Image Processing and Data Visualization with MATLAB

Image Processing

(based on MATLAB Help)
Hansrudi Noser

June 28-29, 2010

UZH, Multimedia and Robotics Summer
School

Product overview

- The image processing toolbox is a collection of functions extending MATLAB with special image processing operations concerning
- Spatial image transformations
- Morphological operations
- Neighborhood and block operations
- Linear filtering and filter design
- Transforms
- Image analysis and enhancement
- Image registration
- Deblurring
- Region of interest operations

Contents

- Introduction
- Reading and Writing Image data
- Spatial Transforms
- Image Registration
- Image Filters
- Transforms
- Morphological Operations

Digital Images in MATLAB

- The basic data structure in MATLAB is the array which is the container for the most common discrete (digital) image types such as
- Gray value images
- True color images
- Movies
- ...
- Therefore the full power of MATLAB is available for digital image processing applications

Image coordinate systems: Pixel Coordinates

- In 2D digital images the location of a pixel (picture element) in the pixel coordinate system is given by a pair of integer indices ranging from 1 to the length of the row or column.
- Pixel coordinates: (row, column)

Image coordinate systems: Spatial Coordinates

- A pixel is a square patch with continuous coordinates
- The center point of a pixel corresponds to the pixel coordinate system
- Spatial coordinates: (x, y)
- Attention: In spatial coordinate systems the horizontal and vertical order is reversed with respect to the pixel coordinate system.
- (row, column) / (x, y)
- $(3,1) \quad /(1,3)$

Non-Default Spatial Coordinates

- Non-default spatial coordinate systems can be defined by setting image properties
- mxnimage
- XDATA: [x1 x2]
- YDATA: [y1 y2]
- Pixel width: $(x 2-x 1) /(n-1)$
- Pixel height: $(\mathrm{y} 2-\mathrm{y} 1) /(\mathrm{m}-1)$
$x=[19.5$ 23.5];

$\mathrm{y}=$ [8.0 12.0];
image(A,'XData',x,'YData',y), axis image, colormap(jet(25))

RGB Colors

Image Types: Binary Images

- The value of a pixel has only the values 0 or 1

Grayscale Images

- Pixel values define gray levels

Indexed Images

- In indexed images pixel values are indices to colormap entries

Truecolor Images

- In a truecolor image each pixel color is defined by its red-green-blue component, a triple of 3 values.
- The image is given by an $m \times n \times 3$ array.

Image Classes

- Image classes or storage classes. Pixel values can be of the following types:
- logical: 0,1
- uint8: [0..255]
- unit16: [0..65536]
- int16: [-32768..32767]
- single: [0.0 ... 1.0]
- double: [0.0 ... 1.0]
- Binary
- logical
- Indexed
- logical, unit8, uint16:
[0..p-1]
- single, double:[1..p]
- Grayscale
- uint8, unit16, int16, single, double
- Truecolor
- uint8, uint16, single, double

Converting Between Image Classes

- When converting between image classes we need to rescale and/or offset the data
- Instead of type casting use specialized functions which take into account MATLAB's image interpretation
- Im2uint8, im2unit16,
- im2int16, im2single,
- im2double
moon_tiff = imread('moon.tif');
imtool(moon_tiff)
I=single(moon_tiff)
imtool(I)

Converting between Image Types

- Sometimes type conversions are necessary
- How to filter the intensity values of an indexed truecolor Image?
- Convert it to truecolor format, filter it, and convert it back to indexed format
- For publications often image type conversions are necessary
- For creating animated GIFs you need indexed images

Image Type Conversions

- Attention: The image type conversions can modify your image
- Example: Truecolor to grayscale
- Conversion is possible by standard MATLAB commands
- Example: Grayscale image I to truecolor
- RGB = cat($3, \mathrm{l}, \mathrm{I}, \mathrm{I})$;
- Better: conversion by specialized image toolbox functions

Conversion Functions

- dither
- grayscale to binary or truecoloer to indexed
- gray2ind
- grayslice
- grayscale to indexed by multilevel thresholding
- im2bw
- grayscale, indexed, truecolor to binary by luminance threshold
- ind2gray
- ind2rgb
- rgb2gray
- rgb2ind

Dithering

- Increases the apparent number of colors
- Changes the colors of pixels in a neighborhood so that the average color in each neighborhood approximates the original RGB color
- Increase of color resolution decreases spatial resolution
- Dithering is used by printers

Dithering: grayscale to binary

I = imread('cameraman.tif');
BW = dither(I);
imshow(I), figure, imshow(BW), figure imtool(BW)

Dithering: Color reduction

rgb=imread('onion.png'); imshow(rgb);

[X_no_dither,map]= rgb2ind(rgb,8,'nodither'); imshow(X_no_dither,map);

[X_dither,map]=rgb2ind(rgb,8,'dither'); imshow(X_dither,map);

1. Read an rgb image
2. Convert it to indexed with only 8 colors without dithering
3. Convert it to indexed with only 8 colors with dithering

Image Sequences

- Collection of images
- Images related by time:

Imabsatite	$m-b y-n-b y-p$ or $m-6 y-n-6 y-3-b y-p$	Image sequences must be the same size
2mada	m-bya-by-p of mbyn-by-3-by-p	Image sequences must be the same size. Cannot add scalar to image sequence.
Imbothas	m-by-n-by-p only	ax argument must be 2-D.
9m-1098	m-by-n-by-p only	sx argument must be 2-D.
Indilase	m-by-n-by-p only	sx argument must be 2-D.
individe	m-by-n-by-p or $m-$ by $-n$-by-3by-p	Image sequences must be the same size
1narode	mby-n-byp only	SE argument must be 2.0 .

- Frames of movies
- Images related by spatial location:
- MRI (magnetic resonance imaging)
- CT (computed tomography)
- Also called: image stacks, image sequences, image slices
- Image sequences can be stored in multidimensional arrays
- $m \times n \times p$ array for p two dimensional ($m \times n$) grayscale images
$-m \times n \times 3 \times p$ array for p truecolor images
- Many toolbox functions accept multi-dimensional arrays

Example: Filtering of Image Sequence (1)

\% Create an array of filenames that make up the image sequence
fileFolder = fullfile(matlabroot,'toolbox','images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = \{dirOutput.name\}';
numFrames = numel(fileNames);
I = imread(fileNames\{1\});
\% Preallocate the array
sequence $=$ zeros([size(I) numFrames],class(I));
sequence(:,:,1) = I;
\% Create image sequence array
for $p=2$:numFrames
sequence(:,:,p) = imread(fileNames\{p\});
end

Example: Filtering of Image Sequence (2)

\% Process sequence (imSequenceProcessing.m)
sequenceNew = stdfilt(sequence,ones(3));
\% View results
figure;
for $\mathrm{k}=1$:numFrames
imshow(sequence(:.,.,k));
title(sprintf('Original Image \# \%d',k)); pause(1);
imshow(sequenceNew(:.,:,k),[]); title(sprintf('Processed Image \# \%d',k)) pause(1);
end

Multi-Frame Image Arrays

- immovie, montage use multi-frame arrays
- $\mathrm{p} \mathrm{m} \times \mathrm{n}$ frames are stored in the following arrays
$-m \times n \times 1 \times p$: binary, grayscale, indexed
$-m \times n \times 3 \times p$: true color
- Creation of multi-frame arrays with cat
- A=cat(4,A1,A2,A3)
- Squeeze for removing the singleton dimension

Image Arithmetic

- Image Arithmetic is possible
- Addition, subtraction, multiplication, ...
- Attention: overflow is

I = imread('rice.png');
12 = imread('cameraman.tif');
$\mathrm{K}=$ imdivide(imadd(I,I2), 2); \% bad possible

- Values exceeding the range of $\mathrm{K}=$ imlincomb(.5,I,.5,l2); \% good a type are saturated to that range

Contents

- Introduction
- Reading and Writing Image data
- Spatial Transforms
- Image Registration
- Image Filters
- Transforms
- Morphological Operations

Reading and Writing Images

- Images can be stored in many file formats on storage devices
- MATLAB supports many standard graphics and medical file formats
- Getting information (imfinfo)
- Reading files (imread)
- Writing files (imwrite)
- imformats lists image file format supported by imfinfo, imread, imwrite
- bmp, gif, jpg, tif, ...

File Formats

- Common image file formats are
- Microsoft® Windows ${ }^{\circledR}$ Bitmap (BMP)
- Graphics Interchange Format (GIF)
- Joint Photographic Experts Group (JPEG)
- Portable Network Graphics (PNG)
- Tagged Image File Format (TIFF) formats
- The image data can be
- Raw
- Lossless compressed (RLE)
- Lossy compressed

Getting Image Information

- Imfinfo: information according to file format but always
- Name of file
- File format
- Version number
- Modification data
- File size in bytes
- Image width and height
- Number of bits per pixel
- Image type (rgb, grayscale, indexed)
- Image Information Tool imtool('trees.tif')

Reading Images

- Use imread for importing (loading) images
- Many file formats are supported
- Examples:
- RGB = imread('football.jpg');
- [X,map] = imread('trees.tif');
- Image files can also contain multiple images (tif, gif, dcm)
- Imread only reads single images, but it can be specified which one
- Example: imread('mri.tif',frame);

Reading of multi-frame images

- Example of reading 27 images in a TIFF file
\% get number of images in the file
finfo = imfinfo('mri.tif');
[nlmages, m] = size(finfo);
\% preallocate 4-D array
mri = zeros([128 1281 nlmages],'uint8');
\% read the images
for frame=1:nlmages
[mri(:,,:,:,frame),map] = imread('mri.tif',frame);
end

Writing Image Data to a File

- Images can be exported with imwrite
- Format defined by filename extension or an explicite argument
- There exist format-specific parameters
- Write examples
- imwrite(X,map,'clown.bmp')
- imwrite(I,'clown.png','BitDepth',4);
- imwrite(A, 'myfile.jpg', 'Quality', 100);
- imwrite uses internal rules to determine the storage class used in the output image

Converting Between Graphics File Formats

- Conversion with imread and imwrite
- Example of tif - jpg conversion:
- moon_tiff = imread('moon.tif'); imwrite(moon_tiff,'moon.jpg');
- Details on format specific parameters can be found on the reference pages of imread and imwrite

GIF - Graphics Interchange Format

- GIF Files

- Indexed images
- No compression
- Supported bitdepths
- 1 bit: logical
- 2-8 bit: uint8
- Multiframe (animated) GIF files are possible
- Used on web-pages, as icons, buttons, ...
- Format specific syntax of imread
- [...] = imread(..., idx), when animated gif, reads one or more frames
- Idx is integer scalar or vector

GIF - Writing

- imwrite(X, map, filename, Param1, val1, ...)
- When writing multiframe GIF images
$-X$ should be a 4 dimensional $m \times n \times 1 \times p$ array where p is the number of frames to write
- Some GIF specific parameters
- DelayTime: [0..655] frame time
- LoopCount: [0..65535] number of loops in animation

Example: Animated GIF Production

- Use of animated GIF files
- Presentations (delayTime $=3$ to 7 sec)
- Movies (delayTime $=0.04 \mathrm{sec}$)
- Animated icons, banners on web-pages
- ...
- Goal
- Write an M-File that produces an animated GIF file from grayscale or rgb images placed in a given folder

Animated GIF: Input images

```
% input data
movieName = 'testAnimGif';
numberLoops = 3;
imageTime = 0.2;
% Create an array of filenames that make up the image sequence
fileFolder = fullfile(matlabroot,'toolbox','images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
```

fileNames = \{dirOutput.name\}';
numFrames = numel(fileNames);

Animated GIF: Initialization

```
% read first image, display it, and get class and type
information
fname = fullfile(fileFolder, fileNames{1});
I = imread(fname);
h = imshow(I);
iinfo = imattributes(h);
% Preallocate the array
if strcmp('truecolor', iinfo{4, 2})
    nChannels = 3
    [I1, myMap] = rgb2ind(I, 256);
    sequence = zeros([size(I1) 1 numFrames], class(I1));
    sequence(:,:,:,1) = I1;
else
    nChannels = 1
    myMap = colormap('gray');
    sequence = zeros([size(I) }1\mathrm{ numFrames], class(I));
    sequence(:,:,:,1) = I;
end
```


Animated GIF: Creation and Saving

 'DelayTime', imageTime);

Contents

- Introduction
- Reading and Writing Image data
- Spatial Transforms
- Image Registration
- Image Filters
- Transforms
- Morphological Operations

Spatial Transformations

- A spatial transformation is a geometric operation
- It modifies the spatial relationship between pixels in an image, mapping pixel locations in an input image to new locations in an output image
- Supported image transformations:
- Resizing
- Rotating
- Cropping
- General 2D spatial transformations
- N dimensional spatial transformations

Resizing

- Images can be enlarged or reduced with imresize
- J = imresize(l, 1.25);
$-J=$ imresize(l, [100 150]; aspect ratio is adjusted
$-\mathrm{J}=$ imresize(I, [100 NaN]; aspect ratio is preserved
- Interpolation can be used when enlarging images to improve the result
- Antialiasing improves the result when reducing images - artifacts due to loss of information
- Stair-step
- Moiré patterns (ripple effect)

Resizing Artifacts

I = checkerboard(5, 30, 30); imtool(I)

Original image

Rotating

- To rotate an image, use the imrotate function.
- By default, imrotate creates an output image large enough to include the entire original image
- imrotate uses nearest-neighbor interpolation by default to determine the value of pixels in the output image
- This example rotates an image 35° counterclockwise and specifies bilinear interpolation.
- I = imread('circuit.tif'); J = imrotate(I,35,'bilinear'); imshow(I) figure, imshow(J)

Rotating

- To rotate an image, use the imrotate function.
- By default, imrotate creates an output image large enough to include the entire original image
- Interpolation methods are
- Nearest neighbor (default)
- Bilinear
- Bicubic

Rotation examples Stair-step effect

[^0]

Image Cropping

- Extraction of a rectangular portion of an image
- Interactively
- I = imread('circuit.tif');
- J = imcrop(I);

- programmatically by specifying the size and position of the crop region
- J = imcrop(1,[60 40100 90]);

General 2D Spatial Transformations

- A three-step process in MATLAB

1. Define the transformation parameters
2. Create a transformation structure (TFORM, maketform) that defines the type of transformation you want to perform
3. Perform the transform with imtransform

Transformation Matrices (3×3)

- Affine transformations
- Rigid
- Translation
- Rotation
- Scale
- Shear
- Using sets of noncollinear points in input and output images
- 3 points for affine, 4 points for perspective transformations

MATLAB help

Affine Transform	Example	Transformation Matrix	
Translation		$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ t_{x} & t_{y} & 1\end{array}\right]$	t_{x} specifies the displacement along the x axis t_{y} specifies the displacement along the y axis.
Scale		$\left[\begin{array}{lll}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$	s_{x} specifies the scale factor along the x axis s_{y} specifies the scale factor along the y axis.
Shear	$7 /$	$\left[\begin{array}{ccc}1 & s h_{y} & 0 \\ \operatorname{sh}_{\mathrm{x}} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	sh h_{x} specifies the shear factor along the x axis shy specifies the shear factor along the y axis.
Rotation		$\left[\begin{array}{ccc}\cos (q) & \sin (q) & 0 \\ -\sin (q) & \cos (q) & 0 \\ 0 & 0 & 1\end{array}\right]$	q specifies the angle of rotation.

TFORM Structure

- Creation of a TFORM structure to specify the spatial transformation with
- T = maketform(transformationtype, ...transformationData)
- Transformation types are
- Affine
- Projective
- Box
- Custom
- composite

Transformation Types (1)

- Affine
- Translation, rotation, scaling, shearing
- Straight and parallel lines remain, rectangles might become parallelograms
- Projective
- Straight lines remain, parallel lines converge toward vanishing points
- Box
- Each dimension is shifted and scaled independently

Transformation Types (2)

- Custom
- User defined, providing the forward and/or inverse functions
- Composite
- Composition of two or more transformations

Transformation from control points

- With the function

TFORM=cp2tform(in-points, base-points, transfType) spatial transformation can be inferred from control point pairs

- Transformation types
- Nonreflective similarity (2 pairs)
- Similarity (3 pairs)
- Affine (3 pairs)
- Projective (4 pairs)
- Polynomial
- Piecewise linear
- Lwm (local weighted mean)
- ... (see help)

Performing the Spatial Transformation

- Finally, the image is transformed with the imtransform function and the specified TFORM structure
- J = imtransform(Image, tform);

Contents

- Introduction
- Reading and Writing Image data
- Spatial Transforms
- Image Registration
- Image Filters
- Transforms
- Morphological Operations

Image Registration

- Image registration is the process of aligning two or more images of the same scene
- Typically, an input image is brought into alignment with a base or reference image by applying spatial transformations
- Typical image differences are
- Different viewpoints
- Changes in perspective
- Lens or sensor distortion

Image Registration Examples

- Aligning of satellite images taken at different times to see how a river has migrated
- Aligning pictures taken from flying aeroplanes to create large maps
- Medical pre- and postop CT-images
- Aligning and comparing medical images created by different diagnostic modalities (MRI, CT)

Point Mapping

- Tools are provided by image processing toolbox which support point mapping
- Homologous point pairs (landmarks) in the base image and input image are manually selected
- Then, a spatial mapping is inferred from these control points
- This is often an iterative process experimenting with different types of transformations, before a satisfactory result is achieved

Illustration of point mapping process

Create spatial transformation structure (TFORM) cp2tform
§
Perform spatial transformation
imtransform

1. Read the images

orthophoto $=$ imread('westconcordorthophoto.png'); \boxtimes
figure, imshow(orthophoto)
unregistered = imread('westconcordaerial.png'); figure, imshow(unregistered)

Input image
unregistered

2. Select Control Points

cpselect(unregistered, orthophoto)

3．Save Controlpoints to Workspace

4．Specifiy and Compute TFORM

mytform＝cp2tform（input＿points，base＿points，＇affine＇）；

mytform			
國 mytform＜1x1 struct＞			
Field ${ }^{\text {－}}$	Value	Min	Max
Tindims in	2	2	2
\boxplus ndims＿out	2	2	2
（1）forward＿fon	＠fwd＿affine		
（1）inverse＿fon	＠inv＿affine		
目 tdata	＜1x1 struct＞		

mytform．tdata			
－6 mytform．tdata＜ 1×1 struct＞			
Field -	Value	Min	Max
田T	［0．9172，0．1605，0；－0．1471，0．8994，0；68．6134，7．0964，1］	－0．1471	68.6134
\＃Tinv	［1．0599，－0．1892，0；0．1734，1．0809，0；－73．9540，5．3079，1］	－73．9540	5.3079

5. Transform the Input Image

registered = imtransform(unregistered, mytform, 'FillValues', 255);
figure; imshow(registered);
hold on
h = imshow(orthophoto, gray(256));
set(h, 'AlphaData', 0.6)

Contents

- Introduction
- Reading and Writing Image data
- Spatial Transforms
- Image Registration
- Image Filters
- Transforms
- Morphological Operations

Linear Filters in the Spatial Domain

- Image filtering is a technique for modifying or enhancing images such as
- Smoothing
- Sharpening
- Edge enhancements
- Filtering is neighborhood operation
- The value of a given pixel in the output image is a function of the pixels in the neighborhood of the corresponding input pixel
- Linear filtering is an operation in which the value of an output pixel is linear combination of the its neighborhood pixels.

Convolution

- Linear filtering of an image is accomplished through an operation called convolution.
- Convolution is a neighborhood operation in which each output pixel is the weighted sum of neighboring input pixels.
- The matrix of weights is called the convolution kernel, also known as the filter.
- A convolution kernel is a correlation kernel that has been rotated 180 degrees.

Convolution Example

Image with grayscale values

17	24	$1^{乙}$	8^{6}	15
23	5	$7^{\llcorner }$	$14^{〔}$	16
4	6	13^{9}	1	8
10	22			
10	12	19	21	3
11	18	25	2	9

3. Place center of convolution kernel on top of element (i, j)
4. Convolution kernel
5. Compute new value of (i, j) as weighted sum

$$
575=2^{*} 1+9^{*} 8+4^{*} 15+7^{*} 7+
$$

Correlation

- The operation called correlation is closely related to convolution
- In correlation, the value of an output pixel is also computed as a weighted sum of neighboring pixels.
- The difference is that the matrix of weights, in this case called the correlation kernel, is not rotated during the computation.
- The Image Processing Toolbox filter design functions return correlation kernels.

Correlation Example

Image with grayscale values

		8	1	6
17	24	1	8	15
		3	5	7
23	5	7	14	16
		4	9	2
4	6	13	20	22
10	12	19	21	3
10				
11	18	25	2	9

2. Place center of correlation kernel on top of element (i, j)

3. Correlation kernel

4. Compute new value of (i, j) as weighted sum
$585=8^{*} 1+1^{*} 8+6^{*} 15+3^{\star} 7+\ldots$

Example: Averaging Filter

I = imread('coins.png')
h = ones(5,5) / 25;

0.0400	0.0400	0.0400	0.0400	0.0400

| 0.0400 | 0.0400 | 0.0400 | 0.0400 | 0.0400 |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllll}0.0400 & 0.0400 & 0.0400 & 0.0400 & 0.0400\end{array}$ $\begin{array}{lllll}0.0400 & 0.0400 & 0.0400 & 0.0400 & 0.0400 \\ 0.0400 & 0.040 & 0.0400 & 0.0400 & 0.0400\end{array}$ $\begin{array}{lllll}0.0400 & 0.0400 & 0.0400 & 0.0400 & 0.0400\end{array}$

imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image')

Options of imfilter

- imfilter(A,h): filter using correlation
- imfilter(A,h,'conv'): filter using convolution
- What happens if the kernel border falls outside the image?
- Zero padding
- outside image values are supposed to be zero
- Replicated boundary pixels
- outside image values are replicated boundary pixels
- Symmetric
- mirror-reflecting the array across the array border.
- Circular:
- assuming the input array is periodic

Zero Padding / Replicated

I = imread('eight.tif');
h = ones(5,5$) / 25 ;$

I3 = imfilter(I,h,'replicate');

Filtered Image with Border Replication

Multidimensional Filtering

- Imfilter also handles multidimensional images with multidimensional filters
- Example of filtering an rgb image with 2D averaging kernel
- Each color plane is averaged with 2D filter
$\mathrm{h}=$ ones $(5,5) / 25$; rgb2 $=$ imfilter(rgb,h)

Predefined Filters

- $\mathrm{h}=\mathrm{fspecial}($ type $)$ creates a 2D filter h of the specified type
- fspecial returns h as a correlation kernel, which is the appropriate form to use with imfilter
- type is a string having one of these values
- Avarage
- Disk
- Gaussian
- Laplacian
- Log
- Motion
- Prewitt
- Sobel
- unsharp

Contrast Enhancement

Contents

- Introduction
- Displaying and Exploring Images
- Spatial Transforms
- Image Registration
- Image Filters
- Transforms
- Morphological Operations

Transforms

- Normally, an image is mathematically represented as an intensity function $f(x, y)$ of two spatial variables (x, y): spatial domain
- The term transform refers to an alternative mathematical representation of an image
- For example, in the frequency domain, an image is represented by a sum of complex exponentials of varying magnitudes, frequencies and phases
- Transforms can be useful for a wide range of purposes such as
- convolution, enhancement, feature detection, and compression

Examples of Transforms

- Fourier Transform
- Discrete Cosine Transform
- Radon Transform
- The inverse Radon Transform
- Fan-Beam Projection

FT: The Fourier Transform

- The Fourier transform is a representation of an image as a sum of complex exponentials of varying magnitudes, frequencies, and phases
- The Fourier transform plays a critical role in a broad range of image processing applications, including image
- Enhancement
- Analysis
- Restoration
- Compression.

Definition of Fourier Transform

- $f(m, n)$ is a function of two discrete spatial variables m and n
- The 2D Fourier transform of $f(m, n)$ is given by

$$
F\left(\omega_{1}, \omega_{2}\right)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m, n) \cdot e^{-i \omega_{1} m} \cdot e^{-i \omega_{2} n} \quad \omega=\frac{2 \pi}{T}
$$

- ω_{1}, ω_{2} are frequency variables (radians/sample)
- Called the frequency domain representation of $f(m, n)$
- $\ln \omega_{1}, \omega_{2}$ periodic complex valued function with period 2π
- DC (direct current) or constant component

$$
F(0,0)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m, n)
$$

The inverse Fourier Transform

- The inverse two-dimensional Fourier transform is given by
$f(m, n)=\frac{1}{4 \pi^{2}} \int_{\omega_{1}=-\pi}^{\pi} \int_{\omega_{2}=-\pi}^{\pi} F\left(\omega_{1}, \omega_{2}\right) \cdot e^{i \omega(m} \cdot e^{i \omega_{2} n} d \omega_{1} d \omega_{2}$
- $f(m, n)$ can be represented as a
- sum of an infinite number of complex exponentials (sinusoids) with different frequencies ω_{1}, ω_{2}
- The magnitude and phase of the contribution at the frequencies are given by $F\left(\omega_{1}, \omega_{2}\right)$

DFT: Discrete Fourier Transform

- Input and output values are discrete
- Values are nonzero only over a finite region
- There exists an algorithm for computing efficiently the DFT, also called FFT (fast Fourier transform)

$$
\begin{aligned}
& p, m=0,1, \ldots, M-1 \\
& q, n=0,1, \ldots, N-1
\end{aligned}
$$

- DFT

$$
F(p, q)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) \cdot e^{-i\left(\frac{2 \pi}{M}\right)^{\rho m}} \cdot e^{-i\left(\frac{2 \pi}{N}\right)^{g n}}
$$

- Inverse DFT

$$
f(m, n)=\frac{1}{M N} \sum_{p=0}^{M-1} \sum_{q=0}^{N-1} F(p, q) \cdot e^{i\left(\frac{2 \pi}{M}\right)^{\rho m}} \cdot e^{i\left(\frac{2 \pi}{N}\right)_{q n}}
$$

Relationship between FT and DFT

- The DFT coefficients $F(p, q)$ are discrete samples of the Fourier transform $F\left(\omega_{1}, \omega_{2}\right)$

$$
\begin{aligned}
& p=0,1, \ldots, M-1 \\
& q=0,1, \ldots, N-1 \\
& F(p, q)=\left.F\left(\omega_{1}, \omega_{2}\right)\right|_{\substack{\omega_{1}=2 \pi p / M \\
\omega_{2}=2 \pi q / N}}
\end{aligned}
$$

DFT in MATLAB

- MATLAB supports the computation of the DFT by the FFT algorithm in one, two, and Ndimensions
- FFT
- fft, fft2, fftn
- Inverse FFT
- ifft, ifft2, ifftn
- Rearangement / centering of output
- Shift zero-frequency component to center of spectrum
- fftshift, ifftshift

Visualizing the FT

- Ways to visualize the DFT
- Mesh plot of the magnitude $|F(p, q)|$
- 2D image with colormap of $\log (|F(p, q)|)$

Ex: DFT of rectangular region (1)

- Construction of image
$\mathrm{f}=\mathrm{zeros}(30,30)$;
$\mathrm{f}(5: 24,13: 17)=1$;
imshow(f,'InitialMagnification','fit')
- Compute and visualize the 30-by-30 DFT
$\mathrm{F}=\mathrm{fft2}(\mathrm{f})$;
$\mathrm{F} 2=\log (\mathrm{abs}(\mathrm{F}))$;
imshow(F2,[-1 5],'InitialMagnification','fit'); colormap(jet);

Ex: DFT of rectangular region (2)

- Finer sampling by zero padding

F = fft2(f,256,256);
imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar

- Centering of zerofrequency

F2 $=$ fftshift (F); imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

Ex: DFT of rectangular region (3)

- Visualization as mesh plot of magnitude
$[\mathrm{X}, \mathrm{Y}]=$ meshgrid(0:255); mesh(X,Y,abs(F));
- Centered zero-frequency

Fast Convolution

- Key property of the Fourier transform:
- The multiplication of two Fourier transforms corresponds to the convolution of the associated spatial functions
- The FFT-based convolution method is most often used for large inputs. For small inputs it is generally faster to use imfilter

Example of Fast Convolution

- Create 2 matrices and

A = magic(3);
$B=$ ones (3);
$\mathrm{A}(8,8)=0$;
$B(8,8)=0$;

- Fast convolution
- Compute the DFTs of both matrices
- Multiply both DFTs
- compute the inverse 2D DFT of the result
- (Verify with conv2)
$\mathrm{A}=$ magic $(3) ;$
$\mathrm{B}=\operatorname{ones}(3) ;$
conv2(A,B)

Locating Image Features with Correlation (1)

- Correlation by using the Fourier transform
- Correlation is also called template matching
- Problem:
- locate occurrences of the letter "a" in an image containing text

1. Read image
2. Make template of letter "a"
a
bw = imread('text.png');
$a=b w(32: 45,88: 98) ;$

Locating Image Features with Correlation (2)

- Compute the correlation of the template image with the original image by rotating the template image by 180° and then using the FFT-based convolution technique
- Convolution is equivalent to correlation if you rotate the convolution kernel by 180°

```
C = real( ifft2( fft2(bw) .* fft2( rot90(a,2), 256, 256 ) ) );
```


Locating Image Features with Correlation (3)

- Determine the locations of the template
thresh $=\max (\mathrm{C}(:))^{*} 0.88$
$\mathrm{I}=(\mathrm{C}>$ thresh $) ;$
thresh = 59.84

Image dilation
$\mathrm{I} 2=$ imdilate(I, se);
se = strel('disk',3,0)

The Discrete Cosine Transform DCT

- The DCT represents an image as a sum of sinusoids of varying magnitudes and frequencies
- The dct2 function computes the 2D DCT of an image
- The DCT has the property that, for a typical image, most of the visually significant information about the image is concentrated in just a few coefficients of the DCT
- For this reason, the DCT is often used in image compression applications
- For example, the DCT is at the heart of the international standard lossy image compression algorithm known as JPEG.
- The name comes from the working group that developed the standard: the Joint Photographic Experts Group

The 2D DCT of an M-by-N matrix A

$B_{p q}=\alpha_{p} \alpha_{q} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} A_{n n} \cos \left(\frac{\pi(2 m+1) p}{2 M}\right) \cos \left(\frac{\pi(2 n+1) p}{2 N}\right), \begin{aligned} & 0 \leq p \leq M-1 \\ & 0 \leq p \leq N-1\end{aligned}$
$\alpha_{p}=\left\{\begin{array}{c}1 / \sqrt{M}, p=0 \\ \sqrt{2 / M}, 1 \leq p \leq M-1\end{array}, \quad \alpha_{q}=\left\{\begin{array}{c}1 / \sqrt{N}, q=0 \\ \sqrt{2 / N}, 1 \leq q \leq N-1\end{array}\right.\right.$

The $B_{p q}$ are called DCT coefficients of the image A

The inverse 2D DCT

$$
\begin{aligned}
& A_{m n}=\sum_{p=0}^{M-1} \sum_{q=0}^{N-1} B_{p q} \alpha_{p} \alpha_{q} \cos \left(\frac{\pi(2 m+1) p}{2 M}\right) \cos \left(\frac{\pi(2 n+1) p}{2 N}\right), \begin{array}{l}
0 \leq m \leq M-1 \\
0 \leq n \leq N-1
\end{array} \\
& \alpha_{p}=\left\{\begin{array}{c}
1 / \sqrt{M}, p=0 \\
\sqrt{2 / M}, \quad 1 \leq p \leq M-1
\end{array}, \quad \alpha_{q}=\left\{\begin{array}{c}
1 / \sqrt{N}, q=0 \\
\sqrt{2 / N}, 1 \leq q \leq N-1
\end{array}\right.\right.
\end{aligned}
$$

The basis functions of the DCT
$\alpha_{p} \alpha_{q} \cos \left(\frac{\pi(2 m+1) p}{2 M}\right) \cos \left(\frac{\pi(2 n+1) p}{2 N}\right), \begin{aligned} & 0 \leq p \leq M-1 \\ & 0 \leq q \leq N-1\end{aligned}$
The DCT coefficients $\mathrm{B}_{p q}$, then, can be regarded as the weights applied to each basis function

The DCT in MATLAB

- There are two ways to compute the DCT using Image Processing Toolbox functions
- dct2
- An FFT-based algorithm for speedy computation with large inputs
- dctmtx

$$
T_{p q}=\left\{\begin{array}{c}
1 / \sqrt{M}, \quad p=0, \quad 0 \leq q \leq M-1 \\
\sqrt{2 / M} \cos \left(\frac{\pi(2 q+1) p}{2 M}\right), \quad 1 \leq p \leq M-1, \quad 0 \leq q \leq M-1
\end{array}\right.
$$

- returns the square orthonormal DCT transform matrix to be used for transforming efficiently small square images
- The 2D DCT of the matrix A is computed as

$$
-B=T^{*} A * T^{\prime}
$$

- And the inverse 2D DCT of the matrix A as

$$
-A=T^{\prime} * B * T
$$

Image Compression with DCT

- JPEG image compression algorithm uses DCT
- Input image is divided into 8-by-8 or 16-by-16 blocks for which the 2D DCT is computed
- The DCT coefficients are then quantized, coded, and transmitted (saved)
- The JPEG receiver (or JPEG file reader) decodes the quantized DCT coefficients, computes the inverse twodimensional DCT of each block, and then puts the blocks back together into a single image.
- For typical images, many of the DCT coefficients have values close to zero; these coefficients can be discarded without seriously affecting the quality of the reconstructed image.

Example Code for JPEG compression

	mask $=$ [
	11110000
I = imread('cameraman.tif);	11100000
im2double(l);	11000000
= dctmtx(8):	10000000
dct = @(block_struct) T * block_struct.data * T';	00000000
B = blockproc(l,[88],dct);	00000000
	00000000];

B2 = blockproc(B,[8 8],@(block_struct) mask .* block_struct.data); invdct = @(block_struct) T' * block_struct.data * T; I2 = blockproc(B2,[8 8],invdct);

B (zoom)

Image Compression with dct2


```
RGB = imread('autumn.tif');
I = rgb2gray(RGB);

J = dct2(I);
J = dct2(I);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar;
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar;
\(\mathrm{J}(\mathrm{abs}(\mathrm{J})<10)=0.00001\);
\(\mathrm{J}(\mathrm{abs}(\mathrm{J})<10)=0.00001\);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar; \(\quad \Longrightarrow\)
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar; \(\quad \Longrightarrow\)
K = idct2(J);
K = idct2(J);
\(\Longrightarrow\)
\(\Longrightarrow\)
imshow(K, [0 255])
imshow(K, [0 255])

\section*{Contents}
- Introduction
- Reading and Writing Image data
- Spatial Transforms
- Image Registration
- Image Filters
- Transforms
- Morphological Operations

\section*{Morphological Operations}
- In image processing morphological operations are used for
- Contrast enhancement
- Noise removal
- Thinning
- Skeletonization,
- Filling
- Segmentation

\section*{Morphology}
- Morphology is a broad set of image processing operations processing images based on shapes
- Morphological operations apply a structuring element to an input image, creating an output image of the same size
- In a morphological operation, the value of each pixel in the output image is based on a comparison of the corresponding pixel in the input image with its neighbors defined by a structuring element
- By choosing the size and shape of the neighborhood, you can construct a morphological operation that is sensitive to specific shapes in the input image.

\section*{Structuring Element}
- A structuring element is a matrix consisting of only 0's and 1's that can have any arbitrary shape and size


Diamond like structuring Element with origin
- Pixel values of 1 define the neighborhood of a processed pixel
- Structuring Elements can be 1D, 2D or 3D
- The center or the origin of the structuring element identifies the pixel being processed
- The origin is given by:
- origin \(=\) floor \(((\) size \((\) nhood \()+1) / 2)\)

\section*{Examples of Structuring Elements}

SE = strel(shape, parameters)
se1 = strel('square',11);
se2 = strel('line',10,45);
se3 = strel('disk',15,0);
NHOOD = getnhood(se1);..
strel line 1045



\section*{Dilation and Erosion}
- The most basic morphological operations are dilation and erosion.
- Dilation adds pixels to the boundaries of objects in an image
- Erosion removes pixels on object boundaries
- The number of pixels added or removed from the objects in an image depends on the size and shape of the structuring element used to process the image
- The value of given pixel in the output image is determined by applying a rule to the corresponding pixel and its neighbors in the input image.

\section*{Rules of Dilation and Erosion}
- Dilation
- The value of the output pixel is the maximum value of all the pixels in the input pixel's neighborhood
- In a binary image, if any of the pixels is set to the value 1 , the output pixel is set to 1
- Erosion
- The value of the output pixel is the minimum value of all the pixels in the input pixel's neighborhood
- In a binary image, if any of the pixels is set to 0 , the output pixel is set to 0 .

\section*{Dilation Example}

SE =
Flat STREL object containing 9 neighbors Neighborhood:
\(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\)
\(B W=\operatorname{zeros}(9,10) ;\)
BW \((4: 6,4: 7)=1\)


SE = strel('square',3);
BW2 = imdilate(BW,SE)


\section*{Erosion Example}

SE =
Flat STREL object containing 9 neighbors


Neighborhood:
\begin{tabular}{ll}
1 & 1 \\
1 & 1
\end{tabular}
\(\begin{array}{lll}1 & 1\end{array}\)

BW = zeros(9,10);
SE = strel('square',3);
\(\operatorname{BW}(4: 6,4: 7)=1\)


\section*{Morphological Opening}
- Morphological opening of an image is an erosion followed by a dilation, using the same structuring element for both operations
- imopen or equivalent
- imerode and imopen
- Use morphological opening to remove small objects from an image while preserving the shape and size of larger objects in the image

\section*{Example of Morphological Opening}

Problem: Remove small thin lines of BW1 = imread('circbw.tif');
!
The structuring element should be large enough to remove the lines when you erode the image, but not large enough to remove the rectangles. SE = strel('rectangle',[40 30]);


BW2 = imerode(BW1,SE);


BW3 = imopen(BW1,SE);




\section*{Morphological Closing}
- Morphological closing of an image consists of dilation followed by an erosion with the same structuring element
- imclose
- imdilate and imerode
- Fills holes and gaps

\section*{Example of Morphological Closing}

Problem: fill holes and gaps of BW1 = imread('circbw.tif');

The structuring element should be large enough to fill the holes and gaps SE = strel('circle',10);



BW2 = imdilate(BW1,SE);

\(\Longrightarrow B W 3=\) imerode \((B W 2, S E)\);
BW3=imclose(BW1,SE)


\section*{Skeletonization}

Reduces all objects in an image to lines, without changing the essential structure of the image

BW1 = imread('circbw.tif'); BW2 = bwmorph(BW1,'skel',Inf);


\section*{Determination of Perimeter}
bwperim returns a binary image containing only the perimeter pixels of objects in the input image.

A pixel is part of the perimeter if it is nonzero and it is connected to at least one zero-valued pixel.

The default connectivity is 4 for two dimensions, 6 for three dimensions.

BW1 = imread('circbw.tif'); BW2 = bwperim(BW1,8);


BW = imread('circles.png'); BW4=bwperim(BW,8);
```


[^0]: I = checkerboard($20,4,4$);
 J1 = imrotate(I,35,'nearest');
 J1 = imrotate(I,35,'bilinear');
 J1 = imrotate(I,35,'bicubic');

