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Abstract—Tomography imaging, applied to seismology, re-
quires a new, decentralized approach if high resolution calcu-
lations are to be performed in a sensor network configuration.
The real-time data retrieval from a network of large-amount
wireless seismic nodes to a central server is virtually impossible
due to the sheer data amount and resource limitations. In
this paper, we present a distributed multi-resolution evolving
tomography algorithm for processing data and inverting volcano
tomography in the network, while avoiding costly data collections
and centralized computations. The new algorithm distributes
the computational burden to sensor nodes and performs real-
time tomography inversion under the constraints of network
resources. We implemented and evaluated the system design in
the CORE emulator. The experiment results validate that our
proposed algorithm not only balances the computation load,
but also achieves low communication cost and high data loss
tolerance.1

Index Terms—Distributed Computing, In-network Processing,
Seismic Tomography, Sensor Network

I. INTRODUCTION

Existing volcano instrumentation and monitoring systems do

not yet have the capability to recover physical dynamics with

sufficient resolution. At present, raw seismic data are typically

collected at central observatories for post processing. Seismic

sampling rates for volcano monitoring are usually in the range

of 16-24 bit at 50-200Hz. With such high-fidelity sampling,

it is virtually impossible to collect raw, real-time data from

a large-scale dense sensor network, due to severe limitations

of energy and bandwidth at current, battery-powered sensor

nodes. As a result, at some most threatening, active volcanoes,

fewer than 20 nodes [22] are thus maintained. This limits our

ability to understand volcano dynamics and physical processes

inside volcano conduit systems. Substantial scientific discov-

eries on the geology and physics of active volcanism would

be imminent if seismic resolution could be increased by an

order of magnitude or more.

Nowadays, the sensor network technology has matured to

the point where it is possible to deploy and maintain a

large-scale network for volcano monitoring and utilize the

computing power of each node for distributed tomography

inversion. Tomography algorithms commonly in use today

cannot be easily implemented under field circumstances pro-

posed here because they rely on centralized algorithms and

require massive amounts of raw seismic data collected on a

central processing unit. Thus, real-time volcano tomography

1Our research is partially supported by NSF-CNS-1066391, NSF-CNS-
0914371, NSF-CPS-1135814 and NSF-CDI-1125165.

of high resolution requires a new approach with respect to

computation algorithm and network design.

In this paper, a distributed multi-resolution evolving tomog-

raphy algorithm is proposed. This algorithm partitions the

volcano structure geometrically and divides the tomography

inversion problem accordingly for distributing the computation

load to the network. The tomography result is refined as

more earthquakes are recorded over time. Compared with

the centralized method with data collection, this algorithm

performs real-time data processing and tomography inversion

in the network while meeting the severe resource (bandwidth,

energy, computing power, memory, etc.) constraints. To our

best knowledge of the literature, this work is the first attempt

to distribute seismic tomography computation in the sensor

network. The algorithm proposed here has application to

the fields far beyond the specifics of volcano, e.g., oil field

explorations have similar problems and needs.

The rest of the paper is organized as follows. Section II

presents the background knowledge of seismic tomography

and the related study of parallel and distributed least-squares

methods. We then propose the algorithm in section III. Sec-

tion IV discusses the system design and implementation; eval-

uates the algorithm and system performance with emulations.

Section V concludes the paper.

II. BACKGROUND AND RELATED STUDY

Static tomography inversion for 3D structure, applied to

volcanoes and oil field explorations, has been explored since

the late 1970’s [5], [26], [8]. In volcano applications, to-

mography inversion used passive seismic data from networks

consisting of tens of nodes, at most. The development and

application to volcanoes include Mount St. Helens [7], [9],

[27], Mt. Rainier [15], Kliuchevskoi, Kamchatka, Russia [11],

and Unzen Volcano, Japan [16]. At the Coso geothermal field,

California, researchers have made significant contributions to

seismic imaging by coordinating tomography inversions of ve-

locity [29], anisotropy [12], attenuation [28] and porosity [13].

However, the resolution for such inversions is typically in

kilometers or even tens of kilometers. Details pertaining to the

complex plumbing systems of volcanoes cannot be resolved

due to the lack of nodes coverage on the edifice where signals

from the conduit system emanate. In petroleum exploration

applications of time-lapse subsurface imaging, thousands of

nodes have been incorporated. But the 3D imaging is still

based on centralized off-line processing and is typically ac-

complished by multiple active-source recordings where varia-

tions over multiple year spans are the main goal [8]. The time
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Fig. 1: Procedure of Seismic Tomography

scales involved in real-time hazard mitigation, on the other

hand, are tens of minutes to hours. To achieve effective disaster

warnings and timely responses, new schemes and methodolo-

gies are required to solve the real-time seismic tomography

problem. This is one critical motivation for developing a

distributed real-time volcano tomography inversion algorithm.

The approach employed for 3D seismic tomography in this

paper is travel-time seismic tomography, which uses P-wave

arrival times at sensor nodes to derive the internal velocity

structure of the volcano; this model is continuously refined

and evolving, as more earthquakes are recorded over time. The

basic procedure of seismic tomography illustrated in Figure 1

involves three steps.

(1) Event Location. Once an earthquake happens, the nodes

detected seismic disturbances can determine P-wave arrival

times, which are then used to estimate the earthquake source

location and origin time in the volcanic edifice (Figure 1(a)).

(2) Ray Tracing. Following each earthquake, seismic rays

propagate to nodes and pass through anomalous media. These

rays are perturbed and thus register anomalous residuals. Given

the source locations of the seismic events and current velocity

model of the volcano, ray tracing is to find the ray paths from

the seismic source locations to the nodes (Figure 1(b)).

(3) Tomographic Inversion. The traced ray paths, in turn, are

used to image a 3D tomography model of the velocity structure

within the volcano. As shown in Figure 1(c) the volcano

is partitioned into small blocks and the seismic tomography

problem can be formulated as a large, sparse matrix inversion

problem. Suppose that there are N nodes and J earthquakes,

we consider a perturbation approach here. Let s
∗ be the

slowness (reciprocal of velocity) model of the volcano with

resolution M (blocks). s∗ can be assumed to be a reference

model, s0, plus a small perturbation s, i.e., s∗ = s
0 + s.

We can estimate the ray travel times in step (1) by the

arrival times and estimated event origin times. Let t
∗

i =
[t∗i1, t

∗

i2, . . . , t
∗

iJ ]
T , where t∗ij is the travel time experienced

by node i in the j-th event. Based on the ray paths traced in

step (2), the travel time of a ray is the sum of the slowness in

each block times the length of the ray within that block, i.e.,

t∗ij = Ai[j,m] · s∗[m] where Ai[j,m] is the length of the ray

from the j-th event to node i in the m-th block and s
∗[m] is

the slowness of the m-th block. Let t0i = [t0i1, t
0
i2, . . . , t

0
iJ ]

T be

the unperturbed travel times where t0ij = Ai[j,m] · s0[m]. In

the rest of the paper, we use observed travel time and predicted

travel time to indicate the same meanings of t∗ij and t0ij . In

matrix notation we have the following equation,

Ais
∗ −Ais

0 = Ais (1)

where Ai[j,m] represents the element at the j-th row and m-

th column of matrix Ai ∈ R
J×M . Let ti = [ti1, ti2, . . . , tiJ ]

T

be the travel time residual such that ti = t
∗

i −t
0
i , equation (1)

can be rewritten as,

Ais = ti (2)

We now have a linear relationship between the travel time

residual observations, ti, and the slowness perturbations, s.

Since each ray path intersects with the model only at a small

number of blocks compared with M , the design matrix, Ai, is

sparse. The seismic tomography inversion problem is to solve

the system,

As = t (3)

where A = [AT
1 ,A

T
2 , . . . ,A

T
N ]T and t = [tT1 , t

T
2 , . . . , t

T
N ]T .

This system is usually overdetermined and the inversion aims

to find the least-squares solution s such that,

s = argmin
s

‖ t−As ‖2 (4)

In seismic tomography, the event location can also be

formulated as a least-squares problem by Geiger’s Method [2],

and the estimation vector is of length 4 (event origin time and

3D coordinates). Since the dimension of the estimation vector

is fixed and small, a centralized solution can be applied in

the network for this problem. In step (2), each node traces

ray path based on a reference model. This can be naturally

distributed since the ray tracing computation is entirely local.

The third step is the most computationally intensive and time

consuming aspect of high resolution seismic tomography. The

sparse system can be solved by conjugate gradient method

or row action method [10]. However, designed for high-

performance computers, these centralized approaches need

significant amount of computational/memory resources and

require the knowledge of global information. As a result, they

cannot be directly distributed in wireless sensor network. Thus,

the key research challenge here is how to solve the least-

squares problem in step (3) distributedly under the severe

constraints of wireless sensor network. In this paper, we

focus on distributed tomography inversion algorithm, while

assuming that the event arrival timing at each node has been

extracted from the raw seismic data by each node itself [21],

[24], as well as that the event location and ray tracing have

been done.
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The methods to solve least-squares problem mainly fall into

two categories, direct methods and iterative methods. Iterative

methods for solving large sparse linear systems of equations

are advantageous over the classical direct solvers, especially

for huge systems [3]. Methods of parallelizing least-squares

solutions on distributed memory architecture have been studied

for both direct and iterative methods, but there are few studies

on distributing the least-squares solutions from a wireless

sensor network point of view.
Straková, Gansterer and Zemen investigate randomized al-

gorithms based on gossiping for distributed QR factoriza-

tion [23]. This algorithm demands asynchronous randomized

information exchange among nodes. The problem is that gos-

siping based algorithms converge slow and a back substitution

node by node is required to get the least-squares solution

where the delay is introduced. Renaut proposed a parallel

multisplitting solution of the least-squares problem [17] where

the solutions to the local problems are recombined using

weighting matrices. The problem to distribute this algorithm

in the network is that it requires broadcast communications

in each iteration. Yang and Brent describe a modified conju-

gate gradient least-squares method to reduce inner products

global synchronization points and improve the parallel perfor-

mance [30]. This can also be potentially distributed over the

network but the broadcast communication is still required in

each iteration.
In the literature of signal processing, there are a few studies

on consensus-based Distributed Least Mean Square (D-LMS)

algorithms [14], [19] in sensor network. These algorithms let

each node maintain its own local estimation and, to reach the

consensus, exchange the local estimation only within its neigh-

bors. This can also be used for getting least-squares solutions

statistically. The problem is that consensus-based methods

can be slow [25] on convergence and the communication

cost highly depend on the dimension of estimation. In large-

scale network, consensus based algorithms introduce not only

high communication overhead but also long delays involving

frequent multi-hop communications. Sayed and Lopes devel-

oped a Distributed Recursive Least-Squares (D-RLS) strategy

by appealing to collaboration techniques to achieve an exact

recursive solution [18]. But it requires a cyclic path in the

network to perform the computation node by node while

exchanging a large dense matrix between nodes.

TABLE I: Communication Cost Analysis

Algorithm Communication Cost

1 D-MS kN
2
m

2 D-MCGLS (k + 1)N(m+ n+ 2N)
3 D-LMS kN(Davg + 1)n
4 D-CE kNn

5 D-RLS N(n+ n
2)

6 D-CARP 2kNn

Kaczmarz’s row projection method [6], also known as

Algebraic Reconstruction Technique (ART), was one of the

first iterative methods used for large nonsymmetric systems.

Its main advantages are robustness and cyclic convergence on

inconsistent systems. Dan and Rachel proposed scheme per-

forms Kaczmarz row projections within the blocks and merges

the results by certain component-averaging operations, called

component-averaged row projections (CARP) [3]. CARP is a

robust and memory efficient method to solve sparse systems.

However, to distribute CARP in the network, the broadcast

communication is required and the performance depends on

the partition number of the equation system.

Table I gives an analysis of the communication cost to

distribute the methods mentioned above. For more details

about how to distribute the algorithms and the communi-

cation analysis with emulation evaluation, please refer to

our technical report on a survey of distributed least-squares

iterative methods in networks [20]. Considering the least-

squares problem in equation (4) where A ∈ R
m×n(m ≥ n),

s ∈ R
n and t ∈ R

m. Suppose that the algorithm converges

within k iterations in a multi-hop network of N nodes, Davg

denotes the average node degree of the network.

The methods mentioned above have been proved to be

convergent, but there are several system design problems to

distribute them in the wireless sensor network due to high

communication cost or long delay. In high resolution seismic

tomography, we intend to solve a large sparse system (n can

be as large as tens of thousands even millions) in a large-

scale network (hundreds of nodes), i.e., N ≪ m and N ≪ n.

Considering this, the multisplitting method and CARP have

less communication cost if all algorithms converge in the same

order of iteration number. But the iteration number highly

depends on the matrix condition number (from the evaluation

in [20], these methods need hundreds to thousands iterations

to converge over a network with hundreds of nodes). Besides,

some methods either requires broadcast communication per

iteration or a path in the network to perform the computation

node by node. This results to either high communication

cost or long delay if the number of iterations is large. Since

the convergence analysis of these methods is based on the

information completeness, the solution is unpredictable if data

loss happens in the communication among iterations. This

introduces difficulties to maintain a stable wireless network. In

next section, we will discuss how to address these challenges

and present a distributed least-squares algorithm which avoids

frequent broadcast communication and long delay, at the same

time, can still approximate the least-squares solution.

III. ALGORITHM

We developed a new tomography partition and computation

distribution algorithm with a multi-resolution evolving scheme

to distribute the computation load, reduce the communication

cost and approximate the least-squares solution of the seismic

tomography inversion problem in the network. To distribute

the computation load, we first partition the volcano structure

geometrically and the system As = t correspondingly. Then

some nodes are selected as landlords to compute part of

the tomography model. The computation on each landlord

is entirely local so that the communication cost is bounded.

Since the computation on each landlord only uses part of the

system As = t, the result is not equivalent to the solution of

the original system. To approximate the optimal solution, we

introduce the multi-resolution evolving scheme: the network

initially computes a coarse resolution tomography without par-

tition when small amount of earthquake events arrive; as more

and more earthquake events arrive, the network will compute
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finer and finer resolution tomography with more partitions.

The intuition behind this is that the network first computes an

outline of the volcano structure in an low resolution then fills

up with finer details inside. With the multi-resolution evolving

scheme, we do not need to wait for all computation done and

can retrieve the intermediate results under low resolutions in

a real-time manner.

In this section, first we use an example to show the idea

of the tomography partition and the computation distribution

over the network; second we introduce the multi-resolution

evolving scheme and give the description of the algorithm.

A. Tomography Partition

The example in Figure 2 illustrates that how to partition

the volcano structure geometrically (vertically) and the corre-

sponding system As = t for distributing the computation in

the network.

C1
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Fig. 2: Tomography Partition. The resolution of cube E is

2×2×2 (8 blocks C1 to C8) and 16 sensor nodes are deployed

on top of E.

In this example, cube E is vertically partitioned into 4 parts

(E1 to E4) and there are 4 sensor nodes in each partition, e.g.,

node 1, 2, 3 and 4 are on top of E1 consisting of blocks C1

and C2. Suppose that one earthquake happens in block C5 and

node 1, 6, 12 and 15 detect this event. Once the event location

is done, these 4 nodes do ray tracing individually and get 4

ray paths a1, a2, a3 and a4. Assume that a1 penetrates C5,

C1 and C2, a2 penetrates C5, C1, C3 and C4, a3 penetrates

C5 and C6, and a4 penetrates C5, C7 and C8. These 4 ray

paths can form a system As = t as following,







a1,1 a1,2 0 0 a1,5 0 0 0
a2,1 0 a2,3 a2,4 a2,5 0 0 0
0 0 0 0 a3,5 a3,6 0 0
0 0 0 0 a4,5 0 a4,7 a4,8







·
[

s1, s2, s3, s4, s5, s6, s7, s8
]T

=
[

t1, t2, t3, t4
]T

where al,m is the intersecting length of the l-th ray path and

the m-th block, sm is the slowness perturbation of m-th block,

and tl is the travel time residual observation of the l-th ray

path. Notice that each column in A contains the lengths of

all the ray paths which penetrate the corresponding block. So

the vertical partition of cube E can be mapped to a column

partition on the system As = t,






a1,1 a1,2 0 0 a1,5 0 0 0
a2,1 0 a2,3 a2,4 a2,5 0 0 0
0 0 0 0 a3,5 a3,6 0 0
0 0 0 0 a4,5 0 a4,7 a4,8







·
[

s1, s2, s3, s4, s5, s6, s7, s8
]T

=







t1,1 + t1,2 + t1,3 + t1,4
t2,1 + t2,2 + t2,3 + t2,4
t3,1 + t3,2 + t3,3 + t3,4
t4,1 + t4,2 + t4,3 + t4,4







where tl,m is the partial travel time residual of the l-th ray

path in the m-th block. The system can be expressed as,

[A1,A2,A3,A4] · [s1, s2, s3, s4]
T = [t1 + t2 + t3 + t4]

where Ap is column partition of A corresponding to tomog-

raphy partition p, tp is the partial time residuals for Ap, and

sp is the partial slowness perturbation model of the blocks in

partition p. Then in each partition, one node is selected as the

landlord, e.g., 3, 7, 12 and 14 are landlords in Figure 2. The

landlord in partition p solves the subsystem Ap · sp = tp, and

the global tomography can be obtained by combining all sp.
Next is how to partition the travel time residual of each ray.

Since the travel time residual is based on the observation of P-

wave arrival time which usually contains noise, it is difficult

to partition the travel time residual exactly for each partial

ray. Here an approximation method is employed to derive the

partial travel time residuals based on the reference model.

For example, assume that the reference slowness model for

E in Figure 2 is s
0 = [ŝ1, ŝ2, ŝ3, ŝ4, ŝ5, ŝ6, ŝ7, ŝ8]

T . Let T2

be the observed travel time of ray a2 and the predicted travel

time of a2 is T2(0) = a2 · s0, thus the travel time residual

t2 = T2−T2(0). Then the partial predicted travel time can be

approximated by the reference slowness model,

T2,1(0) = ~a2,1 · [ŝ1, ŝ2]
T T2,2(0) = ~a2,2 · [ŝ3, ŝ4]

T

T2,3(0) = ~a2,3 · [ŝ5, ŝ6]
T T2,4(0) = ~a2,4 · [ŝ7, ŝ8]

T

where T2,1 is the partial travel time of ray a2 in partition E1,

~a2,1 is the part of ray path a2 in E1. The travel time residual

then is proportionally partitioned according to the predicted

travel time,

t2,1 = t2 ·
T2,1(0)

T2(0)
t2,2 = t2 ·

T2,2(0)

T2(0)

t2,3 = t2 ·
T2,3(0)

T2(0)
t2,4 = t2 ·

T2,4(0)

T2(0)

Here we formalize the estimation of the partial travel time

residuals. Let ~al,p be the partial ray path of the l-th ray in

partition Ep and let tl,p be the corresponding partial travel

time residual, tl,p can be estimated as,

tl,p = tl ·
Tl,p(0)

Tl(0)

where Tl,p(0) is the predicted travel time of l-th ray in partition

Ep. Assume that ŝp(0) is the partial slowness reference model

of partition Ep then,

Tl,p(0) = ~al,p · ŝp(0)
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since tl = Tl − Tl(0) and Tl(0) = al · s
0, the partial travel

time residual tl,p is,

tl,p = Tl ·
~al,p · ŝp(0)

al · s0
− ~al,p · ŝp(0)

The previous discussion explains how to partition the to-

mography as well as As = t. Next we will show that how

the partition and the computation distribution can be done in

the network. First, after the ray tracing done, each node needs

to send the partial ray path and the estimated partial travel

time residual to the corresponding landlords for constructing

the subsystems. Then each landlord can compute the partial

slowness perturbation and broadcast it to the network so that

each node can update its reference model part by part for

future ray tracing. So there are two communication patterns

in the network, unicast for sending partial rays and broadcast

to synchronize the reference model. Both of them only happen

once in one computation.

B. Multi-resolution Evolving Tomography

In this section, we discuss the details about the multi-

resolution evolving scheme and give the description of the pro-

posed algorithm. Figure 3 illustrates how the multi-resolution

evolving scheme works following the example in Figure 2.

Notice that the computation of the partial travel time residuals

highly depends on the slowness reference model. In the multi-

resolution evolving scheme, the tomography model is not

partitioned initially so that a good initial guess of the slowness

model can be derived. This initial guess is used to estimate the

partial travel time residuals later for approximating the optimal

solution.

Suppose that the resolution of the tomography model is

d× d× d in the beginning, a single landlord (node 10 in the

example) will compute the first perturbation for the reference

model. Here d is a configurable parameter, in the experiment

setup of this paper, we use d = 8 (refer to section IV-A). Then

the resolution increases to 2d× 2d× 2d, and the tomography

model is partitioned into 4 parts and distributed to 4 landlords

(node 3, 7, 12 and 14) for computation as illustrated in

Figure 3. Notice that, here the resolution of each partition

is d × d × 2d. The aforementioned partition procedure will

be recursively applied in each partition when sufficient more

new earthquake events arrive, until the required resolution is

achieved. Thus, at the (r + 1)-th (r = 0, 1, 2, . . .) resolution,

the tomography model has resolution 2rd× 2rd× 2rd and is

partitioned into 4r parts and evenly distributed to max(N, 4r)
landlords.

Now we give the formal description of the Distributed

Multi-resolution Evolving Tomography (DMET) algorithm,

see Algorithm 1. Suppose that there are q different resolution

levels in our multi-resolution scheme, let d be the initial

resolution dimension.

At the (r+1)-th resolution, the tomography model E with

resolution Qr is vertically and evenly partitioned into Pr

different parts, then the p-th part Ep contains Qr/Pr blocks

(Qr = 2rd × 2rd × 2rd and Pr = 4r). The system As = t

can be partitioned by columns accordingly,

[A1,A2, . . . ,APr
] · [s1, s2, . . . , sPr

]T = [t1 + t2 + . . .+ tPr
]

E
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Fig. 3: Multi-resolution Evolving Tomography

and for Ep the following subsystem is constructed on a

landlord,

Apsp = tp

where 1 ≤ p ≤ Pr.

Initialize line 1-4: Each node initialize its ID, the resolution

level q and initial dimension d. Besides, each node initializes

a landlord list {H1,H2, ...,Hq} where Hr+1 is a node list

{hp|1 ≤ p ≤ Pr} and hp indicates the landlord for partition p
at the (r+1)-th resolution. This tells each node where to send

the partial ray information. Then the resolution and partition

parameters and a slowness reference model for ray tracing are

initialized.

Initialize line 5-8: Set the landlord list as H1 (only one

landlord in it). If this node is the landlord, it also initializes a

ray counter and a time out threshold Tth which controls the

waiting time for a landlord to receive partial ray information

from other nodes. Because it is hard to know how many partial

rays will be received by the landlord since the event activity

is unpredictable.

Repeat line 1-3: After the initialization, each node will act

based on the event detection and message reception. Once an

event is detected by a node, either a landlord or a common

node, it will trace the ray path (as assumed in previous

discussion, the event location has already been estimated in the

network and every node knows it). Then the node computes

and sends the partial ray information to the corresponding

landlords according the landlord list Hr+1.

Repeat line 4-19: If the node is a landlord in partition p′,
when it receives the first partial ray for current resolution, the

node will start a timer Tc. Otherwise, if the timer is less than

the threshold Tth, the landlord will add the received partial ray
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Algorithm 1 Distributed Multi-resolution Evolving Tomography

Initialize

1: Node ID id, the resolution level q and dimension d
2: Landlord lists {H1,H2, ...,Hq}
3: r ← 0, Qr ← d× d× d, Pr ← 1
4: Slowness reference model s0 of resolution Qr

5: Set landlord list to H1, p′ ← the partition index this node locates
6: if id is equal to hp′

7: rc← 0, set the time out threshold Tth

8: endif

Repeat

1: Upon the detection of an event
2: Trace the ray path al, compute ~al,p and tl,p for 1 ≤ p ≤ Pr

3: Send ~al,p and tl,p to landlord hp.
4: Upon the reception of ~al,p and tl,p
5: if id is equal to hp

6: if rc is equal to 0
7: rc← rc+ 1, start timer Tc

8: else
9: if Tc < Tth

10: Add ~al,p and tl,p to Ap′sp′ = tp′

11: else
12: Solve least-squares problem Ap′sp′ = tp′

13: Broadcast sp′ to all other nodes
14: rc← 0, reset Tc, clear system Ap′sp′ = tp′

15: endif
16: endif
17: else
18: Transfer ~al,p and tl,p to hp

19: endif
20: Upon the reception of sp from landlord hp

21: Update the corresponding part of s0 with sp

22: if all sp(1 ≤ p ≤ Pr) have been received
23: if r + 1 is equal to q
24: TERMINATE
25: else
26: r ← r + 1, Q← 2rd× 2rd× 2rd, P ← 4r

27: Increase the resolution of s0 to Q
28: Partition the tomography model into Pr parts
29: Set landlord list to Hr+1

30: p′ ← the partition index this node locates
31: if id is equal to hp′

32: rc← 0, set time out threshold Tth

33: endif
34: endif
35: endif

into the subsystem Ap′sp′ = tp′ . Once the timer Tc is out, the

node will compute the partial slowness perturbation sp′ from

constructed Ap′sp′ = tp′ . Then the landlord broadcasts sp′ to

all other nodes and reset the parameters. If the node is not a

landlord, it will transfer the received partial ray information

to the corresponding landlord.

Repeat line 20-35: Once a node receives the slowness per-

turbation sp from landlord hp. It will update the corresponding

part of the slowness reference model s
0 with sp. After the

partial slowness perturbations from all landlords have been

received, i.e., the entire slowness reference model has been

updated. The algorithm will TERMINATE if the required

resolution is met; otherwise, the node will set r to r + 1,

calculate current Qr and Pr, and increase the resolution of

reference model s0 to Qr. There are different ways to increase

the resolution of the model, e.g., all the blocks in higher

resolution just use the slowness value of the block it belongs

to in the lower resolution. Then each node will partition the

model into Pr parts. Also, the node will set the appropriate

landlord list. If the node is a landlord at (r+1)-th resolution,

it will initial a ray counter and set a timeout threshold (the

threshold is larger in higher resolution since more rays are

needed for higher resolution tomography computation).

Notice that the algorithm here is based on a cube tomog-

raphy model, in reality the model is not always a cube and

the partition may depend on the deployment of the sensor

network. This algorithm can be applied to different models,

it only needs to change the resolution evolving and partition

scheme, i.e., how to set Qr and Pr in resolution level r.

IV. EVALUATION AND VALIDATION

We implemented and evaluated the algorithm performance

with system design in the CORE2 and EMANE3 network em-

ulators [1]. The experiment results validate that our proposed

algorithm not only balances the computation load, but also

achieves low communication cost and high data loss-tolerance.

The advantage of emulation is that the code developed

over the emulator can be transplanted to a Linux-based de-

vice virtually without any modifications. This is because the

emulation tool allocates for each network node a Linux virtual

machine. We select CORE and EMANE as the development

and evaluation platform, because the real sensor nodes in our

VolcanoSRI project4 will be some low-power Linux-based

devices such as android devices. CORE and EMANE will

allows us to closely emulate the future deployment.

A. Experiment Setup and Implementation

Algorithm 1 is designed to compute the tomography in a

wireless mesh network and requires both unicast and broadcast

communication. On most volcanoes it is hard to rely on

the pre-existing infrastructures (e.g. cellular infrastructure).

Therefore, we adopt Disruption-Toleration Networks (DTN)

techniques to maintain efficient and reliable end-to-end con-

nectivity that spans many hops for data delivery. In our design,

the data is buffered in a bundle and then transferred hop

by hop in a store-and-forward manner until it arrives at the

destination. Our implementation of DTN technique does not

make any changes to underlying network services, it uses TCP

for one-hop reliable bundle transfer, and uses OLSR routing

protocol to indicate the next hop. We also implement a bundle

cache component above the TCP/IP layer. This component can

recover the lost bundle locally.

Besides unicast, we implement a delay-tolerant broadcast-

ing service based on the NACK-Oriented Reliable Multicast

(NORM) protocol5. Using NORM interface, one node can

push a bundle reliably to its one-hop neighbors. Our cache

component can receive and store this broadcast bundle, and

rebroadcast it again with NORM, to the nodes that are two

hops away, and so on so forth. A redundancy check module

is developed in the cache component guarantees each node

receives the same bundle at most once.

2http://cs.itd.nrl.navy.mil/work/core/
3http://cs.itd.nrl.navy.mil/work/emane/
4http://sensorweb.cs.gsu.edu/?q=VolcanoSRI
5http://cs.itd.nrl.navy.mil/work/norm/
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Fig. 4: Vertical slices of tomography model. Column (a), (b) and (c) are the results from DMET algorithm with resolution

dimension 8, 16, 32 respectively while column (d) is the result of centralized algorithm and column (e) is the ground truth.

The evaluation of algorithm is illustrated by simulating

seismic data on a synthetic model of resolution 1283 consisting

of a magma chamber (low velocity area) in a 10 km3 cube. 100

stations are randomly distributed on top of the cube and form

a mesh network as shown in Figure 5(a) (the black triangles

indicate the landlords in different resolution levels). 650 events

are similarly distributed, Figure 5(b) which shows the vertical

view of the event sources distribution.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
1
0

X

Y

(a) Network Topology

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0 2 4 6 8 10

1
0

8
6

4
2

0

X

Z

(b) Event Sources

Fig. 5: Stations and Events Distribution

We evaluate the algorithm starting with resolution 83 and

one partition, evolving to resolution 163 with 4 partitions and

complete at resolution 323 with 16 partitions. 50, 100 and

400 events are generated for resolution from low to high to

make sure the system is overdetermined. To simulate the event

location estimation and ray tracing errors, a White Gaussian

Noise is added to the travel time to generate the sensor node

observations (arrival times).
To simulate the sensing behavior of the nodes in the

network, two subnetworks are built in CORE emulator. One

is the wireless mesh network in Figure 5(a) with EMANE

to model the link and physical layer connectivity. The other

is a simple wired network where one generator node wired

connects with each node in the mesh network. This generator

node will generate event at random time, compute the travel

times from this event to each node based on the ground truth,

and send the event location and travel time to corresponding

node with noise (suppose that the event location has been

done as we discussed above). So the nodes in mesh network

are blind to the event activity and thus simulate the sensing

behavior.

The Bayesian version of ART method [4] is used in the

experiments to compute the tomography. We use the relative

update of the estimation between two sweeps (one sweep

means that all the ray paths in the system are used once for es-

timation update) as the stopping criteria. Besides, a centralized

collection scheme (one node collects all the ray information

and perform centralized computation) is implemented in the

emulator with the same data set to compare with our DMET

algorithm. Notice that the Bayesian ART method solves the

system As = t to minimize ‖ t−As ‖2 +λ2 ‖ s ‖2 where λ
is the trade-off parameter that regulates the relative importance

we assign to models that predict the data versus models that

have a characteristic, a priori variance.

B. Correctness and Accuracy

To validate the correctness and accuracy of the algorithm,

we first visualize the tomography result in vertical slices in

Figure 4. Each row of figures shows the same tomography

slice on corresponding layer along with X or Y axes (the total

layers of each figure is equal to the resolution dimension of

the result). The black polygons give the cross section outline

of the magma chamber surface. We can see that at the lowest

resolution 83, the result can hardly indicate the outline of the

magma chamber since the block size is big, especially for

the small cross section in the first row. But it gives a good

start point for the higher resolution to further refine the result.

At resolution dimension 16, the result can closely show the
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outline of the magma chamber. The result in column (c) at

resolution 323 is already very close to the centralized solution

in column (d).
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Fig. 6: Measures of Distance from Synthetic Model

Using s̃, s
∗ and s̄ to represent the synthetic model, the

reconstructed model and the mean value of s
∗ respectively,

we use the following quantitative measures of distance from

the synthetic model provided in [10] to evaluate the estimation

quality,

e1 = (
∑n

i=1
(s̃i − s

∗

i )
2/

n
∑

i=1

(s∗i − s̄)2)
1

2

e2 =
∑n

i=1
|s̃i − s

∗

i |/
∑n

i=1
|s∗|

e3 = max |s̃i − s
∗

i |

These represent the normalized root mean squared distance,

the average absolute value distance and the worst case distance

respectively. The result is shown in Figure 6, DMET(8) means

that the distance analysis of DMET algorithm with resolution

83 and CENT(32) indicates the result of centralized algorithm.

First we observe that in DMET algorithm, the distances are

decreasing along with the increase of the resolution. The

distances in DMET(32) are even smaller than CENT(32), this

is because that we use the relative update as the stop criteria

in Bayesian ART method and the centralized algorithm may

stop before the distance is small enough. This analysis can

imply that the multi-resolution evolving scheme can give a

good approximation on each resolution level for estimating

partial travel times and the computation can approximate the

centralized solution while not diverging in the local computa-

tion in each partition.

C. Communication and Computation

From the experiment result and analysis, it is validated that

DMET gives a good result to approximate the tomography

compared with the centralized algorithm. Next, we will com-

pare the communication and computation cost between DMET

and the centralized algorithms. Since the raytracing algorithm

is very expensive to perform, we assume that each node does

raytracing itself and sends the indexed ray path to a base

station (centralized) or to the corresponding landlords. Also,

after centralized computation done on the base station, it will

broadcast the model to the network for future raytracing since

the whole tomography process is iterative.
Figure 7 gives the communication and computation cost

analysis where DMET(T) is the total cost for DMET algo-

rithm, CENT(M) and CENT(C) are the cost of centralized
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Fig. 7: Communication and computation cost analysis

algorithm when the base station is in the center and the corner

of the network respectively. In Figure 7(a), we can see that

the total unicast cost of DMET is much less than centralized

algorithm (about one third of CENT(C)) since the centralized

data collection will cause more interference and congestion

when the data rate is high. At the same time, the broadcast

cost of DMET is more than centralized algorithm because

multiple nodes need to broadcast in DMET. To count the

arithmetic operations in the computation of the base station

and landlords, Figure 7(c) gives the computation cost for

centralized algorithm and DMET. The total cost of DMET

is higher than centralized since we partition and distribute

the system to landlords, and the computation on landlords

are entirely local and it is lack of the global information to

constraint the problem for fast convergence.

The experiment results above have shown that the total

communication cost of DMET is less than the centralized

algorithm while the total computation cost is higher. Next,

we count the communication and computation cost on each

node in the network to show that DMET balances the com-

munication and distribute the computation load in the network.

Figure 8(a), (b) and (c) visualize the communication cost

on each node in the network for 3 different scenarios with

heat maps. From Figure 8(a) and (b), we can see that the

communication cost in centralized scenario for the nodes near

the base station (either in the center or corner) are much higher

than other nodes since all the messages need to be delivered

through them. The communication cost on each node in our

algorithm shown in Figure 8(c) is more balanced. In Figure

8(d), the first column is the computation load on node 1 for

CENT(C) algorithm, all other columns are the computation

load on corresponding landlords of DMET algorithm. We can

see that although the total computation cost of DMET is higher

but the computation load is much more balanced.
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Fig. 9: Vertical slices of tomography model
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Fig. 8: Communication and Computation Load Balance

D. Data loss-tolerance and Robustness

Next we did an evaluation on the robustness of DMET. The

algorithm runs with the same data set and two different packet

loss ratios of 10% and 40% set in the emulator. Figure 9 shows

the rendering of one vertical slice along Y axes. We can see

that with 10% or even 40% packet loss, compared with the

result without packet loss, It is hard to tell the differences.

This validate the robustness of DMET algorithm which can

be tolerant to a severe packet loss.

V. CONCLUSION

In this paper, we presented an innovative multi-resolution

evolving tomography algorithm that distribute and balance the

tomography inversion computation load to the network, while

computing real-time high-resolution 3D tomography in the

network. The experimental evaluation also showed that our

proposed algorithm not only balances the computation load,

but also achieves low communication cost and high data loss-

tolerance.
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