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Abstract

This paper analyzes the effect of errors in antenna weights on the performance of adaptive array systems, both
in the case when an array is used to maximize the gain in a desired direction and in the case when an array is used
to null interfering signals. We begin by deriving an explicit characterization of the loss in array gain due to phase
errors in the optimal antenna weights. Then, we examine interference rejection in the presence of amplitude and
phase errors in the antenna weights. We prove that the loss ininterference rejection is independent of the number
of antennas. For both cases, we give numerical simulations that validate our analysis.

I. INTRODUCTION

Many modern communication systems employ adaptive antennas in order to improve their capacity, coverage,
and reliability. Unlike conventional fixed antenna systems, adaptive antenna arrays dynamically adjust their beam
patterns in response to their environment. Adaptive arrayscan extend the range by focusing most of the radio
frequency (RF) power on a desired target. This is known as beamforming or beam-steering. Adaptive arrays can
also reject unwanted interference signals by placing nullsin the direction of the interferers, which is known as
beam-nulling or null-steering. Even if the directions of the interferers are unknown, adaptive arrays can still reduce
signal propagation in undesired directions by using side lobe suppression.

Adaptive arrays are composed of multiple antenna elements that can be arranged in different geometries (antennas
are usually spaced at least half a wavelength apart) [1]. Larger arrays provide more gain and degrees of freedom.
The beam pattern (the locations of peaks and nulls, and the heights of the side lobes) is shaped by controlling
the amplitudes and phases of the RF signals transmitted and received from each antenna element. For this reason,
adaptive arrays are often referred to as phased arrays. Precise control over both amplitudes and phases is required to
achieve good performance. However, various factors such asfinite resolution, noise, mismatch in circuit elements,
and channel uncertainty limit the precision that can be achieved in practice. Many of these error sources are random,
and cannot be compensated for using pre-calibration or adaptive signal processing techniques. The limited precision
will degrade the performance of the array (gain and interference rejection). In this paper, we examine the impact
of phase and amplitude errors on the array gain (beamforming) in Section II and on interference rejection (beam-
nulling) in Section III. We provide both mathematical proofs and simulation results that characterize the array
performance as a function of phase and amplitude errors.

II. B EAMFORMING

Consider the array ofN elements shown in Figure 1. A signals[n], sent by a remote transmitter, arrives at each
antennai in the array shifted in phase byψi1. Antennai will then apply a phase-shiftφi to the incoming signal.
Therefore, the overall complex (baseband) channel responseH at the output of the receiver array is given by2:

H =
N
∑

i=1

ej(ψi−φi)

1In general, signals arrive at different antenna elements with different delays. However, for narrowband signals, timedelays can be
approximated with phase shifts [2]. We define signals as narrowband when the fractional bandwidth (the ratio between thesignal bandwidth
and carrier frequency) is very small (e.g. less than 1%). In this paper, we shall assume that all signals are narrowband.

2The channel response is identical in the scenario with multiple transmitters and a single receive antenna.



Fig. 1. A communication system with an adaptive array at the receiver. The narrowband signals[n] arrives at each antenna shifted in phase
by ψi. The receiver applies a phase shift ofφi at each antenna and sums the signals.

To maximize the magnitude ofH, φi is chosen equal toψi, in which case|H|2 reaches its maximum value of
|Hopt|

2 = N2. In practice, however, factors such as quantization, clockjitter, and other sources of noise make it
virtually impossible to realize the desired phase-shifts.Most of these errors are unpredictable and time varying,
and are best modeled with random variables:

ψ̂i = φi + δi

We will assume thatδi ∼ U [−δmax, δmax], where0 ≤ δmax ≤ 180◦ is an upper bound on the amplitude of
phase deviation3. Furthermore, we assume that the errors arei.i.d across different antennas. In this case the channel
response becomes:

Ĥopt =
N
∑

i=1

ejδi =
N
∑

i=1

cos(δi) + j

N
∑

i=1

sin(δi)

We wish to characterize the effect of the phase errors on the square magnitude of the channel response. To
simplify the analysis, we introduce two new random variables Xi = cos(δi) and Yi = sin(δi) and compute the
following expectations:

µX = E[Xi] = E[cos(δi)] =
1

2δmax

∫ δmax

−δmax

cos(x)dx

=
1

δmax

∫ δmax

0
cos(x)dx =

sin(δmax)

δmax

µX2 = E[X2
i ] =

1

2δmax

∫ δmax

−δmax

cos2(x)dx =
1

δmax

∫ δmax

0
cos2(x)dx

3We assume a uniform distribution to simplify the calculations. Note that no assumptions were made regarding the geometry of the array
or the direction of arrival, so the result holds for an arbitrary array.



=
1

2δmax

∫ δmax

0
(1 + cos(2x))dx =

1

2
+

sin(2δmax)

4δmax

µY = E[Yi] = E[sin(δi)] = 0 (by symmetry)

µY 2 = E[Y 2
i ] =

1

2δmax

∫ δmax

−δmax

sin2(x)dx =
1

δmax

∫ δmax

0
sin2(x)dx

=
1

2δmax

∫ δmax

0
(1 − cos(2x))dx =

1

2
−

sin(2δmax)

4δmax

Now, we can rewrite the expression for the channel response as:

Ĥopt =
N
∑

i=1

Xi + j

N
∑

i=1

Yi

⇒ |Ĥopt|
2 =

(

N
∑

i=1

Xi

)2

+

(

N
∑

i=1

Yi

)2

=
N
∑

k=1

N
∑

l=1

(XkXl + YkYl)

⇒ E[|Ĥopt|
2|] =

N
∑

k=1

N
∑

l=1

(E[XkXl] + E[YkYl])

E[XkXl] =

{

E[Xk]E[Xl] = µ2
X whenk 6= l (using independence)

E[X2
k ] = µX2 whenk = l

E[YkYl] =

{

E[Yk]E[Yl] = µ2
Y whenk 6= l (using independence)

E[Y 2
k ] = µY 2 whenk = l

⇒ E[|Ĥopt|
2|] = (N2 −N)(µ2

X + µ2
Y ) +N(µX2 + µY 2)

= (N2 −N)

(

sin2(δmax)

δ2max

)

+N = (N2)

(

sin2(δmax)

δ2max

)

+N

(

1 −
sin2(δmax)

δ2max

)

If we normalizeE[|Ĥopt|
2|] by dividing by the maximum value|Hopt|

2 = N2, we obtain:

ΦN (δmax) =
E[|Ĥopt|

2|]

N2
=

sin2(δmax)

δ2max
+

1

N

(

1 −
sin2(δmax)

δ2max

)

⇒ Φ(δmax) = lim
N→∞

ΦN (δmax) =
sin2(δmax)

δ2max

Figure 2(a) shows a plot ofΦ(δmax) for 0 ≤ δmax ≤ 180◦. Figure 2(b) shows the same function in dB scale.
Figure 2(b) also shows that the calculated array gain closely matches simulation results. Figure 2(c) shows that
the actual distribution of the phase errors has little impact on the loss in array gain. Notice that using a single bit
of phase resolution corresponds toδmax = 90◦ = π

2 , andΦ(π2 ) = ( 2
π
)2 ≈ .4 ≈ −3.9dB! We expect the bound to

become tighter asN increases, due to the law of large numbers. The graphs in Figure 3 show the loss in array
gain as a result of quantizing the phase to one and two bits. Figures 3(g,h) show that quantization does not increase
the width of the main lobe. Also, notice that whenδmax = 180◦, which corresponds to completely randomizing
the phase of each antenna, the normalized array responseΦN (π) = 1

N
, which reduces the array gain to that of

an omni-directional antenna. So a simple way of creating an omni-like beampattern without reducing the radiated
power is to choose the phases randomly4.

4With omni-directional antennas, the absolute, non-normalized power of the signals adds.
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Fig. 2. (a) The normalized array gainΦ(δmax) as a function of the maximum phase errorδmax. (b) The normalized array gain in dB
scale,10 log Φ(δmax). The plot shows both the calculated gain and the simulated gain for a 10000 element array. (c) The simulated gain
(dB) for a 10000 element array with different phase error distributions. For a uniform distribution, the standard deviation is σδ = δmax/

√
3.

A second method of proving a lower bound on the array gain is byusing the mean of the random variable, which
is often easier to compute, instead of the mean of the square of the random variable. By Jensen’s inequality, the
square of the mean of a random variable is less than or equal tothe mean of its square:

E[X]2 ≤ E[X2]

for any random variableX. More generally:

f(E[X]) ≤ E[f(X)] whenf(·) is a convex function.

Using this fact, and the expected value of the channel response, we see that:

E[Ĥopt] = E

[

N
∑

i=1

Xi + j

N
∑

i=1

Yi

]

= NµX = N
sin(δmax)

δmax

⇒ E[|Ĥopt|
2] ≥ E[Ĥopt]

2 = N2
(

sin(δmax)

δmax

)2

ΦN(δmax) =
E[|Ĥopt|

2|]

N2
≥

(

sin(δmax)

δmax

)2

= Φ(δmax)
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Fig. 3. (a)-(f) Array loss as a result of phase error for different size arrays. (g)-(h) 2-dimensional horizontal beampattern of a 100x100
array withλ/2 spacing (steered towards 55 degrees) for different phase resolutions.



III. B EAM-NULLING

In addition to maximizing SNR by steering the direction of the beam towards desired locations, many commu-
nication systems are faced with unwanted interference. In most of these systems, simply steering the direction of
the peak is not sufficient to suppress large interferers and signal jammers. Other techniques, such as null-steering
and side lobe suppression, are required to provide the necessary rejection of interfering signals.

Adaptive systems that require precise control of the locations of the nulls and side lobe levels need to adjust
both the phase and amplitude response of each antenna element. In this case, we need to account for both phase
and amplitude errors. Analyzing the combined effect of phase and amplitude errors is easier when we consider
the problem in the spatial domain where the optimal complex beamforming weights and channel responses can be
represented as complex vectors in theN -dimensional Euclidean space, whereN is the number of antennas in the
array. Let us assume that we haveK + 1 vectors: a desired vectorhd corresponding to the direction of the desired
signal5, andK interferering vectorshi ∀1≤i≤K corresponding to the directions ofK interfering signals.

hd = [α1de
jβ1d , . . . , αNde

jβNd]>

hi = [α1ie
jβ1i , . . . , αNie

jβNi]> ∀1≤i≤K

The incoming signal at the input of the arrayy[n] is the sum of the desired signal and interference and noise:

y[n] = hdd[n] +
K
∑

i=1

hidi[n] + v[n]

whered[n] is the desired signal,di[n] is interfering signali, andv[n] is the white noise vector at the receiver (the
variance of each component ofv[n] is σ2

v). For simplicity, we shall assume that the desired and interfering signals
have the same power. Using beamforming weightsw (without loss of generality, we can restrict|w| = 1), the
signal at the output of the array will bewHy[n]. The output signal to noise plus interference ratio (SINR) is given
by:

SINRout =
|wHhd|

2

|
∑K
i=1 wHhi|2 + σ2

v

where(·)H denotes the complex conjugate transpose. LetHI = [h1, . . . ,hK ] be the matrix whose columns are the
interference vectors. Complete interference rejection can be achieved by choosing a beamforming weight vector
w that is the projection of the desired vectorhd onto the subspace orthogonal to the column space ofHI (or the
null-space ofH>

I , which is also known as the left nullspace ofHI), as described in [3]:

wopt = wprojection = hd − HI(H
H
I HI)

−1HH
I hd

We can see that rejecting all the interfering signals is onlypossible when the left nullspace is non-empty. This
is guaranteed whenK < N . The projection-based beamformer does not take noise into account. In general,
maximizing the output SINR does not necessarily require complete interference rejection; reducing the interference
to the noise level may be sufficient. Optimizing the output SINR leads to the Minimum Variance Distortionless
Response (MVDR) beamformer [4]. If we define the noise+interference correlation matrixRN+I as:

RN+I =
K
∑

i=1

hHi hi + σ2
νIN

whereIN is theN ×N identity matrix, then the output SINR can be maximized by choosingwopt:

wopt = wMVDR =
R−1
N+Ihd

hHd R−1
N+Ihd

The denominator is a normalizing factor. When the interference power is much larger than the noise power, both
projection and MVDR yield virtually identical results. In practice, however, phase and amplitude errors degrade
the performance of both beamformers6. We will assume that an optimum beamformerwopt is computed using

5We will denote scalars in lower case, vectors in bold lower case, and matrices in bold upper case.
6The errors can also result from uncertainties about the channel responses for both desired and interfering signals. Up to this point, we

have assumed perfect knowledge of the channels.



projection, andŵopt takes into account both phase and amplitude errors:

wopt = [α1we
jβ1w , . . . , αNwe

jβNw ]>

ŵopt = [α1w(1 + ε1)e
j(β1w+δ1), . . . , αNw(1 + εN )ej(βNw+δN )]>

whereεi ∀1≤i≤N arei.i.d zero mean real random variables with varianceE[ε2i ] = σ2
ε , andδi ∀1≤i≤N arei.i.d zero

mean real random variables with varianceE[δ2i ] = σ2
δ . We also assume that the phase and amplitude errors are

independent of each other. Furthermore, we scale the weights so thatwopt has unit norm (i.e.
∑N
i=1 α

2
iw = 1).

The phase and amplitude errors result inŵopt deviating fromwopt by an angleθ. Note thatθ does not necessarily
correspond to a physical angle or direction. This deviationwill result in a reduction in the signal strength in the
desired direction as well as an increase in the interferencepower, sinceŵopt will no longer be orthogonal the
interference subspace. The desired power is proportional to cos(θ), and the increase in interference (leakage) is
proportional tosin(θ) (see Figure 4). For small anglesθ, we can use the standard approximations7 sin(θ) ≈ θ and
cos(θ) ≈ 1. Thus, we can characterize the effect of phase and amplitudeerrors on beam nulls by considering how
the mean square angleσ2

θ(σδ, σε, N) = E[θ2] behaves as a function ofσδ, σε, andN .

Fig. 4. The optimum beamforming vectorwopt can be viewed as a projection of the desired signal onto the subspace orthogonal to the
interference subspace. The distorted beamforming vectorŵopt can decomposed into two orthogonal components:ŵopt = ŵ

⊥
opt + ŵ

‖
opt.

ŵ
‖
opt, which is parallel towopt, represents the potential loss in beamforming gain, and is proportional tocos(θ). ŵ

⊥
opt, which is orthogonal

to wopt, represents the potential leakage into the interference subspace, and is proportional tosin(θ).

7This explains why nulls are more sensitive than peaks to phase and amplitude errors, sincesin(θ) changes more rapidly thancos(θ)
whenθ is small.



If we assume that the phase and amplitude variations are small, and given thatwopt is unit norm, then we can
approximate the error angleθ with the error vector:

∆w = wopt − ŵopt = [α1we
jβ1w(1 − (1 + ε1)e

jδ1), . . . , αNwe
jβNw(1 − (1 + εN )ejδN )]>

We can further simplify the above expression using the approximationscos(δi) ≈ 1, sin(δi) ≈ δi, andδiεi ≈ 0.

∆w = [α1we
jβ1w(1 − 1 − ε1 − jδ1), . . . , αNwe

jβNw(1 − 1 − εN − jδN )]>

= [−α1we
jβ1w(ε1 + jδ1), . . . ,−αNwe

jβNw(εN + jδN )]>

⇒ |∆w|2 = (∆w)H (∆w) =
N
∑

i=1

α2
iw(ε2i + δ2i )

By taking the expectation of this expression:

σ2
θ ≈ E[|∆w|2] = E

[

N
∑

i=1

α2
iw(ε2i + δ2i )

]

=
N
∑

i=1

α2
iw(E[ε2i ] + E[δ2i ])

=
N
∑

i=1

α2
iw(σ2

ε + σ2
δ ) = (σ2

ε + σ2
δ )

N
∑

i=1

α2
iw = σ2

ε + σ2
δ

As we can see, the mean square error angleσ2
θ is equal to the sum of the mean square phase errorσ2

δ and
the mean square amplitude errorσ2

ε . The key conclusion that we draw from this result is that the angle error is
independent ofN , the number of antennas8.

The simulation results shown in Figure 5 verify this result.Figure 5(a) shows a linear relationship between
10 log(σ2

ε + σ2
δ ) (x-axis) and10 log(σ2

θ) (y-axis), with slope equal to 1. Figure 5(b) shows that the relationship
between10 log(σ2

δ ) and 10 log(σ2
θ), when the amplitude errorsεi are set to0, is also linear with slope equal to

1, which demonstrates that the phase and amplitude errors contribute equally to the overall error angleθ. In both
Figures 5(a) and 5(b), we simulated a 100 element array. We repeated the same experiment for a 1000 element
array and the results are identical, as shown in Figures 5(c)and 5(d). Figure 6 also shows identical results, where
we plot the interference rejection as a function of phase andamplitude errors for different array sizes. This shows
that the number of antenna elements has no effect on the mean square error angleσ2

θ or the interference rejection.
This means that the depth of beam nulls is limited by gain and phase accuracy, and is independent of the size of
the arrayN and the number of interferersK, as long asN > K.

IV. CONCLUSION

Adaptive antenna arrays are a key component in many modern communication systems. They are used to both
increase the gain in the direction of a desired signal as wellas to reject interfering signals. However, when these
adaptive arrays are implemented, a variety of practical considerations will cause the actual antenna weights to differ
from the optimal weights, which in turn degrades the performance of the array.

In this paper, we analyzed the performance loss due to phase and amplitude errors in the weights. We began by
considering a beamforming system, which maximizes the gainin a desired direction. We derived an expression for
the loss in gain due to uniform phase errors, and provided simulations that validate this result. Then, we considered
a beam-nulling system, which rejects interfering signals.We analyzed the effect of uniform amplitude and phase
errors, and again provide numerical simulations. We showedthat the interference rejection is a function of the
errors in the weights, and is independent of the number of antennas, assuming that there are more antennas than
interferers.

8The power leakage into the interference subspace is independent of the number of antennas. However, increasing the number of antennas
can still increase the output SINR (peak to null ratio) by increasing the power gain of the desired signal. Increasing thenumber of antennas
also increases the degrees freedom necessary to null more interferers.
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Fig. 5. Simulated relationship between phase and amplitudeerrors and the mean square error angle: (a),(c)10 log(σ2

ε + σ2

δ ) on the x-axis,
10 log(σ2

θ) on the y-axis. (b),(d)10 log(σ2

δ) on the x-axis,10 log(σ2

θ) on the y-axis. In (a) and (b), the simulated array had 100 elements.
In (c) and (d), the simulated array had 1000 elements.
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after
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