrix. The

default value for hsize is [5 5] and 0.5 for sigma.

See the algorithms used to create Gaussian filters (Eq. 2.12 & 2.13):

ℎ𝑔(𝑛1, 𝑛2) = 𝑒
−(𝑛1

2+𝑛2
2)

2𝜎2

(Eq. 2.12)

Image Processing Software Developed With MATLAB® 49

ℎ(𝑛1, 𝑛2) =
(𝑛1

2 + 𝑛2
2 − 2𝜎2)ℎ𝑔(𝑛1, 𝑛2)

2𝜋𝜎6 ℎ𝑔𝑛2𝑛1

(Eq. 2.13)

Figure 2.31: log filter result

'motion': Approximates the linear motion of a camera.

h = fspecial('motion', len, theta) returns a filter to approximate,

once convolved with an image, the linear motion of a camera by len

pixels, with an angle of theta degrees in a counterclockwise direction. The

filter becomes a vector for horizontal and vertical motions. The default len

is 9 and the default theta is 0, which corresponds to a horizontal motion

of nine pixels.

Figure 2.32: motion filter result

50 Image Processing Software Developed With MATLAB®

'prewitt': Prewitt horizontal edge-emphasizing filter.

h = fspecial('prewitt') returns the 3-by-3 filter h (shown below)

that emphasizes horizontal edges by approximating a vertical gradient. If

is needed to emphasize vertical edges, transpose the filter h'.

h =
 1 1 1
0 0 0

 −1 − 1 − 1

To find vertical edges, or for x-derivatives, use h'.

Figure 2.33: prewitt filter result

Image Processing Software Developed With MATLAB® 51

'sobel': Sobel horizontal edge-emphasizing filter.

h = fspecial('sobel') returns a 3-by-3 filter h (shown below) that

emphasizes horizontal edges using the smoothing effect by approximating

a vertical gradient. If is needed to emphasize vertical edges, transpose

the filter h'.

h =
 1 2 1
0 0 0

 −1 − 2 − 1

Figure 2.34: sobel filter result

'unsharp': Unsharp contrast enhancement filter.

h = fspecial('unsharp', alpha) returns a 3-by-3 unsharp contrast

enhancement filter. fspecial creates the unsharp filter from the negative

of the Laplacian filter with parameter alpha. alpha controls the shape of

the Laplacian and must be in the range 0.0 to 1.0. The default value for

alpha is 0.2.

Figure 2.35: unsharp filter result

52 Image Processing Software Developed With MATLAB®

(23)

Once the filters described have been determined they are applied on to

the image as follow:

pictureFiltered = imfilter(picture,h,'replicate');

The 'replicate' option consider that input array values outside the

bounds of the array are assumed to equal the nearest array border

value.(24)

Image Processing Software Developed With MATLAB® 53

'Median filtering': 2-D median filtering.

pictureFiltered = medfilt2(picture, hsize) performs median

filtering of the matrix picture in two dimensions. Each output pixel

contains the median value using the default 3-by-3 neighborhood around

the corresponding pixel in the input image. medfilt2 pads the image with

zeros on the edges, so the median values for the points within [3-by-3]/2

of the edges may appear distorted.

Median filtering is a nonlinear operation often used in image processing to

reduce "salt and pepper" noise. A median filter is more effective than

convolution when the goal is to simultaneously reduce noise and preserve

edges. (25)

In the Figure 2.36 is shown a sample of the result of the median

filtering. First is added to the original image a salt & pepper noise.

Applying the median filter using neighborhoods of size 3-by-3 it is obvious

the improvement of the image quality.

Original image NoiseIm = imnoise(image,'salt & pepper');

 Image after median filtering

Figure 2.36: median filtering result

54 Image Processing Software Developed With MATLAB®

'Adaptative filtering': 2-D adaptive noise-removal filtering.

pictureFiltered = wiener2 (picture,[M N],NOISE) filters the

picture using pixel-wise adaptive Wiener filtering, using neighborhoods of

size M-by-N to estimate the local image mean and standard deviation.

The default to 3. The additive noise (Gaussian white noise) power is

assumed to be NOISE.';

 See the algorithms used to create Adaptive filter (Eq. 2.14 & 2.15):

wiener2 estimates the local mean and variance around each pixel.

𝜇 =
1

𝑁𝑀
 a n1, n2

n1 ,n2∈η

(Eq. 2.14)

𝜎2 =
1

𝑁𝑀
 a2 n1, n2 − μ2

n1 ,n2∈η

(Eq. 2.15)

where η is the N-by-M local neighborhood of each pixel in the

image a. wiener2 then creates a pixelwise Wiener filter using these

estimates

𝑏 n1, n2 = μ +
𝜎2 − 𝜐2

𝜎2
 a n1, n2 − μ

(Eq. 2.16)

where 𝜐2 is the noise variance. If the noise variance is not

given, wiener2 uses the average of all the local estimated variances.(26)

Image Processing Software Developed With MATLAB® 55

In the Figure 2.37 is shown a sample of the result of the adaptative

filtering. First is added to the original image a Gaussian noise with mean 0

and variance 0.025. Applying the adaptative filter using neighborhoods of

size 3-by-3 it is obvious the improvement of the image quality.

Original image NoiseIm = imnoise(image,'gaussian',0,0.025);

 Image after adaptative filtering

Figure 2.37: adaptative filter result

56 Image Processing Software Developed With MATLAB®

Structure Propagation: allows erasing elements in an image. It is

really useful for restore cracks in old images, or mask unwanted elements

in an image. It is based on the roifill MATLAB® function. It fills in

specified polygon in grayscale image. The GDS allows using this function

in color images as well. See Figure 2.38 for samples of the Structure

Propagation behavior.

Figure 2.38: Structure Propagation execution and results

Image Processing Software Developed With MATLAB® 57

The roifill function smoothly interpolates inward from the pixel

values on the boundary of the polygon by solving Laplace's equation.

J = roifill creates an interactive polygon tool in the current image

in the Workspace, using the mouse to specify the vertices of the polygon.

Uses double-click to add a final vertex to the polygon and close the

polygon. The right-click is used to close the polygon without adding a

vertex. The position of the polygon and individual vertices in the polygon

can be adjusted by clicking and dragging.

To add new vertices, position the pointer along an edge of the polygon

and press the "A" key. The pointer changes shape. It uses left-click to add

a vertex at the specified position.

After positioning and sizing the polygon, fill the region by either double-

clicking over the polygon or choosing Fill Area from the tool's context

menu. The roifill returns J, a version of the image with the region

filled.

To delete the polygon, press Backspace, Escape or Delete, or choose

the Cancel option from the context menu. If the polygon is deleted, all

return values are set to empty.(27)

Although the roifill function just works for grayscale images the GDS

code perform the selection area in the red matrix and replicates the same

area selected for the blue and green. After that the three matrixes are

combined again to get the same effect in a RGB color image.

% over the red matrix is applied the roifill

[x,y,r,J,xi,yi] = roifill(picture(:,:,1));

%the ROI is applied over the green matrix

g = roifill(x,y,picture(:,:,2),xi,yi);

%the ROI is applied over the blue matrix

b = roifill(x,y,picture(:,:,3),xi,yi);

%concatenates the RGB

picture = cat(3, r, g, b);

58 Image Processing Software Developed With MATLAB®

Copy & Paste tools: these tools perform a copy and paste effect

between images. This tool interacts with the Clipboard of the Right

Properties Bar and has a specific behavior as described below.

When running the Copy tool an informative Message box appears:

“The current image is stored for later use. Press Paste button to load it

again.” Press OK button in message  The image saved is shown in the

Clipboard axes. When running the Copy tool for the first time the current

image is stored in another variable and shown in the Clipboard of the

Right Properties Bar. This is considered as the main image.

Next appears another informative Message box: “Select the image to

be copied to the current one.” Press OK button in message  The Open

Image dialog window appears. The user can open another image or the

last saved version of the main one.

The Figure 2.39 shows the main image in the Workspace and after the

Copy process how the main image is now shown in the Clipboard and the

image to be copied is in the Workspace.

Figure 2.39: Copy tool behavior

The user can work on to the image to be copied, applying whatever

tools or effects as in a main image.

Image Processing Software Developed With MATLAB® 59

If the last used tool before paste is one of the inserting mask in the

image; these are Erase, Delete and Magic Wand, the pasted image will be

only the part within the mask or Region of Interest (ROI).

When running the Paste tool the main image is loaded back to the

Workspace and the copied image is now shown in the Clipboard.

Next appears an information message box: “Click on the image to place

the copied image from Clipboard.”

Clicking on the image places the copied image, respecting the mask

when existing. The image copied can be pasted as many times as

required, always within the image limits.

The code is prepared to paste between images no matter if they are

from different types, binary, RGB or grayscale. To delete the copy image

stored press the Clear Clipboard button on top of the clipboard axes.

The Figure 2.40 shows a sample of the copy & paste behavior. The

image to be copied has been cropped, flipped, resized and the last step

was applying a magic wand effect to remove the background. The Magic

Wand inserts a mask or ROI, so when the Paste is done just the image

within the ROI is pasted on to the main image.

Figure 2.40: Copied image with mask & Paste tool result

60 Image Processing Software Developed With MATLAB®

Next there is a simplified version of the code for the Paste tool with ROI

included:

%message box

msg = msgbox('Click on the image…

… to place the copied image');

%wait for the message box to be closed

uiwait(msg);

%Graph input from mouse or cursor to place copied image

[x, y] = ginput(1);

%Main Picture cropped the same size…

…of the whole copied image

pic_crop = imcrop(picture,[x y…

… (size(pic_copy,2)-1) (size(pic_copy,1)-1)]);

%matrix indexing, replacing the mask…

…from the copied image in the cropped

pic_crop(mask)= pic_copy(mask);

% matrix indexing, replacing the cropped…

…picture on to the main Picture

picture(y:y+size(piccrop,1)-1,…

…x:x+size(piccrop,2)-1,:)= pic_crop;

Image Processing Software Developed With MATLAB® 61

The next 3 tools create a temporary mask:

Magic Wand: opens a pop-up FIG-file that shows the Magic Wand

options as shown in Figure 2.41. The radio buttons indicate a direct or

inverse selection and the tolerance slider with values from 0 to 100.

Figure 2.41: Magic Wand app

The Mouse Left button selects the points and the Mouse Right button

terminates the points selection (not included in the selection). The Figure

2.42 shows the Magic Wand result setting a inverse selection.

Figure 2.42: original and Magic Wand invert selection from left to right

62 Image Processing Software Developed With MATLAB®

Next there is a simplified version of the code:

%for all the pixels selected

for i = 1: NumberPixels

%locate the pixel in the picture as reference

ref = double(picture(ylist(i),xlist(i)));

%include each pixel region in the mask under the

 tolerance value

mask = mask | (picture - ref).^2 <= tolerance^2;

end

% Connected component labelling

[objects, count] = bwlabel(mask, 8);

The bwlabel MATLAB® Function used is for create Label connected

components in a 2-D binary image. It returns a matrix objects, of the

same size as mask, containing labels for the connected components in

mask. Returns in count the number of connected objects found in mask.

returns a matrix objects, of the same size as mask, containing labels for

the connected components in count. The 8 factor specifies 8-connected

objects.(28)

This effect is based in the MagicWand2 from MathWorks® website File

Exchange (Yoram Tal, 2004)(29).

Image Processing Software Developed With MATLAB® 63

Eraser & Selection: these tools have been developed altogether in the

same function. Both create a mask that can be used with the Copy-Paste

sequence.

When using the Select tool, the resultant mask is the selected region of

interest. When using the Erase tool, the resultant mask is the selection

inverted.

The area outside of the region of interest acquires the color from the

Fill Color in the Left Properties Bar. See in Figure 2.43 both samples of

erase and select tools.

Figure 2.43: erase and select from left to right

Both effects are based in the imfreehand MATLAB® function. It runs an

interactive placement of a freehand region of interest on the current axes.

The function returns h, a handle to an imfreehand object. A freehand

region of interest can be dragged interactively using the mouse and

supports a context menu that controls aspects of its appearance and

behavior.(30)

picturedelete = imfreehand();

mask = picturedelete.createMask();

 if select == 1
 mask = ~mask;
 end

64 Image Processing Software Developed With MATLAB®

2.3.2 Left Properties Bar

Tool size: is a drop down menu that applies the specified size or

amount when using several tools. The Figure 2.44 shows how the Tool

Size drop down menu looks like.

Figure 2.44: Tool Size drop down menu

The table 2.1 shows the list of tools that use the Tool Size:

Icon Tool Name Location

 Erode Toolbar

 Dilate Toolbar

 Geometrical shapes Toolbar

 Pencil Options Left Properties Bar

 Text Right Properties Bar

Table 2.1: list of tools that use the Tool Size

Empty/Fill option: consist of an radio button box to select the empty

or the fill options. Figure 2.45 is an image of the Fill option box.

Figure 2.45: Fill option box

When selecting the Fill the tool will use the Fill Color from the Right

Properties Bar. See a list with the tools that use the Empty/Fill options in

table 2.2.

Icon Tool Name Location

 Geometrical shapes Toolbar

 Text Right Properties Bar

Table 2.2: list of tools that uses the Empty/Fill option

Image Processing Software Developed With MATLAB® 65

Color options: the color options box includes the choose color buttons

and the indicators of the chosen colors. The Figure 2.46 shows the

appearance of the Colors box.

Figure 2.46: Colors box

 Choose color button: opens a chromatic table where

Line Color & Fill Color are selected interactively. There are three

chromatic tables, depending if the current image is RGB, grayscale

or binary, as shown in the Figure 2.47.

Figure 2.47: Chromatic tables for RGB, grayscale or binary images from

left to right

The code is based on the impixel MATLAB® function. Given

the coordinates from ginput over a Chroma image, the value of the

RGB is assigned to the variables Color Line or Color Fill.

[xline,yline] = ginput(1);

chroma=imread(chroma_im);

ColorArrayLine = impixel(chroma,xline(1),yline(1));

See 2.3.2 Left Properties Bar/ RGB pixel value for more

information about impixel.

Although the chromatic tables are 8 bits per sampled pixel

images, if the image open has other bits per sample then the colors

chosen are corrected to match the new bits depth.

color = (color*((2^BitsPerSample_picture)-1))/255;
 colorFill = (colorFill*((2^BitsPerSample_picture)-1))/255;

66 Image Processing Software Developed With MATLAB®

 Choose color image button: let‟s interactively select

the Line Color & Fill Color in the current image.

The code is based on the impixel MATLAB® function. Given

the coordinates from ginput over the current image in the

Workspace, the value of the RGB is assigned to the variables Color

Line or Color Fill.

[xline,yline] = ginput(2);

ColorArrayLine = impixel(picture,xline(1),yline(1));

ColorArrayFill = impixel(picture,xline(2),yline(2));

See 2.3.2 Left Properties Bar/ RGB pixel value for more

information about impixel.

Line Color & Fill Color: shows the current colors selected

through the Choose Color tools. Both are white by default. Figure

2.48 shows the color indicators appearance.

Figure 2.48: Line Color & Fill Color indicators

 The Line Color is used in the tools listed in the table 2.3.

Icon Tool Name Location

 Geometrical shapes Toolbar

 Pencil Options / Brush Left Properties Bar

 Text Right Properties Bar

Table 2.3: tools that use the Line Color

Image Processing Software Developed With MATLAB® 67

The Fill Color is used in the tools listed in the table 2.4.

Icon Tool Name Location

 Rotate Toolbar

 Shear transformation Toolbar

 Select Toolbar

 Erase Toolbar

Table 2.4: tools that use the Fill Color

Colormap: the drop down menu applies the selected built-in MATLAB®

colormap. The Figure 2.49 shows how the Colormap drop down menu

looks like.

Figure 2.49: Colormap drop down menu

A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0.

Each row is an RGB vector that defines one color. It changes in an image

its current RGB to the vectors RGB of the colormap, so the code shows

two warnings to perform the action when:

 The current image is binary: “This is a binary image. Is necessary

to map the true 1 to 255.”

 The current image is RGB: “Is necessary the RGB to Gray

conversion.”

The Figure 2.50 shows the built-in MATLAB® colormaps available.

Figure 2.50: built-in MATLAB® colormaps available

68 Image Processing Software Developed With MATLAB®

The Figure 2.51 shows samples of using different Colormaps in an

image.

Figure 2.51: original image top-left; ‘copper’ top-right; ‘hot’ bottom-left;

‘winter’ bottom-right

See more detailed information in the annex 5.1 Colormap Information.

Once the name of the colormap has been selected in the drop down menu

the code consist in:

map = colormap(cmap_selected);

picture = ind2rgb(picture, map);

The MATLAB® function ind2rgb converts the indexed image, picture,

and the corresponding colormap, map, to the truecolor image, RGB. The

indexed image, picture, is an m-by-n array of integers. The colormap,

map, is a three-column array of values in the range [0,1]. Each row of

map is a three-element RGB triplet that specifies the red, green, and blue

components of a single color of the colormap.(31)

Image Processing Software Developed With MATLAB® 69

RGB pixel value: Pressing the Get button allows interactively clicking

on the current image and obtains the RGB pixel value. The tool present 4

states; quiescent, showing values for RGB image, notify there is no value

because the image is grayscale or binary, as shown in Figure 2.52.

Figure 2.52: RGB pixel value states; quiescent, RGB , grayscale (NA) or

binary (NA) form left to right

The tool uses the output of the impixel MATLAB® function.

impixel(I) returns the value of pixels in the specified image I,

where I can be a grayscale, binary, or RGB image, although the GDS

code has limited the output just to the RGB images. impixel displays the

image specified and waits for the user to select the pixels in the image

using the mouse. The code omits the input arguments

so impixel operates on the image in the current axes of the Workspace.

For an RGB image, impixel returns the actual data for the pixel. The

values are either uint8 integers or double floating-point numbers,

depending on the class of the image array.

For an indexed image, impixel returns the RGB triplet stored in the

row of the colormap that the pixel value points to. The values are double

floating-point numbers.(32)

Pencil options:consist in a box with the buttons for Blur and Brush.

The Figure 2.53 shows the Pencil options appearance.

Figure 2.53: Pencil options

These tools are based on the detection of the CurrentPoint and

Cursor Motion.

MATLAB® updates CurrentPoint before executing callback functions

defined for the figure WindowButtonMotionFcn properties. This enables to

query CurrentPoint from these callback functions. It behaves like this:

http://es.mathworks.com/help/matlab/ref/figure-properties.html#prop_WindowButtonMotionFcn

70 Image Processing Software Developed With MATLAB®

 When defining a callback function for the

WindowButtonMotionFcn property, then MATLAB updates the

CurrentPoint property only when the user presses the mouse

button within the figure window.

 When defining a callback function for the

WindowButtonMotionFcn property, then MATLAB updates the

CurrentPoint property just before executing the callback.

The WindowButtonMotionFcn property executes only within the

figure window, unless the user presses the mouse button within

the figure and keeps the mouse button down while moving the

pointer around the screen. In this case, the function executes

(and MATLAB updates the CurrentPoint property) anywhere on

the screen until the user releases the mouse button.

 When defining a callback function for the WindowButtonUpFcn

property, then MATLAB updates the CurrentPoint property just

before executing the callback.

If adding a uicontrol or uitable component to the figure, then

MATLAB® updates the CurrentPoint property when the user right-clicks

the component, or when they left-click the component while

the Enable property of that component is 'off' or 'inactive'.

In some situations (such as when the WindowButtonMotionFcn callback

takes a long time to execute and the user moves the pointer very

rapidly), the CurrentPoint property might not reflect the actual location

of the pointer, but rather the location at the time when the

WindowButtonMotionFcn callback began execution.(33)

Blur: follows the cursor movement when pressing the left

mouse button performing a blurring effect on to the image in the

Workspace. The Tool Size selected from the Left Properties Bar sets

the square area affected for the blurring.

The common application for this tool is to minimize pixelated

regions in pictures. As an example the Figure 2.54 shows a bad

quality picture that presents the typical pixelated region especially

visible on the edges. Using the blur tool following the lines the

pixelation can be satisfactorily smoothen, improving the image

visualization and printing. The Zoom can be combined with the blur

effect to achieve higher precision in the image correction.

http://es.mathworks.com/help/matlab/ref/figure-properties.html#prop_WindowButtonMotionFcn

Image Processing Software Developed With MATLAB® 71

Figure 2.54: top images with pixelation, below ones with smoothen effect after

blurring

But the most popular application for that tool is the world

famous “Photoshop effect”. As a sample in Figure 2.55 Mr.

Eastwood has been rejuvenate several decades after blurring

accurately their facial wrinkles.

Figure 2.55: left Eastwood original, right Eastwood after blurring

72 Image Processing Software Developed With MATLAB®

Once the current point selected is located, then is determined

a square of the picture with size related with Tool Size in the Left

Properties Bar. Onto that square is applied a special filter type

'disk', that makes a motion or blurry effect.

Finally the filtered square is placed onto the original image.

Below is a simplified version of the code of the Blur Tool:

% Obtaining the current point

set (gcf,'WindowButtonMotionFcn', @mouseMove);

…

C = get (gca, 'CurrentPoint');

…

% Setting a square region based on Tool Size

r = tool_size;

range= floor(tool_size/2);

x=round(C(1,2));

y=round(C(1,1));

xp=x+range;

xm=x-range;

yp=y+range;

ym=y-range

% Applying the filter onto the square region

H = fspecial('disk',5);

MotionBlur = …

… imfilter(picture(xm:xp,ym:yp,:),H,'replicate');

% Placing the filtered square region …

… onto the original image

picture(xm:xp,ym:yp,:) = MotionBlur;

imshow(picture);

Image Processing Software Developed With MATLAB® 73

Brush: follows the cursor movement when pressing the left

mouse button executing the drawing effect on to the image in the

Workspace. The Tool Size selected from the Left Properties Bar sets

the square area affected for the drawing. The color of the drawing is

determined by the Line Color in the Left Properties Bar. The Zoom

can be combined with the blur effect to achieve higher precision in

the image correction.

The Figure 2.56 shows the original BW image used and the

drawing onto that image.

Figure 2.56: left original image, right after drawing using Brush tool

Once the current point selected is located, then is determined

a square of the picture with size related with Tool Size in the Left

Properties Bar. Onto that square the Line Color is applied. Below is

a simplified version of the code of the Brush Tool:

% Obtaining the current point

set (gcf,'WindowButtonMotionFcn', @mouseMove);

…

C = get (gca, 'CurrentPoint');

…

% Setting a square region based on Tool Size

r = tool_size;

range= floor(tool_size/2);

x=round(C(1,2));

74 Image Processing Software Developed With MATLAB®

y=round(C(1,1));

xp=x+range;

xm=x-range;

yp=y+range;

ym=y-range

% Applying the color over the square region …

… on the RGB image

picture(xxm:xxp,yym:yyp,1)= color(1);

picture(xxm:xxp,yym:yyp,2)= color(2);

picture(xxm:xxp,yym:yyp,3)= color(3);

imshow(picture);

Image Processing Software Developed With MATLAB® 75

2.3.3 Right Properties Bar

Text options: are a combination of several elements that permits to

introduce text onto an image and configure several properties of the text.

The Figure 2.57 shows the complete Text box appearance.

Figure 2.57: Text box

Text Font: it is a drop down menu to choose a font type

between the several listed below:

 Arial

 Bodoni MT

 Calibri

 Cambria
 Century

 Comic Sans MS
 Courier

 Forte

 Times New Roman

These are fonts that the target system shall support to display

properly. By default the Arial type is selected. The Figure 2.58

shows the Text Font drop down menu appearance.

Figure 2.58: Text Font drop down menu

76 Image Processing Software Developed With MATLAB®

Text Angle: it is a drop down menu to choose a font type

between the several listed below:

 normal

 italic

The Text Angle drop down menu is shown in Figure 2.59.

Figure 2.59: Text Angle drop down menu

Text Weight: it is a drop down menu to choose the text eight

between:

 normal

 bold

The Figure 2.60 shows how the Text Weight drop down menu

looks like.

Figure 2.60: Text Weight drop down menu

Image Processing Software Developed With MATLAB® 77

 Text: pressing the Text button allows to enter a text on

the current image in the Workspace interactively.

 The tool uses the values set in the drop down menus

to choose the font type, weight and angle.

 The color chosen in Line Color is the text color

 The Fill Color is the background color if the Fill bullet

is selected.

 The text size is selected in Tool Size.

Figure 2.61 shows an image sample with several text options

applied.

Figure 2.61: Text tool sample

The tool uses the gtext MATLAB® function to perform a

mouse placement of text in the current image in the Workspace. It

sets the values of the specified text properties from the Font, Angle

and Weight drop down menus, from the Tool Size and from the Fill

option.

78 Image Processing Software Developed With MATLAB®

The Text to be written is introduced through an input dialog

window. A simplified extract of the Text tool code is shown below:

answer = inputdlg('Type the text','Settings',1);

switch (fillshape)

case 0%Fill bullet deselected

gtext(answer,'FontSize',tool_size,'FontName',…

…Font_Name_selected,'FontAngle',Font_Angle_selected,…

…'FontWeight',Font_Weight_selected,'Color',color);

case 1%Fill bullet selected

gtext(answer,'FontSize',tool_size,'FontName',…

…Font_Name_selected,'FontAngle',Font_Angle_selected,…

…'FontWeight',Font_Weight_selected,'Color',…

…color,'BackgroundColor',colorFill);

end

Clipboard: the clipboard axes show a stored image when using the

Copy/Paste functions:

 Using the Copy tool: the main picture in the Worskpace axes is

saved in the Clipboard axes.

 Using Paste option: the main picture is restored to the

Workspace axes and the image to be pasted is saved in the

clipboard axes.

The Clear Clipboard button erases any image saved in the clipboard

axes.

See section 2.3.1 Toolbar/ Copy & Paste for more information.

Image Processing Software Developed With MATLAB® 79

2.3.4 Zoom

Zoom: it uses the zoom MATLAB® function. Turns on interactive

zooming. When interactive zooming is enabled in a figure, pressing a

mouse button while the cursor is within an axes zooms into the point or

out from the point beneath the mouse. Zooming changes the axes limits.

When using zoom mode:

 Zoom in by positioning the mouse cursor where you want the

center of the plot to be and either:

o Press the mouse button or

o Rotate the mouse scroll wheel away from you (upward).

 Zoom out by positioning the mouse cursor where wanted the

center of the plot to be and either:

o Simultaneously press Shift and the mouse button, or

o Rotate the mouse scroll wheel toward you (downward).

Each mouse click or scroll wheel click zooms in or out by a factor of 2.

Clicking and dragging over an axes when zooming in is enabled draws a

rubberband box. When you release the mouse button, the axes zoom in

to the region enclosed by the rubberband box.

Double-clicking over an axes returns the axes to its initial zoom setting

in both zoom-in and zoom-out modes.(34)

The tool is implemented with a toggle button, so when it is pressed the

zoom options are available onto the current image. When deactivate the

toggle the zoom is restored.

The new image limits during the zooming are preserved if any other

tool is activated. This tool allows for example to work with more precision

when using the Pencil options in the Left Properties Bar.

80 Image Processing Software Developed With MATLAB®

Next there is extract of the code for the Zoom tool:

% --- Executes on button press in togglebuttonzooom.

function togglebuttonZoom_Callback(hObject, eventdata, handles)

global ZoomValue

global picture

ZoomValue = get(gcbo,'Value'); %returns state of togglebuttonzooom

 if ZoomValue == 1 %togglebutton is pressed

 h = zoom;

 set(h,'ActionPostCallback',@mypostcallback);

 set(h,'Enable','on');

 else

 set(gca,'xlim',[1 size(picture,2)])

 set(gca,'ylim',[1 size(picture,1)])

 zoom off

 end

function mypostcallback(obj,evd)

global newXLim

global newYLim

%new image limits

newXLim = get(evd.Axes,'XLim');

newYLim = get(evd.Axes,'YLim');

Image Processing Software Developed With MATLAB® 81

2.3.5 Save options

There are two options to save the image on the Workspace, the Save

and the Save As. This last one is only available using the Menu; File/ Save

As.

Save: performs an overwriting of the current image on the Workspace.

A dialog pop up ask the user if really wants to overwrite the image, and

when affirmative executes the imwrite MATLAB® function.

imwrite(A,filename) writes image data A to the file specified by

filename, inferring the file format from the extension. imwrite creates the

new file in your current folder. The bit depth of the output image depends

on the data type of A and the file format. For most formats:

 If A is of data type uint8, then imwrite outputs 8-bit values.

 If A is of data type uint16 and the output file format supports 16-

bit data (JPEG, PNG, and TIFF), then imwrite outputs 16-bit

values. If the output file format does not support 16-bit data,

then imwrite returns an error.

 If A is a grayscale or RGB color image of data type double or

single, then imwrite assumes that the dynamic range is [0,1]

and automatically scales the data by 255 before writing it to the

file as 8-bit values. If the data in A is single, convert A to double

before writing to a GIF or TIFF file.

 If A is of data type logical, then imwrite assumes that the data is

a binary image and writes it to the file with a bit depth of 1, if the

format allows it. BMP, PNG, or TIFF formats accept binary images

as input arrays.

 If A contains indexed image data, the user shall additionally

specify the map input argument, although the GDS code does not

have this option implemented.

(35)

82 Image Processing Software Developed With MATLAB®

Save As: execute through the Menu/ File/ Save as this tool allows to

save the current image on the Workspace. The imsave MATLAB® function

is executed.

imsave creates a Save Image tool in a separate figure that is

associated with the current image. The Save Image tool displays an

interactive file chooser dialog box in which could be specified a path and

filename with any extension from the ones shown in Figure 2.62. When

clicking Save, the Save Image tool writes the target image to a file using

the image file format selected in the Files of Type menu. imsave uses

imwrite to save the image, using default options.(36)

Figure 2.62: Route Save as from Menu and file extensions allowed

Image Processing Software Developed With MATLAB® 83

2.4 File format compatibility

The GDS uses the imread function for reading an image from graphics

file. This MATLAB® function reads a grayscale or color image from the file

specified by the string filename.

[...] = imread(filename)

The imread function is compatible for the next specific formats, listed in

alphabetical order by format name.

 BMP — Windows Bitmap

 CUR — Cursor File

 GIF — Graphics Interchange Format

 HDF4 — Hierarchical Data Format

 ICO — Icon File

 JPEG — Joint Photographic Experts Group

 JPEG 2000 — Joint Photographic Experts Group 2000

 PBM — Portable Bitmap

 PCX — Windows Paintbrush

 PGM — Portable Graymap

 PNG — Portable Network Graphics

 PPM — Portable Pixmap

 RAS — Sun Raster

 TIFF — Tagged Image File Format

 XWD — X Window Dump

More detailed information in the annex 5.2 Format-Specific Information.

84 Image Processing Software Developed With MATLAB®

2.5 Standalone Application

This part of the project was considered once the GSD development was

frozen. In order to receive feedback from external user acceptance testing

was obvious the necessity to create a standalone application and so to

distribute it to several disinterested beta testers.

As a result the GUI GSD.fig that runs over MATLAB® shall be converted

into a standalone application, so the final users are able to execute the

GDS although they do not have a MATLAB® version installed.

There are several advantages in converting our app into a standalone

app; the immediate one is that a wider distribution of the software is

granted, since it is no necessary a MATLAB® installed or no MATLAB®

licenses available in the target computer.

Another benefit is the implied protection of intellectual property, since

this way the source code is hidden.

As the executable works as an independent script it is possible to run

multiple instances of the application (as seen in Figure 2.63), which was

not possible running the GUI from MATLAB®.

Figure 2.63: Several instances of the GDS app

There are two different ways to generate the standalone, by command

window or using the toolbox deploytool. This last option has been chosen

to create the standalone app.

Image Processing Software Developed With MATLAB® 85

The deploytool command opens the Deployment Tool window, which

is the graphical user interface for MATLAB® Compiler. The Figure 2.64

shows the Deploytool GUI.

Figure 2.64: Deploytool GUI

The first step is the creation of the project named GSD64bits.prj. The

progress bars for the building process of the project are shown in the

Figure 2.65.

Figure 2.65: Building new project GDS64bits.prj

The next step is add the M-file GSD.m with the main core of the app to

the project.

The remaining files necessary to the complete running of the

application shall be added as well; the M-files with extension .m , the GUI

FIG-files with extensions .fig and the folder that contains the program

icons; all these together form the whole application. The Figure 2.66

shows the files listed for the GDS project.

86 Image Processing Software Developed With MATLAB®

Figure 2.66: all files added to the project GDS64bits.prj

The progress bars for the building process of the executable file are

shown in the Figure 2.67.

Figure 2.67: Building the GDS64bits.exe

At this point an executable of the GDS app file has been obtained.

Image Processing Software Developed With MATLAB® 87

For a standalone compiled application that accesses shared library it is

necessary to install previously the MCRInstaller.exe (for Windows) on the

target machine once per release, that is a self-extracting MATLAB®

Compiler Runtime (MCR) library utility; it is a platform-dependent file that

must correspond to the end user's platform.

For the GDS distribution two different packages for Windows 32bits and

64bits have been prepared. Each package contains the specific

MCRInstaller.exe of the platform.

The installation of the MCRInstaller.exe requires the creation of an

environment variable. As this could be annoying from an user friendliness

point of view a batch file has been written. This batch creates the

environment variable and performs a silent installation of the

MCRInstaller.exe (37), simplifying thus the process for the final user. The

Figure 2.68 are screenshots of the batch files for MCR auto installation for

Windows 32bits & 64bits.

Figure 2.68: batch files for MCR auto installation for Windows 32bits &

64bits

88 Image Processing Software Developed With MATLAB®

Finally the distribution package consist in a compressed zip file

containing the GSD executable, the MCRInstaller executable, the batch

file for a silent installation of the MCR and the readme file. A screenshot

of the distribution package is shown in Figure 2.69.

Figure 2.69: distribution package content

Image Processing Software Developed With MATLAB® 89

3. Gannt chart

5
7
 w

e
e
k
s
 *

 2
0
h
 =

1
1

4
0

h

 R

e
m

a
r
k

s
:

T
h
e
 G

a
n
tt

 d
ia

g
ra

m
 c

o
n
s
id

e
rs

 2
0
h
 o

f
w

o
rk

 p
e
r

w
e
e
k
.

A
lt
h
o
u
g
h
 s

o
m

e
 o

f
th

e
 t

a
s
k
s
 h

a
v
e
 b

e
e
n
 p

e
rf

o
rm

e
d

in
 p

a
ra

ll
e
l,
 t

h
e
y
 h

a
v
e
 b

e
e
n
 r

e
p
o
rt

e
d
 w

it
h
 n

o
 o

v
e
rl
a
p
 f

o
r

b
e
tt

e
r

a
c
c
o
u
n
ti
n
g
 o

f
th

e
 w

o
rk

e
d
 h

o
u
rs

.

 F

o
r

p
e
rs

o
n
a
l
re

a
s
o
n
s
,

th
e
 d

e
d
ic

a
ti
o
n
 t

o
 t

h
e
 p

ro
je

c
t

h
a
s
 n

o
t

b
e
e
n
 c

o
n
ti
n
u
o
u
s
 a

n
d
 t

h
e
 a

c
tu

a
l
ti
m

e
 e

la
p
s
e
d
 b

e
tw

e
e
n

th
e
 b

e
g
in

n
in

g
 a

n
d
 t

h
e
 c

o
n
c
lu

s
io

n
 i
s
 m

u
c
h
 g

re
a
te

r
th

a
n
 s

h
o
w

n
,

s
o
 t

h
e
 m

e
a
n
in

g
 o

f
th

e
 G

a
n
n
t

c
h
a
rt

 h
e
re

 i
s
 t

o
 s

h
o
w

a
n
 e

s
ti
m

a
ti
o
n
 o

f
th

e
 a

m
o
u
n
t

o
f

w
o
rk

 i
n
v
e
s
te

d
 i
n
 t

h
is

 p
ro

je
c
t,

 w
it
h
 n

o
 d

a
te

s
 s

p
e
c
if
ic

a
ti
o
n
.

90 Image Processing Software Developed With MATLAB®

4. Conclusions

Regarding the strong points of the project itself, the most remarkable

of all would be that the GDS has turned out to be a fully functional tool. I

have found myself using it for personal and professional reasons as it is in

many aspects more useful and easier to use than other professional

software solutions so I am in position to say that not only I am satisfied

with the program as a developer, but also as an amateur user.

The successful creation of the Standalone Package (also including the

silent installation of the MATLAB® Compiler Runtime library utility) is

another good point. See section 2.5 Standalone Application. The software

has been installed in several Operative Systems from Windows (Windows

XP 32 bits, Windows 7 32 bits, Windows 7 64 bits, Windows 8.1 64 bits)

and different computers with no issues found. Thus the GDS has been

easily distributed to several users, although no MATLAB® version was

installed on the target PC.

Another aspect worthy to bring forward would be the robustness of the

code. I have worked as a test engineer for several years in different

industries and I think that my project has strongly benefited from this

professional background. Many hours have been consecrated to properly

and thoroughly debugging the code to the slightest details. I am

particularly proud of this task, that at an industrial level would have

required several weeks of alpha and beta testing, and I believe that the

result exceeds the expectations that one could have for a one man job.

The tools required as objectives for the project have been

implemented, all of them included in section 2.3.1 Toolbar:

 User interface for using Filters.

 ROI Based Processing. Check in section 2.3.1 Toolbar/ Magic

Wand, Eraser & Selection.

 Stitch Images.

 Combine images.

 Shear Transformation.

 Structure Propagation.

 Copy & Paste tools.

Regarding the possibilities for further development of the tool, several

aspects could be of interest: the first of all would be adding even more

features to the software; in the graphic industry, the possibilities are

Image Processing Software Developed With MATLAB® 91

virtually endless and one can always think of new automated functions

that could be of interest to some particular users depending on the

specialized use they would like to make of the tool.

Another point, of course, would be further debugging of the minor

inconveniences that might still be found while using the GDS. Proper

debugging of a code is a never-ending task and, should its capabilities be

enhanced, a new global system test should be performed.

Another interesting point to be developed would be the use of MATLAB

Mobile™ to run a simplified version of the GDS with Android. The MATLAB

Mobile™ is an application that allows remote connection from an Android

smartphone or tablet to a MATLAB® session running on MathWorks®

Cloud or on a computer.

Finally, from a personal perspective, this project has allowed me to

reach one of the most important objectives that I was pursuing when I

initially chose the subject: Improve my programming skills. Facing the

typical software issues such as designing the program, debugging,

validating, structuring the user interface, choosing the tools behavior and

so on, I had the chance to enhance my capabilities.

In this particular project I have improved my understanding of the tool

in general and of its data processing in particular. Many of the functions

used in this project can be used in environments other than the image

processing, and I expect that the knowledge that I have acquired will be

of great use for me in my professional career.

I believe that it is necessary for any engineer today to be able to

program his own tools and I am confident than I am now much more

performing in this aspect than I was before.

To sum up, this project has allowed me to reach the main objectives we

set out for at the beginning: improve my programming knowledge, and

create a high performing MATLAB® based image processing application.

92 Image Processing Software Developed With MATLAB®

5. Annexes

The annexes of the master's thesis: Image Processing Software

developed with MATLAB® (Graphic Design Software - GDS) have been

compiled together in the Annexes booklet.

Image Processing Software Developed With MATLAB® 93

6. References

1. Discovery/ MATLAB GUI. MathWorks website. [En línia] MathWorks®.

http://www.mathworks.com/discovery/matlab-gui.html.

2. Garrison, David. Writing Apps in MATLAB - Newsletter. MathWorks website.

[En línia] MathWorks®, 2012.

http://www.mathworks.com/company/newsletters/articles/writing-apps-in-

matlab.html?s_tid=mlg_b_appswr.

3. MATLAB CENTRAL/ File Exchange. MathWorks website. [En línia]

MathWorks®.

http://www.mathworks.com/matlabcentral/fileexchange/?s_tid=gn_mlc_fx.

4. MATLAB/ GUI Building/ GUI Building Basics/ Files Generated by GUIDE.

MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/matlab/creating_guis/files-generated-by-guide.html.

5. MATLAB/ Data Import and Export/ Standard File Formats/ Images/ imfinfo.

MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/matlab/ref/imfinfo.html?searchHighlight=imfinfo.

6. MATLAB/ Graphics/ Images/ Modifying Images/ rgb2gray. MathWorks website.

[En línia] MathWorks®.

http://es.mathworks.com/help/matlab/ref/rgb2gray.html?searchHighlight=rgb2gray.

7. Image Processing Toolbox/ Image Enhancement/ Morphological Operations/

imerode. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/imerode.html.

8. Image Processing Toolbox/ Image Enhancement/ Morphological Operations/

imdilate. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/imdilate.html.

9. MATLAB/ Language Fundamentals/ Matrices and Arrays/ Sorting and

Reshaping Arrays/ flipdim. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/matlab/ref/flipdim.html.

10. MATLAB/ Graphics/ 2-D and 3-D Plots/ Surfaces, Volumes, and Polygons/

Surface and Mesh Plots/ cylinder. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/matlab/ref/cylinder.html.

11. MATLAB/ Graphics/ 2-D and 3-D Plots/ Surfaces, Volumes, and Polygons/

Surface and Mesh Plots/ sphere. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/matlab/ref/sphere.html.

94 Image Processing Software Developed With MATLAB®

12. Image Processing Toolbox/ Image Analysis/ Region and Image Properties/

improfile. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/improfile.html.

13. Image Processing Toolbox/ Image Analysis/ Region and Image Properties/

imhist. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/imhist.html.

14. Image Processing Toolbox/ Geometric Transformations, Spacial Referencing

and Image Registration/ Geometric Transformations/ maketform. MathWorks

website. [En línia] MathWorks®.

15. Image Processing Toolbox/ Geometric Transformations, Spacial Referencing

and Image Registration/ Geometric Transformations/ imtransform. MathWorks

website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/imtransform.html.

16. Image Processing Toolbox/ Geometric Transformation, Spatial Referencing,

and Image Registration/ Geometric Transformations/ imresize. MathWorks website.

[En línia] MathWorks®. http://es.mathworks.com/help/images/ref/imresize.html.

17. Image Processing Toolbox/ Display and Exploration/ Build Interactive Tools/

imcrop. MatWorks website . [En línia] MatWorks® .

http://es.mathworks.com/help/images/ref/imcrop.html.

18. Image Processing Toolbox/ Display and Exploration/ Build Interactive Tools/

imline. MatWorks website. [En línia] MatWorks®.

http://es.mathworks.com/help/images/ref/imline.html.

19. Giusti, Alessandro. To stitch two images. Leet. [En línia]

http://www.leet.it/home/giusti/teaching/matlab_sessions/stitching/stitch.html.

20. Image Processing Toolbox/ Image Analysis/ Object Analysis/ edge.

MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/edge.html.

21. Canny, John. "A Computational Approach to Edge Detection, IEEE

Transactions on Pattern Analysis and Machine Intelligence". 1986.

22. MATLAB/ Graphics/ Images/ Modifying Images/ rgb2ind. MathWorks website.

[En línia] MathWorks®. http://es.mathworks.com/help/matlab/ref/rgb2ind.html.

23. Image Processing/ Toolbox& Image Enhancement/ Image Filtering.

MathWorks website . [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/fspecial.html.

Image Processing Software Developed With MATLAB® 95

24. Image Processing Toolbox/ Image Enhancement/ Image Filtering/ imfilter.

MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/imfilter.html.

25. Image Processing Toolbox/ Image Enhancement/ Image Filtering/ medfilt2.

MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/medfilt2.html#bupa1jh-1.

26. Image Processing Toolbox/ Image Enhancement/ Image Filtering/ wiener2.

MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/wiener2.html?searchHighlight=wiener2.

27. Image Processing Toolbox/ Image Enhancement/ ROI-Based Processing/

roifill. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/roifill.html.

28. Image Processing Toolbox/ GPU computing/ bwlabel. MathWorks website. [En

línia] MathWorks®. http://es.mathworks.com/help/images/ref/bwlabel.html.

29. Tal, Yoram. MATLAB CENTRAL/ File Exchange/ MagicWand2. MathWorks

website. [En línia] MathWorks®, 2004.

http://www.mathworks.com/matlabcentral/fileexchange/6034-

magicwand2/content/magicwand2.m.

30. Image Processing Toolbox/ Display and Exploration/ Build Interactive Tools/

imfreehand. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/imfreehand.html.

31. MATLAB/ Graphics/ Images/ Modifying Images/ ind2rgb. MathWorks website.

[En línia] MathWorks®. http://es.mathworks.com/help/matlab/ref/ind2rgb.html.

32. Image Processing Toolbox/ Image Analysis/ Region and Image Properties/

impixel. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/impixel.html.

33. Figure Properties. MathWorks® website. [En línia] MathWorks®.

http://es.mathworks.com/help/matlab/ref/figure-properties.html.

34. MATLAB/ Graphics/ Formatting and Annotation/ Data Exploration/ zoom.

MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/matlab/ref/zoom.html.

35. MATLAB/ Graphics/ Images/ Image File Operations/ imwrite. MathWorks

website. [En línia] MathWorks®.

http://es.mathworks.com/help/matlab/ref/imwrite.html.

96 Image Processing Software Developed With MATLAB®

36. Image Processing Toolbox/ Display and Exploration/ Build Interactive Tools/

imsave. MathWorks website. [En línia] MathWorks®.

http://es.mathworks.com/help/images/ref/imsave.html?searchHighlight=imsave.

37. Matlab Answers : How do I silently install the MATLAB Compiler Runtime

(MCR)? MathWorks website. [En línia] Mathworks®.

http://www.mathworks.com/matlabcentral/answers/106020-how-do-i-silently-install-

the-matlab-compiler-runtime-mcr.

