Imaging with two lenses

- Graphical methods
- Parallel-ray method, find intermediate image, use as object for next lens
- Virtual objects
- Oblique-ray method, lens-to-lens, no need to find intermediate image
- Mathematical methods
- Find intermediate image, use as object for next lens
- lens-to-lens (sequential raytracing)-later in semester
- Combinations of thin lenses
- In contact
- Separated

Example, two separated positive lenses

- Needed information
- focal lengths of lenses
- location of lenses
- location of object

Parallel-ray method - step 1
 Object

- Ignore second lens
- Trace at least two of the rays shown from tip of object
- tip of image found from intersection of rays
- exactly as we did in previous module
- NOTE: all rays from tip of object intersect at tip of image we have chosen three only because they are easy to trace!
- Image is real in this case, but method is exactly the same if it is virtual WHENEVER NEEDED YOU MAY EXTEND OBJECT-SPACE OR IMAGE-SPACE RAYS TO INFINITY IN EITHER DIRECTION

Parallel-ray method - step 2

- Image from step 1 becomes Object for step 2
- After producing this object, lens1 one can be ignored
- object can be real or virtual (virtual in this case)
- object can be real even if image from lens 1 is virtual
- Trace any two of the three rays shown through tip of object to find tip of final image
- Final image may be real or virtual (real in this case)

Reminder about real and virtual

objects and images

Remember: For purposes of calculations, light travels from left to right (not necessarily in real life, of course)

- Positive distances correspond to real objects and real images
- Object distance positive when it is to the left of the lens
- Image distance positive when it is to the right of the lens
- This is the common situation for a single positive image forming an image on a screen, Examples- viewgraph machine, camera, eye, etc.
- Negative distances correspond to virtual objects and virtual images
- Object to the right or image to the left of the lens

Oblique-ray method

- Is it really necessary to find the image due to the first lens?
- Any ray can be traced through the lens system using the oblique-ray method
- For example, trace the axial ray
- point of intersection with axis in image space gives image location

Imaging through multiple lenses mathematical

Given, f_{1}, f_{2}, d, and s_{1} find s_{2},

- Apply imaging formula to first lens to find image in that lens

$$
s_{1}^{\prime}=\frac{s_{1} f_{1}}{s_{1}-f_{1}}
$$

- Find object distance for second lens

$$
s_{2}=d-s_{1}^{\prime}
$$ (negative means virtual object)

- Use imaging formula again to find $s_{2}^{\prime}=\frac{s_{2} f_{2}}{s_{2}-f_{2}}$

Magnification with multiple lenses

- The magnification is by definition the image size divided by the object size
- For the second lens in a system the object size is the image size for the first lens

$$
y_{2}=y_{1}^{\prime}=M_{1} y_{1}
$$

- The image size after the second lens is found by multiplying the second lens magnification by the size of the object for the second lens

$$
y_{2}^{\prime}=M_{2} y_{2}=M_{1} M_{2} y_{1}
$$

- The system magnification is the final image size divided by the original object size

$$
M_{\text {system }}=M_{1} M_{2}
$$

Symbols for thin lenses

- Arrows symbolize the outline of the glass at the edge

Raytracing through several lenses

- Go through lenses in the order the light strikes them
- This is true even if there are mirrors in the system!
- For mathematical raytracing be careful of sign convention
- many possibilities of focal lengths and spacings but sign convention covers them all

Special considerations for negative lenses - there aren't any

- Note that the prime on focal points for negative lens have reversed
- Primary and secondary focal points on opposite sides compared to positive lens

Principal planes and focal lengths of multi-lens systems

- Defined exactly the same as for thick lens

Thin lenses in contact

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}
$$

$$
P=P_{1}+P_{2}
$$

- Can be applied to multiple thin lenses in contact as well
- As always, be careful with sign convention

Dispersion-Abbe V number

Index of refraction of Quartz

Abbe V number-Definition

$$
V_{d}=\frac{n_{d}-1}{n_{F}-n_{C}}
$$

For Quartz, $\mathrm{V}_{\mathrm{d}}=67.6$

- Index of refraction changes with wavelength
- Usually decreases for longer wavelengths
- Small, but important effect

Glass map - index/dispersion of glasses

Chromatic aberration of thin lenses

$P_{F}-P_{C}=\left(n_{F}-n_{c}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{\left(n_{F}-n_{C}\right) P_{d}}{n_{d}-1}=\frac{P_{d}}{V_{d}}$

- Called longitudinal chromatic aberration
- This is the only chromatic aberration possible in a single thin lens with the stop at the lens

Achromatic doublets

To achieve the desired focal length requires

$$
P_{d}=P_{+d}+P_{-d}
$$

Many choices of powers satisfy this

We can also choose the powers to make chromatic zero

$$
P_{F}-P_{C}=0=\left(P_{+F}-P_{+C}\right)+\left(P_{-F}-P_{-C}\right)=\frac{P_{+d}}{V_{+d}}+\frac{P_{-d}}{V_{-d}}
$$

- Two radii used to get each power, one can be freely chosen
- One is usually chosen to make inner surfaces have the same curvature (cemented doublet)
- Remaining radius chosen to minimize spherical aberration

Thin lenses separated

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
$$

Second lens | $\begin{array}{l}\text { Second lens } \\ \text { to principal } \\ \text { plane }\end{array} F_{B}-F=-\frac{P_{1}}{P} d$ |
| :--- |

$$
F_{B}=\left(1-\frac{d}{f_{1}}\right) \frac{1}{P}=\left(1-\frac{d}{f_{1}}\right) F
$$

Principal plane locations for thin lens

First principal Second
$c_{1}=0.015 \quad 1 / \mathrm{mm}$
$f_{2}=-50.00$
$c_{1}=0.0125 \quad 1 / \mathrm{mm}$
$f_{2}=-150.0 \mathrm{~mm}$
$c_{1}=0.01 \quad 1 / \mathrm{mm}$
$f_{2}=0$
$c_{1}=0.0075 \quad 1 / \mathrm{mm}$
$f_{2}=250.0 \mathrm{~mm}$
$c_{1}=0.005 \quad 1 / \mathrm{mm}$
$f_{2}=150.0 \mathrm{~mm}$
$c_{1}=0.0025 \quad 1 / \mathrm{mm}$
$f_{2}=116.67 \mathrm{~mm}$
$c_{1}=0.1 / \mathrm{mm}$
$f_{2}=100 \mathrm{~mm}$
$c_{1}=-.0025 \quad 1 / \mathrm{mm}$
$f_{2}=90.0 \mathrm{~mm}$

combinations

plane \downarrow principal plane

- c_{1} is power of first lens
- f_{2} is focal length of second lens
- Focal length of combination is kept constant at 100 mm

Figure 4.10.- Position of the principal planes for a system of two separated thin lenses

The position of the principal planes for several lens combinations is illustrated in Fig. 4.10. Many interesting properties may be noticed by a close examination of this figure.

