
Image Processing and Data
Visualization with MATLAB

Hansrudi Noser

June 28-29, 2010

UZH, Multimedia and Robotics Summer
School

Image Processing
(based on MATLAB Help)

Product overview

• The image processing toolbox is a collection of
functions extending MATLAB with special image
processing operations concerning
– Spatial image transformations
– Morphological operations
– Neighborhood and block operations
– Linear filtering and filter design
– Transforms
– Image analysis and enhancement
– Image registration
– Deblurring
– Region of interest operations

Contents

• Introduction
• Reading and Writing Image data
• Spatial Transforms
• Image Registration
• Image Filters
• Transforms
• Morphological Operations

Digital Images in MATLAB

• The basic data structure in MATLAB is the array
which is the container for the most common
discrete (digital) image types such as
– Gray value images

– True color images

– Movies

– …

• Therefore the full power of MATLAB is available
for digital image processing applications

Image coordinate systems: Pixel Coordinates

• In 2D digital images the location of a pixel (picture
element) in the pixel coordinate system is given by a pair
of integer indices ranging from 1 to the length of the row
or column.

• Pixel coordinates: (row, column)
column

row

1

4

3

2

1

2 3 4

I(2,3)

Image I

Image coordinate systems: Spatial Coordinates

• A pixel is a square patch with continuous coordinates

• The center point of a pixel corresponds to the pixel
coordinate system

• Spatial coordinates: (x, y)

• Attention: In spatial coordinate
systems the horizontal and
vertical order is reversed
with respect to the pixel
coordinate system.
– (row, column) / (x, y)

– (3, 1) / (1, 3)

x

y

1

4

3

2

1

2 3 4

(3.6, 1.4)

Image I

0.5
0.5

1.5

2.5

3.5

3.52.51.5

4.5

4.5

(1,3)

Non-Default Spatial Coordinates

• Non-default spatial coordinate systems can be defined
by setting image properties

– m x n image

– XDATA: [x1 x2]

– YDATA: [y1 y2]

• Pixel width: (x2 – x1) / (n -1)

• Pixel height: (y2 – y1) / (m – 1)

A = magic(5);
x = [19.5 23.5];
y = [8.0 12.0];
image(A,'XData',x,'YData',y), axis image, colormap(jet(25))

x n

y
m

RGB Colors

blue

red

green

red

white
black

magenta

yellow

cyan

magenta

blue

yellow

Image Types: Binary Images

• The value of a pixel has only the values 0 or 1

Grayscale Images

• Pixel values define gray levels

Indexed Images

• In indexed images pixel values are indices to
colormap entries

RGB = imread('peppers.png');
[X,map] = rgb2ind(RGB,128);
figure, imshow(X,map)

colormap(map);
colorbar;

Truecolor Images

• In a truecolor image each pixel color is defined by its red-green-blue
component, a triple of 3 values.

• The image is given by an m x n x 3 array.

Image Classes

• Image classes or storage
classes. Pixel values can be
of the following types:

– logical: 0,1

– uint8: [0..255]

– unit16: [0..65536]

– int16: [-32768..32767]

– single: [0.0 … 1.0]

– double: [0.0 … 1.0]

• Binary

• logical

• Indexed

• logical, unit8, uint16:
[0..p-1]

• single, double:[1..p]

• Grayscale

• uint8, unit16, int16,
single, double

• Truecolor

• uint8, uint16, single,
double

Converting Between Image
Classes
• When converting between image classes we need to

rescale and/or offset the data

• Instead of type casting use specialized functions which
take into account MATLAB’s image interpretation

– Im2uint8, im2unit16,

– im2int16, im2single,

– im2double

moon_tiff = imread('moon.tif');
imtool(moon_tiff)
I=single(moon_tiff)
imtool(I)

Converting between Image Types

• Sometimes type conversions are necessary
– How to filter the intensity values of an indexed

truecolor Image?
• Convert it to truecolor format, filter it, and convert it back to

indexed format

– For publications often image type conversions are
necessary

– For creating animated GIFs you need indexed images

Image Type Conversions

• Attention: The image type conversions can
modify your image
– Example: Truecolor to grayscale

• Conversion is possible by standard MATLAB
commands
– Example: Grayscale image I to truecolor

• RGB = cat(3,I,I,I);

• Better: conversion by specialized image toolbox
functions

Conversion Functions

• dither
– grayscale to binary or truecoloer to indexed

• gray2ind

• grayslice
– grayscale to indexed by multilevel thresholding

• im2bw

– grayscale, indexed, truecolor to binary by luminance threshold

• ind2gray

• ind2rgb

• rgb2gray

• rgb2ind

Dithering

• Increases the apparent number of colors

• Changes the colors of pixels in a neighborhood
so that the average color in each neighborhood
approximates the original RGB color

• Increase of color resolution decreases spatial
resolution

• Dithering is used by printers

Dithering: grayscale to binary

I = imread('cameraman.tif');
BW = dither(I);
imshow(I), figure, imshow(BW), figure imtool(BW)

Dithering: Color reduction

rgb=imread('onion.png');
imshow(rgb);

[X_no_dither,map]= rgb2ind(rgb,8,'nodither');
imshow(X_no_dither,map);

[X_dither,map]=rgb2ind(rgb,8,'dither');
imshow(X_dither,map);

1. Read an rgb image

2. Convert it to indexed
with only 8 colors
without dithering

3. Convert it to indexed
with only 8 colors
with dithering

Image Sequences

• Collection of images
– Images related by time:

• Frames of movies

– Images related by spatial location:

• MRI (magnetic resonance imaging)

• CT (computed tomography)

• Also called: image stacks, image sequences, image slices

• Image sequences can be stored in multidimensional
arrays
– m x n x p array for p two dimensional (m x n) grayscale images

– m x n x 3 x p array for p truecolor images

• Many toolbox functions accept multi-dimensional arrays

…

Example: Filtering of Image Sequence (1)

% Create an array of filenames that make up the image
sequence

fileFolder = fullfile(matlabroot,'toolbox','images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));
fileNames = {dirOutput.name}';
numFrames = numel(fileNames);
I = imread(fileNames{1});

% Preallocate the array

sequence = zeros([size(I) numFrames],class(I));
sequence(:,:,1) = I;

% Create image sequence array

for p = 2:numFrames
sequence(:,:,p) = imread(fileNames{p});

end

Example: Filtering of Image Sequence (2)

% Process sequence (imSequenceProcessing.m)

sequenceNew = stdfilt(sequence,ones(3));

% View results

figure;
for k = 1:numFrames

imshow(sequence(:,:,k));
title(sprintf('Original Image # %d',k));
pause(1);
imshow(sequenceNew(:,:,k),[]);
title(sprintf('Processed Image # %d',k));
pause(1);

end

Multi-Frame Image Arrays

• immovie, montage use multi-frame arrays

• p m x n frames are stored in the following arrays
– m x n x 1 x p : binary, grayscale, indexed

– m x n x 3 x p : true color

• Creation of multi-frame arrays with cat
– A=cat(4,A1,A2,A3)

– Squeeze for removing the singleton dimension

Image Arithmetic

• Image Arithmetic is possible
– Addition, subtraction,

multiplication, …

• Attention: overflow is
possible
– Values exceeding the range of

a type are saturated to that
range

I = imread('rice.png');
I2 = imread('cameraman.tif');
K = imdivide(imadd(I,I2), 2); % bad

K = imlincomb(.5,I,.5,I2); % good

Contents

• Introduction
• Reading and Writing Image data
• Spatial Transforms
• Image Registration
• Image Filters
• Transforms
• Morphological Operations

Reading and Writing Images

• Images can be stored in many file formats on
storage devices

• MATLAB supports many standard graphics and
medical file formats
– Getting information (imfinfo)

– Reading files (imread)

– Writing files (imwrite)

• imformats lists image file format supported by
imfinfo, imread, imwrite
– bmp, gif, jpg, tif, …

File Formats

• Common image file formats are
– Microsoft® Windows® Bitmap (BMP)

– Graphics Interchange Format (GIF)

– Joint Photographic Experts Group (JPEG)

– Portable Network Graphics (PNG)

– Tagged Image File Format (TIFF) formats

• The image data can be
– Raw

– Lossless compressed (RLE)

– Lossy compressed

Getting Image Information

• Imfinfo: information
according to file format
but always

– Name of file

– File format

– Version number

– Modification data

– File size in bytes

– Image width and height

– Number of bits per pixel

– Image type (rgb, grayscale,
indexed)

• Image Information Tool
imtool(‘trees.tif’)

Reading Images

• Use imread for importing (loading) images
– Many file formats are supported

– Examples:
• RGB = imread('football.jpg');

• [X,map] = imread('trees.tif');

• Image files can also contain multiple images (tif,
gif, dcm)
– Imread only reads single images, but it can be

specified which one
• Example: imread('mri.tif',frame);

Reading of multi-frame images

• Example of reading 27 images in a TIFF file

% get number of images in the file
finfo = imfinfo('mri.tif');
[nImages, m] = size(finfo);

% preallocate 4-D array
mri = zeros([128 128 1 nImages],'uint8');

% read the images
for frame=1:nImages

[mri(:,:,:,frame),map] = imread('mri.tif',frame);
end

Writing Image Data to a File

• Images can be exported with imwrite
– Format defined by filename extension or an explicite

argument

– There exist format-specific parameters

• Write examples
– imwrite(X,map,'clown.bmp')

– imwrite(I,'clown.png','BitDepth',4);

– imwrite(A, 'myfile.jpg', 'Quality', 100);

• imwrite uses internal rules to determine the
storage class used in the output image

Converting Between Graphics File
Formats
• Conversion with imread and imwrite

• Example of tif – jpg conversion:
– moon_tiff = imread('moon.tif');

imwrite(moon_tiff,'moon.jpg');

• Details on format specific parameters can be
found on the reference pages of imread and
imwrite

GIF - Graphics Interchange Format

• GIF Files
– Indexed images

– No compression

– Supported bitdepths
• 1 bit: logical

• 2-8 bit: uint8

– Multiframe (animated) GIF files are possible

– Used on web-pages, as icons, buttons, …

• Format specific syntax of imread
– [...] = imread(..., idx), when animated gif, reads one or

more frames
• Idx is integer scalar or vector

GIF - Writing

• imwrite(X, map, filename, Param1, val1, …)

• When writing multiframe GIF images
– X should be a 4 dimensional m x n x 1 x p array

where p is the number of frames to write

• Some GIF specific parameters
– DelayTime: [0..655] frame time

– LoopCount: [0..65535] number of loops in animation

Example: Animated GIF Production

• Use of animated GIF files
– Presentations (delayTime = 3 to 7 sec)

– Movies (delayTime = 0.04 sec)

– Animated icons, banners on web-pages

– …

• Goal
– Write an M-File that produces an animated GIF file

from grayscale or rgb images placed in a given folder

Animated GIF: Input images

% input data
movieName = 'testAnimGif';
numberLoops = 3;
imageTime = 0.2;

% Create an array of filenames that make up the image sequence
fileFolder = fullfile(matlabroot,'toolbox','images','imdemos');
dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));

fileNames = {dirOutput.name}';
numFrames = numel(fileNames);

Animated GIF: Initialization
% read first image, display it, and get class and type
information
fname = fullfile(fileFolder, fileNames{1});
I = imread(fname);
h = imshow(I);
iinfo = imattributes(h);

% Preallocate the array
if strcmp('truecolor', iinfo{4, 2})

nChannels = 3
[I1, myMap] = rgb2ind(I, 256);
sequence = zeros([size(I1) 1 numFrames], class(I1));
sequence(:,:,:,1) = I1;

else
nChannels = 1
myMap = colormap('gray');
sequence = zeros([size(I) 1 numFrames], class(I));
sequence(:,:,:,1) = I;

end

Animated GIF: Creation and Saving
% Create image sequence array
for p = 2:numFrames

if strcmp('truecolor', iinfo{4, 2})
fname = fullfile(fileFolder, fileNames{p});
I = imread(fname);
[I1] = rgb2ind(I, myMap);
sequence(:,:,:,p) = I1;

else
fname = fullfile(fileFolder, fileNames{p});
sequence(:,:,:,p) = imread(fname);

end
end

% Save animated GIF
imwrite(sequence, myMap, movieName,…

'gif',…
'LoopCount', numberLoops,…
'DelayTime', imageTime);

Contents

• Introduction
• Reading and Writing Image data
• Spatial Transforms
• Image Registration
• Image Filters
• Transforms
• Morphological Operations

Spatial Transformations

• A spatial transformation is a geometric operation

• It modifies the spatial relationship between
pixels in an image, mapping pixel locations in an
input image to new locations in an output image

• Supported image transformations:
– Resizing

– Rotating

– Cropping

– General 2D spatial transformations

– N dimensional spatial transformations

Resizing

• Images can be enlarged or reduced with
imresize
– J = imresize(I, 1.25);

– J = imresize(I, [100 150]; aspect ratio is adjusted

– J = imresize(I, [100 NaN]; aspect ratio is preserved

• Interpolation can be used when enlarging
images to improve the result

• Antialiasing improves the result when reducing
images – artifacts due to loss of information
– Stair-step

– Moiré patterns (ripple effect)

Resizing Artifacts

I = checkerboard(5, 30, 30);
imtool(I)

Original image

J3=imresize(I, 0.43,'Nearest', 'Antialiasing', 0);

J2=imresize(I, 0.43,'Antialiasing', 1);

Ripple
Effect

Rotating

• To rotate an image, use the imrotate function.

• By default, imrotate creates an output image
large enough to include the entire original image

• imrotate uses nearest-neighbor interpolation by
default to determine the value of pixels in the
output image

• This example rotates an image 35°
counterclockwise and specifies bilinear
interpolation.

• I = imread('circuit.tif'); J = imrotate(I,35,'bilinear');
imshow(I) figure, imshow(J)

Rotating

• To rotate an image, use the imrotate function.

• By default, imrotate creates an output image
large enough to include the entire original image

• Interpolation methods are
– Nearest neighbor (default)

– Bilinear

– Bicubic

Rotation examples
Stair-step effect

Nearest neighbor bilinear bicubic

I = checkerboard(20,4,4);
J1 = imrotate(I,35,'nearest');
J1 = imrotate(I,35,'bilinear');
J1 = imrotate(I,35,'bicubic');

I = checkerboard(20,4,4);
J1 = imrotate(I,35,'nearest');
J1 = imrotate(I,35,'bilinear');
J1 = imrotate(I,35,'bicubic');

Image Cropping

• Extraction of a rectangular
portion of an image
– Interactively

• I = imread('circuit.tif');

• J = imcrop(I);

– programmatically by
specifying the size and
position of the crop region

• J = imcrop(I,[60 40 100 90]);

General 2D Spatial Transformations

• A three-step process in MATLAB
1. Define the transformation parameters

2. Create a transformation structure (TFORM,
maketform) that defines the type of transformation
you want to perform

3. Perform the transform with imtransform

Transformation
Matrices (3x3)
• Affine transformations

– Rigid

• Translation

• Rotation

– Scale

– Shear

• Using sets of non-
collinear points in input
and output images
– 3 points for affine, 4 points for

perspective transformations

MATLAB help

TFORM Structure

• Creation of a TFORM structure to specify the
spatial transformation with
– T = maketform(transformationtype,

…transformationData)

– Transformation types are
• Affine

• Projective

• Box

• Custom

• composite

Transformation Types (1)

• Affine
– Translation, rotation, scaling, shearing

– Straight and parallel lines remain, rectangles might
become parallelograms

• Projective
– Straight lines remain, parallel lines converge toward

vanishing points

• Box
– Each dimension is shifted and scaled independently

Transformation Types (2)

• Custom
– User defined, providing the forward and/or inverse

functions

• Composite
– Composition of two or more transformations

Transformation from control points

• With the function
TFORM=cp2tform(in-points, base-points, transfType)
spatial transformation can be inferred from control point
pairs

• Transformation types
– Nonreflective similarity (2 pairs)

– Similarity (3 pairs)

– Affine (3 pairs)

– Projective (4 pairs)

– Polynomial

– Piecewise linear

– Lwm (local weighted mean)

– … (see help)

Performing the Spatial
Transformation
• Finally, the image is transformed with the

imtransform function and the specified TFORM
structure

• J = imtransform(Image, tform);

Contents

• Introduction
• Reading and Writing Image data
• Spatial Transforms
• Image Registration
• Image Filters
• Transforms
• Morphological Operations

Image Registration

• Image registration is the process of aligning two
or more images of the same scene

• Typically, an input image is brought into
alignment with a base or reference image by
applying spatial transformations

• Typical image differences are
– Different viewpoints

– Changes in perspective

– Lens or sensor distortion

Image Registration Examples

• Aligning of satellite images taken at different
times to see how a river has migrated

• Aligning pictures taken from flying aeroplanes to
create large maps

• Medical pre- and postop CT-images

• Aligning and comparing medical images created
by different diagnostic modalities (MRI, CT)

Point Mapping

• Tools are provided by image processing toolbox
which support point mapping

• Homologous point pairs (landmarks) in the base
image and input image are manually selected

• Then, a spatial mapping is inferred from these
control points

• This is often an iterative process experimenting
with different types of transformations, before a
satisfactory result is achieved

Illustration of point mapping process

Input image Base image

Control point selection
cpselect
Control point selection
cpselect

Fine tuning
cpcorr (optional)
Fine tuning
cpcorr (optional)

Create spatial transformation structure (TFORM)
cp2tform
Create spatial transformation structure (TFORM)
cp2tform

Perform spatial transformation
imtransform
Perform spatial transformation
imtransform

1. Read the images

orthophoto = imread('westconcordorthophoto.png');
figure, imshow(orthophoto)
unregistered = imread('westconcordaerial.png');
figure, imshow(unregistered)

C:\Users\noser\Documents\fromDemolaptop\A\unizh\VORLESUNGEN\summerSchool2010\baseImage.png

Base image
orthophoto

Input image
unregistered

2. Select Control Points
cpselect(unregistered, orthophoto)

3. Save Controlpoints to Workspace

input_points =

120.0000 93.0000
287.0000 101.0000
127.0000 293.0000

base_points =

165.0000 110.0000
317.0000 144.0000
142.0000 291.0000

cpstruct =

inputPoints: [3x2 double]
basePoints: [3x2 double]

inputBasePairs: [3x2 double]
ids: [3x1 double]

inputIdPairs: [3x2 double]
baseIdPairs: [3x2 double]

isInputPredicted: [3x1 double]
isBasePredicted: [3x1 double]

4. Specifiy and Compute TFORM

mytform = cp2tform(input_points, base_points, 'affine');

5. Transform the Input Image

registered = imtransform(unregistered, mytform, 'FillValues', 255);

figure; imshow(registered);

hold on

h = imshow(orthophoto, gray(256));

set(h, 'AlphaData', 0.6)

Contents

• Introduction
• Reading and Writing Image data
• Spatial Transforms
• Image Registration
• Image Filters
• Transforms
• Morphological Operations

Linear Filters in the Spatial Domain

• Image filtering is a technique for modifying or
enhancing images such as
– Smoothing

– Sharpening

– Edge enhancements

• Filtering is neighborhood operation
– The value of a given pixel in the output image is a

function of the pixels in the neighborhood of the
corresponding input pixel

• Linear filtering is an operation in which the value
of an output pixel is linear combination of the its
neighborhood pixels.

Convolution

• Linear filtering of an image is accomplished
through an operation called convolution.

• Convolution is a neighborhood operation in
which each output pixel is the weighted sum of
neighboring input pixels.

• The matrix of weights is called the convolution
kernel, also known as the filter.

• A convolution kernel is a correlation kernel that
has been rotated 180 degrees.

Convolution Example

4. Compute new value of (i, j) as weighted sum

575 = 2*1 + 9*8 + 4*15 + 7*7 + …

8 1 6

4 9 2

3 5 7

1. Convolution kernel

8 1 6

4 9 2

3 5 7

180 ̊

2. Rotation by 180̊

8 1 6

4 9 2

3 5 7

3. Place center of
convolution kernel
on top of element (i, j)

Image with grayscale values

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

Correlation

• The operation called correlation is closely
related to convolution

• In correlation, the value of an output pixel is also
computed as a weighted sum of neighboring
pixels.

• The difference is that the matrix of weights, in
this case called the correlation kernel, is not
rotated during the computation.

• The Image Processing Toolbox filter design
functions return correlation kernels.

Correlation Example

3. Compute new value of (i, j) as weighted sum

585 = 8*1 + 1*8 + 6*15 + 3*7 + …

8 1 6

4 9 2

3 5 7

1. Correlation kernel

Image with grayscale values

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

2. Place center of
correlation kernel
on top of element (i, j)

8 1 6

4 9 2

3 5 7

Example: Averaging Filter
I = imread('coins.png');
h = ones(5,5) / 25;

I2 = imfilter(I, h);

imshow(I), title('Original Image');
figure, imshow(I2), title('Filtered Image')

h =

0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400
0.0400 0.0400 0.0400 0.0400 0.0400

Options of imfilter

• imfilter(A,h): filter using correlation

• imfilter(A,h,'conv'): filter using convolution

• What happens if the kernel border falls outside
the image?
– Zero padding

• outside image values are supposed to be zero

– Replicated boundary pixels
• outside image values are replicated boundary pixels

– Symmetric
• mirror-reflecting the array across the array border.

– Circular:
• assuming the input array is periodic

Zero Padding / Replicated

I = imread('eight.tif');
h = ones(5,5) / 25;

I2 = imfilter(I,h); I3 = imfilter(I,h,'replicate');

8 1 6

4 9 2

3 5 7

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

0

0

0

8 1 6

4 9 2

3 5 7

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

16

22

3

Multidimensional Filtering
• Imfilter also handles multidimensional

images with multidimensional filters

• Example of filtering an rgb image with
2D averaging kernel

– Each color plane is averaged with
2D filter

h = ones(5,5)/25;
rgb2 = imfilter(rgb,h);

3D Filtering of
MRI Image Stack

load mristack

h=ones(3,3,3) / 27;

averageStack=imfilter(mristack,h);

Predefined Filters

• h = fspecial(type)
creates a 2D filter h of
the specified type

• fspecial returns h as a
correlation kernel,
which is the
appropriate form to
use with imfilter

• type is a string having
one of these values
– Avarage

– Disk

– Gaussian

– Laplacian

– Log

– Motion

– Prewitt

– Sobel

– unsharp

Contrast Enhancement

I = imread('moon.tif');

h = fspecial('unsharp');

I2 = imfilter(I,h);

h =
-0.1667 -0.6667 -0.1667
-0.6667 4.3333 -0.6667
-0.1667 -0.6667 -0.1667

Contents

• Introduction
• Displaying and Exploring Images
• Spatial Transforms
• Image Registration
• Image Filters
• Transforms
• Morphological Operations

Transforms

• Normally, an image is mathematically represented as an
intensity function f(x,y) of two spatial variables (x,y):
spatial domain

• The term transform refers to an alternative mathematical
representation of an image

• For example, in the frequency domain, an image is
represented by a sum of complex exponentials of
varying magnitudes, frequencies and phases

• Transforms can be useful for a wide range of purposes
such as
– convolution, enhancement, feature detection, and compression

Examples of Transforms

• Fourier Transform

• Discrete Cosine Transform

• Radon Transform

• The inverse Radon Transform

• Fan-Beam Projection

FT: The Fourier Transform

• The Fourier transform is a representation of an
image as a sum of complex exponentials of
varying magnitudes, frequencies, and phases

• The Fourier transform plays a critical role in a
broad range of image processing applications,
including image
– Enhancement

– Analysis

– Restoration

– Compression.

Definition of Fourier Transform

• f(m,n) is a function of two discrete spatial variables m
and n

• The 2D Fourier transform of f(m, n) is given by

• are frequency variables (radians/sample)

• Called the frequency domain representation of f(m,n)

• In periodic complex valued function with period 2π

• DC (direct current) or constant component

() () 1 2
1 2, , i m i n

m n

F f m n e eω ωω ω
∞ ∞

− −

=−∞ =−∞

= ⋅ ⋅

1 2,ω ω

2

T

πω =

1 2,ω ω

() ()0,0 ,
m n

F f m n
∞ ∞

=−∞ =−∞

=

The inverse Fourier Transform

• The inverse two-dimensional Fourier transform
is given by

• f(m,n) can be represented as a
– sum of an infinite number of complex exponentials

(sinusoids) with different frequencies

– The magnitude and phase of the contribution at the
frequencies are given by

() () 1 2

1 2

1 2 1 22

1
, ,

4
i m i nf m n F e e d d

π π
ω ω

ω π ω π

ω ω ω ω
π =− =−

= ⋅ ⋅

1 2,ω ω

()1 2,F ω ω

DFT: Discrete Fourier Transform

• Input and output values are discrete

• Values are nonzero only over a finite region

• There exists an algorithm for computing
efficiently the DFT, also called FFT (fast Fourier
transform)

• DFT

• Inverse DFT

() ()

() ()

2 21 1

0 0

2 21 1

0 0

, 0,1,..., 1

, 0,1,..., 1

, ,

1
, ,

M N i pm i qn
M N

m n

M N i pm i qn
M N

p q

p m M

q n N

F p q f m n e e

f m n F p q e e
MN

π π

π π

 − − − −

= =

 − −

= =

= −
= −

= ⋅ ⋅

= ⋅ ⋅

Relationship between FT and DFT

• The DFT coefficients F(p,q) are discrete
samples of the Fourier transform

() ()
1

2

1 2 2 /
2 /

0,1,..., 1

0,1,..., 1

, , p M
q N

p M

q N

F p q F ω π
ω π

ω ω =
=

= −
= −

=

()1 2,F ω ω

DFT in MATLAB

• MATLAB supports the computation of the DFT
by the FFT algorithm in one, two, and N-
dimensions

• FFT
– fft, fft2, fftn

• Inverse FFT
– ifft, ifft2, ifftn

• Rearangement / centering of output
– Shift zero-frequency component to center of spectrum

– fftshift, ifftshift

Visualizing the FT

• Ways to visualize the DFT
– Mesh plot of the magnitude

– 2D image with colormap of

(),F p q

()()log ,F p q

Ex: DFT of rectangular
region (1)

• Construction of image

• Compute and
visualize the 30-by-30
DFT

f = zeros(30,30);
f(5:24,13:17) = 1;
imshow(f,'InitialMagnification','fit')

F = fft2(f);
F2 = log(abs(F));
imshow(F2,[-1 5],'InitialMagnification','fit');
colormap(jet);

Ex: DFT of rectangular
region (2)

• Finer sampling by
zero padding

• Centering of zero-
frequency

F = fft2(f,256,256);
imshow(log(abs(F)),[-1 5]);
colormap(jet);
colorbar

F2 = fftshift(F);
imshow(log(abs(F2)),[-1 5]);
colormap(jet);
colorbar

Ex: DFT of rectangular
region (3)

• Visualization as mesh plot
of magnitude

• Centered zero-frequency

[X,Y] = meshgrid(0:255);
mesh(X,Y,abs(F));

mesh(X,Y,abs(F2));

Fast Convolution

• Key property of the Fourier transform:
– The multiplication of two Fourier transforms

corresponds to the convolution of the associated
spatial functions

• The FFT-based convolution method is most
often used for large inputs. For small inputs it is
generally faster to use imfilter

Example of Fast Convolution

• Create 2 matrices and
zero pad them

• Fast convolution
– Compute the DFTs of

both matrices

– Multiply both DFTs

– compute the inverse 2D
DFT of the result

• (Verify with conv2)

A = magic(3);
B = ones(3);
A(8,8) = 0;
B(8,8) = 0;

C = ifft2(fft2(A) .* fft2(B));C = ifft2(fft2(A) .* fft2(B));

C = C(1:5,1:5);
C = real(C)

C =
8.0000 9.0000 15.0000 7.0000 6.0000

11.0000 17.0000 30.0000 19.0000 13.0000
15.0000 30.0000 45.0000 30.0000 15.0000
7.0000 21.0000 30.0000 23.0000 9.0000
4.0000 13.0000 15.0000 11.0000 2.0000

C =
8.0000 9.0000 15.0000 7.0000 6.0000

11.0000 17.0000 30.0000 19.0000 13.0000
15.0000 30.0000 45.0000 30.0000 15.0000
7.0000 21.0000 30.0000 23.0000 9.0000
4.0000 13.0000 15.0000 11.0000 2.0000

A = magic(3);
B = ones(3);
conv2(A,B)

ans =
8 9 15 7 6
11 17 30 19 13
15 30 45 30 15
7 21 30 23 9
4 13 15 11 2

ans =
8 9 15 7 6
11 17 30 19 13
15 30 45 30 15
7 21 30 23 9
4 13 15 11 2

Locating Image Features with Correlation (1)

• Correlation by using the Fourier transform

• Correlation is also called template matching

• Problem:
– locate occurrences of the letter "a" in an image

containing text

bw = imread('text.png'); a = bw(32:45,88:98);

1. Read image
2. Make template of letter “a”

Locating Image Features with Correlation (2)

• Compute the correlation of the template image
with the original image by rotating the template
image by 180o and then using the FFT-based
convolution technique
– Convolution is equivalent to correlation if you rotate

the convolution kernel by 180o

C = real(ifft2(fft2(bw) .* fft2(rot90(a,2), 256, 256)));

Locating Image Features with Correlation (3)

• Determine the locations of the template

thresh = max(C(:))*0.88

I = (C > thresh);

thresh =
59.84

se = strel('disk',3,0)

I2 = imdilate(I, se);

Image dilation

The Discrete Cosine Transform DCT

• The DCT represents an image as a sum of sinusoids of
varying magnitudes and frequencies

• The dct2 function computes the 2D DCT of an image

• The DCT has the property that, for a typical image, most
of the visually significant information about the image is
concentrated in just a few coefficients of the DCT

• For this reason, the DCT is often used in image
compression applications

• For example, the DCT is at the heart of the international
standard lossy image compression algorithm known as
JPEG.
– The name comes from the working group that developed the

standard: the Joint Photographic Experts Group

The 2D DCT of an M-by-N matrix A

() ()1 1

0 0

0 12 1 2 1
cos cos ,

0 12 2

1 , 0 1 , 0
,

2 , 1 1 2 , 1 1

M N

pq p q mn
m n

p q

p Mm p n p
B A

p NM N

M p N q

M p M N q N

π π
α α

α α

− −

= =

≤ ≤ −+ +
= ≤ ≤ −

 = = = =
≤ ≤ − ≤ ≤ −

The are called DCT coefficients of the image ApqB

The inverse 2D DCT

() ()

() ()

1 1

0 0

0 12 1 2 1
cos cos ,

0 12 2

1 , 0 1 , 0
,

2 , 1 1 2 , 1 1

The basis functions of the DCT

2 1 2 1
cos cos

2 2

M N

mn pq p q
p q

p q

p q

m Mm p n p
A B

n NM N

M p N q

M p M N q N

m p n p

M

π π
α α

α α

π π
α α

− −

= =

≤ ≤ −+ +
= ≤ ≤ −
 = = = =

≤ ≤ − ≤ ≤ −

+ +

0 1
,

0 1

p M

q NN

≤ ≤ −
 ≤ ≤ −

The DCT coefficients B , then, can be regarded

as the applied to each basis function

pq

weights

The DCT in MATLAB
• There are two ways to compute the DCT using Image

Processing Toolbox functions

• dct2
– An FFT-based algorithm for speedy computation with large

inputs

• dctmtx

– returns the square orthonormal DCT transform matrix to be used
for transforming efficiently small square images

• The 2D DCT of the matrix A is computed as

– B = T * A * T’

• And the inverse 2D DCT of the matrix A as

– A = T’ * B * T

()
1 , 0, 0 1

 2 1
2 cos , 1 1, 0 1

2
pq

M p q M

T q p
M p M q M

M

π

 = ≤ ≤ −
= +

≤ ≤ − ≤ ≤ −

Image Compression with DCT

• JPEG image compression algorithm uses DCT

• Input image is divided into 8-by-8 or 16-by-16 blocks for
which the 2D DCT is computed

• The DCT coefficients are then quantized, coded, and
transmitted (saved)

• The JPEG receiver (or JPEG file reader) decodes the
quantized DCT coefficients, computes the inverse two-
dimensional DCT of each block, and then puts the blocks
back together into a single image.

• For typical images, many of the DCT coefficients have
values close to zero; these coefficients can be discarded
without seriously affecting the quality of the reconstructed
image.

Example Code for JPEG compression

I = imread('cameraman.tif');
I = im2double(I);

T = dctmtx(8);
dct = @(block_struct) T * block_struct.data * T';
B = blockproc(I,[8 8],dct);

B2 = blockproc(B,[8 8],@(block_struct) mask .* block_struct.data);
invdct = @(block_struct) T' * block_struct.data * T;
I2 = blockproc(B2,[8 8],invdct);

mask = [
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0];

I B B (zoom) I2

Image Compression with dct2

RGB = imread('autumn.tif');
I = rgb2gray(RGB);

J = dct2(I);
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar;

J(abs(J) < 10) = 0.00001;
imshow(log(abs(J)),[]), colormap(jet(64)), colorbar;

K = idct2(J);
imshow(K, [0 255])

Contents

• Introduction
• Reading and Writing Image data
• Spatial Transforms
• Image Registration
• Image Filters
• Transforms
• Morphological Operations

Morphological Operations

• In image processing morphological operations
are used for
– Contrast enhancement

– Noise removal

– Thinning

– Skeletonization,

– Filling

– Segmentation

Morphology

• Morphology is a broad set of image processing
operations processing images based on shapes

• Morphological operations apply a structuring element to
an input image, creating an output image of the same
size

• In a morphological operation, the value of each pixel in
the output image is based on a comparison of the
corresponding pixel in the input image with its neighbors
defined by a structuring element
– By choosing the size and shape of the neighborhood, you can

construct a morphological operation that is sensitive to specific
shapes in the input image.

Structuring Element

• A structuring element is a matrix
consisting of only 0's and 1's
that can have
any arbitrary shape and size

• Pixel values of 1 define the neighborhood of a processed
pixel

• Structuring Elements can be 1D, 2D or 3D

• The center or the origin of the structuring element
identifies the pixel being processed

• The origin is given by:

– origin = floor((size(nhood)+1)/2)

Diamond like structuring
Element with origin

Examples of Structuring Elements
SE = strel(shape, parameters)

se1 = strel('square',11);
se2 = strel('line',10,45);
se3 = strel('disk',15,0);

NHOOD = getnhood(se1); …

Dilation and Erosion

• The most basic morphological operations are dilation
and erosion.

• Dilation adds pixels to the boundaries of objects in an
image

• Erosion removes pixels on object boundaries

• The number of pixels added or removed from the
objects in an image depends on the size and shape of
the structuring element used to process the image

• The value of given pixel in the output image is
determined by applying a rule to the corresponding pixel
and its neighbors in the input image.

Rules of Dilation and Erosion

• Dilation
– The value of the output pixel is the maximum value of

all the pixels in the input pixel's neighborhood

– In a binary image, if any of the pixels is set to the
value 1, the output pixel is set to 1

• Erosion
– The value of the output pixel is the minimum value of

all the pixels in the input pixel's neighborhood

– In a binary image, if any of the pixels is set to 0, the
output pixel is set to 0.

Dilation Example

BW = zeros(9,10);
BW(4:6,4:7) = 1

SE = strel('square',3);
BW2 = imdilate(BW,SE)

SE =
Flat STREL object containing 9 neighbors.
Neighborhood:

1 1 1
1 1 1
1 1 1

Erosion Example

BW = zeros(9,10);
BW(4:6,4:7) = 1

SE = strel('square',3);
BW2 = imerode(BW,SE)

SE =
Flat STREL object containing 9 neighbors.
Neighborhood:

1 1 1
1 1 1
1 1 1

Morphological Opening

• Morphological opening of an image is an erosion
followed by a dilation, using the same structuring
element for both operations
– imopen or equivalent

– imerode and imopen

• Use morphological opening to remove small
objects from an image while preserving the
shape and size of larger objects in the image

Example of Morphological Opening

BW2 = imerode(BW1,SE);

Problem: Remove small thin lines of
BW1 = imread('circbw.tif');

The structuring element should be large enough
to remove the lines when you erode the image,
but not large enough to remove the rectangles.
SE = strel('rectangle',[40 30]);

BW3 = imdilate(BW2,SE);

BW3 = imopen(BW1,SE);

Morphological Closing

• Morphological closing of an image consists of
dilation followed by an erosion with the same
structuring element
– imclose

– imdilate and imerode

• Fills holes and gaps

Example of Morphological Closing

BW2 = imdilate(BW1,SE);

Problem: fill holes and gaps of
BW1 = imread('circbw.tif');

The structuring element should be large enough
to fill the holes and gaps
SE = strel(‘circle',10);

BW3 = imerode(BW2,SE);

BW3=imclose(BW1,SE)

Skeletonization
Reduces all objects in an image to lines,
without changing the essential structure of the image

BW1 = imread('circbw.tif');
BW2 = bwmorph(BW1,'skel',Inf);

BW = imread('circles.png');
BW3 = bwmorph(BW,'skel',Inf);

Determination of Perimeter
bwperim returns a binary image containing only the perimeter pixels of objects
in the input image.

A pixel is part of the perimeter if it is nonzero
and it is connected to at least one zero-valued pixel.

The default connectivity is 4 for two dimensions,
6 for three dimensions.

BW1 = imread('circbw.tif');
BW2 = bwperim(BW1,8);

BW = imread('circles.png');
BW4=bwperim(BW,8);

