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1 Introduction to Lagrangian mechanics

Leibnitz and Mautoperie suggested that any motion of a system of particles
always minimizes a functional called action; later Lagrange came up with the
exact definition of that action: the functional that has the Newtonian laws of
motion as its Euler equation or stationarity condition. The question of whether
the action reaches the actual minimum is complicated: Generally, it does not.
We show below that the actual motion of particles reaches either a local mini-
mum or a saddle point of action. The variational formulation permits a regular
derivation of motion with Newtonian forces as an Euler equation of the action.
The variational principles remain the abstract and economical way to describe
Nature, but one should be careful in proclaiming the ultimate goal of the Uni-
verse.

1.1 Action Stationary Principle (Lagrange Principle)

Lagrange observed that the second Newton’s law for the motion of a particle,

mẍ = f(x)

where x(t) is the coordinate of the point, and t is time, and the dot stays for
time derivative, can be viewed as the Euler equation for the variational problem:

A = min
x(t)

∫ t1

t0

(T − V ) dt, (1)

T =
1

2
m(ẋ)2, V = −

∫
f(x)dx, (2)

Here t0 is the time of the beginning of the motion, t1 is the time of observation,
A is the action,V is the potential energy, the negative of antiderivative of the
force f , and T (ẋ) kinetic energy. Potential energy is negative to the work of the
force f produced by the motion of a particle along the trajectory x

V = −
∫
f(x)dx

It is defined up to a constant.
Indeed, the Euler equation of A is:

mẍ+
dV

dx
= mẍ− f(x) = 0.

which shows that equation of Newton’s law for a particle is the Euler equation
for the stationarity of action A. One can check, the Legendre and Weierstrass
tests are satisfied.

∂2

∂ẋ2
(T − V ) = m > 0

is satisfied.
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Example 1.1 (Harmonic oscillator) The kinetic energy K of a mass m is
proportional to the square of the speed K = 1

2mẋ
2, where m is the mass. The

force f in the spring is proportional to its deflection x and is directed in the opposite
direction of the deflection, f = −kx, where k > 0 is the stiffness of the spring. The
the potential energy is V = 1

2kx
2 Notice that the energy V is the convex function

of x. The action is

A =

∫ tf

t0

(
1

2
mẋ2 − 1

2
kx2
)
dx

The Euler equation mẍ+ kx = 0 is the equation of the harmonic oscillator.

The same principle works for the system of several degrees of freedom.

Example 1.2 (Motion of a point in a constant gravitational field) Consider
a free particle moving in the constant gravitational field, call the coordinates of the
particle x, y, z, and assume that the axes z is directed vertically up.

The gravitational force f = −mg is proportional to the mass m of the particle,
g is the gravitational constant. The potential energy V of the gravitational force is
V = mgz. The kinetic energy T of the mass is T = 1

2m(ẋ2 + ẏ2 + ż2). The action
is

A =

∫ t1

t0

(
1

2
m(ẋ2 + ẏ2 + ẏ2)−mgz

)
dx

There are three minimizers x(t), y(t) and z(t). The Euler equations for them are

mẍ = 0, mÿ = 0, mz̈ +mg = 0

The equation of the motion are

x(t) = x0 + vxt, y(t) = y0 + vyt, z(t) = z0 + vzt−
1

2
mgt2

where x0, y0, and z0 are coordinated of the initial position of the particle, and
vx, xy, and vz are components of the initial speed.

As we have seen at the above examples, action L = T − V does not satisfy
Jacobi condition because kinetic and potential energies, which are both convex
functions or ẋ(t) and x(t), enter the integrand for action with different signs.
Generally, the action is a saddle function of x(t) and ẋ(t). The notion that
Newtonial mechanics is not equivalent to minimization of a universal quantity
had significant philosophical implications; it destroyed the hypothesis of uni-
versal optimality of the world. We should mention, however, that Newton’s
equation deals with the balance of instant quantities, acceleration and force, in
each moment of time. This balance does not implies the minimization of any
time integral quantity.

We could try to solve an inverse problem: Find a variational minimization
problem solution of which provides the Newtonian equations as the Euler equa-
tions. Several minimal variational principles have been suggested by Gauss,
Rayleigh, Hertz, and other great mathematicians. We do not discuss them here
but refer to Lanczos, Cornelius (1970). The Variational Principles of Mechanics
(4th ed.). New York: Dover Publications Inc.
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1.2 Relativistic approach

Analyzing the form of the Lagrangian: L = W −T one may ask: Why does the
(−) sign appear in the formula? It doesn’t seem logical to subtract one form
of energy from the other one. Surprisingly, the answer could be given by the
Einstein’s special relativity!

Consider maximization of the energy VR(x) of a particle with mass m moving
along the trajectory x = x(t) with the speed v = ẋ:

I = max
x

∫ t1

t0

VR(x)dtR. (3)

where VR is the relativistic energy and tR is the time of the observer sitting in
the moving particle.

The relativistic approach transforms this problem as follows:

1. Relativistic energy VR is the potential newtonian potential energy V of
the particle plus the added the rest mass energy E.

VR = V + E

The addition of a constant term E does not change a solution of the
variational problem.

2. An outside observer sense a different time that the traveling observer.
Time increment dtR of the traveling particle relates to the time increment
dt for an inertial observer by Lorentz transform:

dtR =

√
1− v2

c2
dt ≈

(
1− 1

2

v2

c2

)
dt+O

(
v2

c2

)
, v = ẋ.

where v is the speed of the particle. Here, we use the smallness of the
speed v, v � c, and the Taylor expansion:

√
1 + x = 1 + 1

2x+ o(x).

Substituting these quantities into (3), we compute the Lagrangian :

IR = max
x

∫ t1

t0

VR(x)dtR.

Suubstituting these quantities into VRdtR in (3), we compute the Lagrangian in
time frame of an intertial observer:

VRdtR = (V + E)

(
1− 1

2

v2

c2

)
dt

=

(
E + V − 1

2
E
v2

c2
+O

(
v2

c2

))
dt. (4)

If the rest mass energy E is equal to E = mc2, where m is mass and c is the
speed of light, the underlined term becomes kinetic energy:

1

2
Ev2 =

1

2
mv2
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(recall that v = ẋ)
In the right-hand side of (5), the rest mass energy E is constant and is not

varied, and the last term in small if v � c. We obtain

VRdtR − E =

(
V − 1

2
mẋ2 +O

(
v2

c2

))
dt. (5)

Therefore, the maximization of the relativistic energy leads minimization of the
Lagrangian:

1

2
mẋ2 − V (x)

2 Approximations with penalties

Consider the problem of approximation of a function by another one with bet-
ter smoothness or other favorable properties. For example, we may want to
approximate the noisy experimental curve f(x) by a smooth curve (x). Varia-
tional method used for approximations are are follows: A problem is to minimize
the the integral norm of the difference f(x) − u(x) plus a penalty imposed on
u(x) for being non-smooth. Here we consider several problems of the best ap-
proximation.

2.1 Approximation with penalized growth rate

The problem of the best approximation of the given function h(x) by function
u(x) with a limited growth rate results in a variational problem

min
u
J(u), J(u) =

∫ b

a

1

2

(
α2u′ 2 + (h− u)2

)
dx (6)

Here, the first term of the integrand represents the penalty for growth or delay
and the second term describes the quality of approximation: the closeness of the
original and the approximating functions. The approximation depends on the
parameter α: When α → 0, the approximation coincides with h(x) and when
α→∞, the approximation is a constant line, equal to the mean value of h(x).

The equation for function u(x) (Euler equation of (6)) is

−α2u′′ + u = h, u′(a) = u′(b) = 0 (7)

Here, the natural boundary conditions are assumed since there is no reason to
assign special values of the approximation curve at the ends of the interval.
Notice, that Lagrangian satisfies sufficient condition for local minimum: it is
convex with respect of u and u′.

If h(x) is periodic, so is u(x). In this case

−α2u′′ + u = h, u(a) = u(b), u′(a) = u′(b), for perodic h(x) (8)
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2.2 Solution of the Euler equation

There are several methods for solution of the linear equation (7) for any h(x)

Green’s function for approximations with quadratic penalty The Eu-
ler equation for the approximation problem is described as a linear problem

Lα(u) = h, Lα = −α2 d
2

dx2
+ 1.

Here, Lα is the linear operator in the interval [a, b] with the homogeneous bound-
ary conditions (7). Lα depends on the magnitude α of the penalty, and becomes
an identical operator with α→ 0.

The problem of an optimal approximation is the problem of inverting this
operator:

u = L−1α h

The inversion is called the Green’s function (see []) or the resolvent for the
operator Lα. The solution of (7) is represented by an integral

u(x) =

∫ b

a

k(x, ξ)h(ξ) dξ

where k(x, y) is the kernel that depends on the interval and boundary conditions;
it is independent of h(x). We do not derive the Green’s function here, referring
to books on ODE.

The Green’s function is especially simple if a = −∞, b = ∞. In this case,
the Green’s function is []

k(x, ξ) =
1

2α
e
|x−ξ|
α

Notice, that the best approximation is a weighted average:

u(x) =
1

2α

∫ ∞
−∞

h(ξ)e
|x−ξ|
α dξ

with the exponential kernel e
x−ξ
α .

One can check that u(x) satisfies the Euler equation, boundary conditions,
and continuity and jump conditions at x = ξ.

Eigenfunctions approach Another method is based on Fourier series. As-
sume that a = 0 and x ∈ [0, b]. Let us expand h(x) into the cosine series (the
half-range expansion, see []):

h(x) =

∞∑
n=0

an cos
(πnx

b

)
(9)

where an are known coefficients

an =
2

b

∫ b

0

h(x) cos
(πnx

b

)
dx
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We are looking for the solution u(x) in the form of series:

u(x) =

∞∑
n=1

zn cos
(πnx

b

)
where zn are some coefficients that need to be defined. The boundary conditions
(7) are satisfied. Compute Lαu:

Lαu = −α2u′′ + u =

∞∑
n=1

[(απn
b

)2
+ 1

]
zn cos

(πnx
b

)
Equalizing this series with the series in (9), we find

zn =
an(

απn
b

)2
+ 1

if α � 1, the intensity of low-frequency components of h and u are close, but
the series of u has much smaller magnitude of high-frequency harmonics.

2.3 Approximation with penalized smoothness

The problem of smooth approximation is similar. The penalization functional
is designed to penalize function u(x) for being different from a straight line; the
penalty is proportional to the integral of the square of the second derivative u′′.
The best approximation variational problem is

min
u
J(u), J(u) =

∫ b

a

1

2

(
α4(u′′)2 + (h− u)2

)
dx (10)

When α → 0, the approximation coincides with h(x) and when α → ∞, the
approximation is an affine function u(x) = a x+ b closest to h(x).

The Euler equation of (10) is

α4uIV + u = h, u′′(a) = u′′(b) = 0, u′′′(a) = u′′′(b) = 0,

Here, the natural boundary conditions are assumed since there is no reason to
assign special values of the approximation curve at the ends of the interval. If
h(x) is periodic, so is u(x).

Similarly to the previous case, we find that the Fourier coefficients of the
approximate u(x) are

zn =
an(

απn
b

)4
+ 1

where an are Fourier coefficients of h(x).
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2.4 Approximation with penalized total variation

Total variation Assume that function u(x) is differentiable, u(x), x ∈ [a, b].
The total variation T (u) of u is defined as

T (u) =

∫ b

a

|u′(x)|dx

For a monotonic function u(x) the integral is

T (u) = max
x∈[a,b]

u(x)− min
x∈[a,b]

u(x)

If u(x) has a finite number N of intervals Lk = [ak, bk] of monotonicity then the
total variation is

T (u) =

N∑
k

(
max
x∈Lk

u(x)− min
x∈Lk

u(x)

)
=

N∑
k

|u(ak)− u(bk)|

Approximation with the total variation penalty This approximation
penalizes the approximate u for its total variation. The variational problem
with total-variation penalty has the form

min
u
JTV (u), JTV (u) =

∫ b

a

[
γ|u′|+ (h− u)2

]
dx (11)

Here, γ ≥ 0, the first term of the integrand represents the total-variation penalty
and the second term describes the closeness of the original curve and its approxi-
mation. When α→ 0, the approximation coincides with h(x) and when α→∞,
the approximation becomes constant equal to mean value of h.

Because ∂γ|u′|
∂u′ = γsign (u′), the formal application of Euler equation:

(γsign (u′))′ + u = h (12)

is not helpful because it requires the differentiation of a discontinuous function
sign ; besides, the Lagrangian (11) is not a twice-differential function of u′ as it
is required in the procedure of derivation of the Euler equation.

Analysis of the solution The problem admits a straightforward analysis:
Assume for simplicity that h(x) monotonically increases in an interval [a, b], then
u(x) is also monotone there. Assume the u(x) varies between some numbers u1
and u2,

u1 ≤ u(x) ≤ u2
Let us call α and β such numbers that h(α) = u1, and h(β) = u2.

The cost of the approximation is the sum of four terms. J = J1+J2+J3+J4
The first term is the total variation of u

J1 =

∫ b

a

γ|u′|dx = γ(u2 − u1)
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and the next three nonnegative terms are

J2 =

∫ α

a

(h− u)2dx, J3 =

∫ β

α

(h− u)2dx, J4 =

∫ b

β

(h− u)2dx.

The second term is zero,

J3 =

∫ β

α

(
(h− u)2

)
dx = 0

if u(x) = h(x) for all x such that u1 < u(x) < u2. This choice of u(x) does not
affect the total variation.

The cost depends on two parameters α and β that have to be chosen to
minimize JTV . Function u either coincides with h(x) or stays constant cutting
the maximum and the minimum of h(x):

u(x) =

 h(α) if x ∈ [a, α]
h(x) if x ∈ [α, β]
h(β) if x ∈ [β, b]

Notice that the extremal is broken; the regular variational method based the
Euler equation is not effective.

Example 2.1 Consider h(x) = sin(x), x ∈
[
−π2 ,

π
2

]
. Let α

(
0, π2

)
be an a priori

unknown number - the cutoff level. By symmetry, we have β = −α and u1 =
− sin(α), u2 = sin(β). The approximate u(x) is equal to

u(x) =

− sin(α) if x ∈
[
−π2 ,−α

]
sin(x) if x ∈ [−α, α]
sin(α) if x ∈

[
α, π2

]
The components of the cost of the problems are

J1 = γ

∫ π
2

−π2
|u′|dx = 2γ sin(α), J3 = 0

J2 = J4 =

∫ π
2

α

(sin(x)− sin(α)2dx,

=
1

4

[
(−2π + 4α) cos(α)2 − 6 sin(α) cos(α)− 6α+ 3π

]
.

Notice that J1 increases and J2 decreases with α. Optimal value of α is found from
the transendental equation

dJ

dα
= 0 ⇒ 2 cos(α) + (2α− π) sin(α) = γ
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