

Bonsai Research Group

Y POLITECNICO DI MILANO

Marco Savi, Massimo Tornatore, Giacomo Verticale

Politecnico di Milano, Milan, Italy Department of Electronics, Information and Bioengineering (DEIB)

Italian Networking Workshop 2016, San Candido (BZ) – 13-15 Jan. 2016

Outline

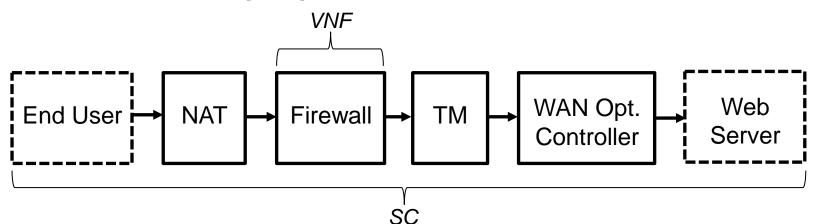
- Introduction
- System model
- MILP optimization problem
- Numerical results
- Conclusion

Introduction Network Functions Virtualization [1]

- Networks are populated with a huge number of proprietary hardware equipment performing different network functions (*middleboxes*)
 - Finding places to accommodate them is becoming difficult
 - Hardware-based appliances rapidly reach end of life (high costs for the network operators)

3

POLITECNICO DI MILANO


- Network Functions Virtualization (NFV) tries to address such issues
 - It leverages standard virtualization tecniques to consolidate many network equipment into commercial-off-the shelf (COTS) hardware
 - Network equipment is implemented as virtual network functions (VNFs) in software
 - The COTS hardware can be located in datacenters, network nodes, customer premises (*NFV nodes*)

[1] Network Functions Virtualisation, An Introduction, Benefits, Enablers, Challenges & Call for Action, SDN and OpenFlow World Congress, Darmstadt-Germany, 2012

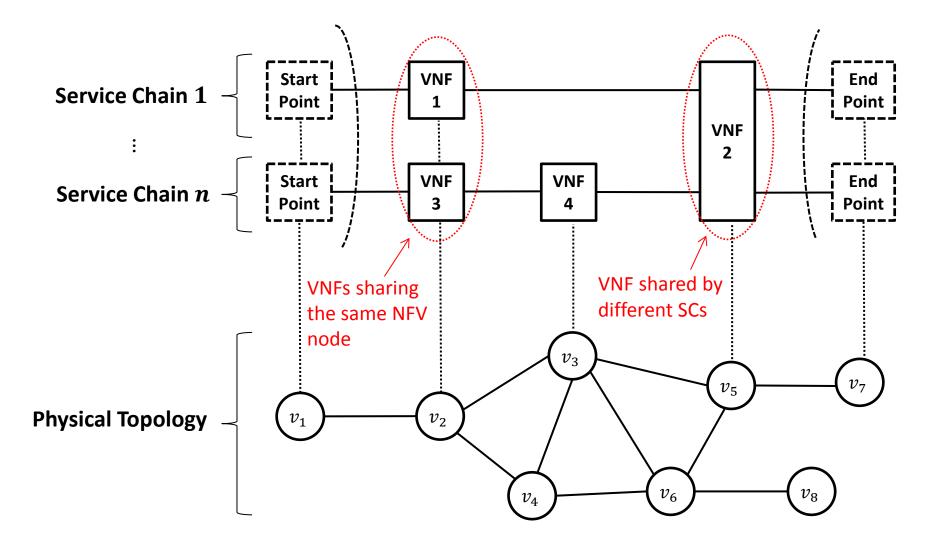
Italian Networking Workshop 2016 – Marco Savi

Introduction Service Chaining

• The VNFs can be chained together to provide a service chain (SC)

- When a *service* is requested between two end-points, one or more SCs must be deployed in the network
 - Different SCs can share the same VNF
 - Different SCs can be shared among different services (e.g., SCs for authentication)

Introduction Motivation of the work

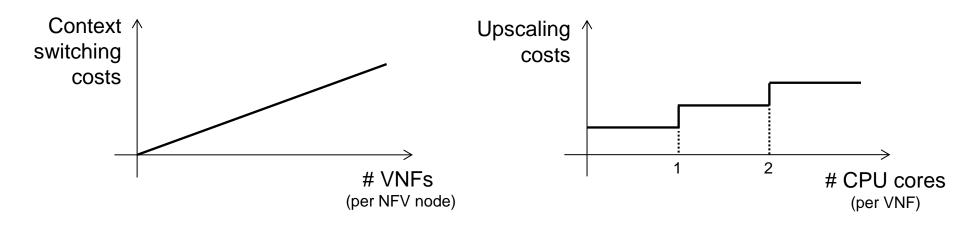

- NFV adds flexibility to service deployment but it can lead to some drawbacks
 - The consolidation of VNFs leads to performance degradation of the NFV node due to processing resource sharing
 - Such performance degradation affects how the VNFs and the SCs are placed in the network
- Related work
 - VNFs and SCs placement in the network considering limited network resources and latency constraints [2]
 - No focus on processing capacity of NFV nodes and processing requirements of VNFs

[2] Mehraghdam, S., Keller, M., Karl, H., "Specifying and placing chains of virtual network functions," IEEE 3rd International Conference on Cloud Networking (CloudNet) 2014, vol., no., pp.7,13, 8-10 Oct. 2014

Introduction Our contribution

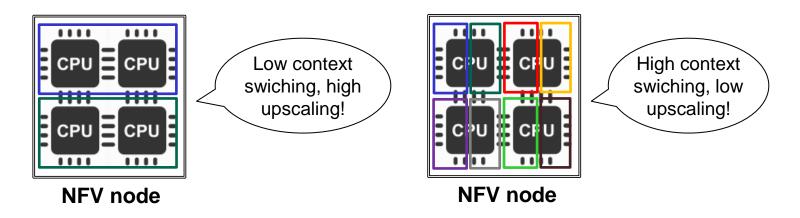
- We introduce the concept of *size* of a VNF
 - The more processing resources are assigned to a VNF, the *bigger* is the VNF
 - The bigger is a VNF, the more SCs can share that VNF
- We model two processing resource sharing costs
 - Context switching costs
 - Upscaling costs
- We evaluate how such costs impact on SC and VNF placement

System model Overview

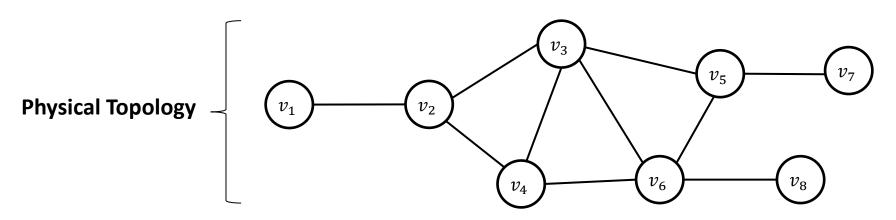

System model Processing resource sharing costs

- We assume that *multi-core CPUs* are adopted by NFV nodes
- We consider two processing resource sharing costs

1. Context switching costs


Increase linearly with respect to the number of VNFs placed in the NFV node

- Related to the needs of saving/loading the context (i.e., state) of VNFs
- 2. Upscaling costs
 - Step function with respect to the number of CPU cores required by each VNF
 - Related to the needs of balancing traffic among different cores


System model Processing resource sharing costs

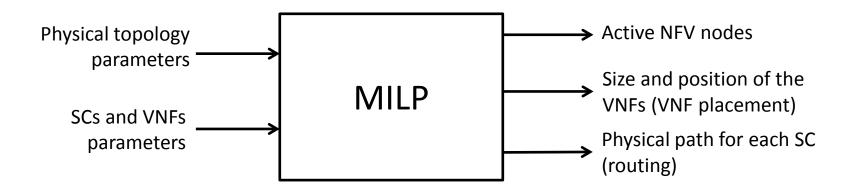
- Such costs lead to two performance degradation effects
 - 1. Increase of *latency* in crossing the NFV node (latency costs)
 - 2. Decrease of the *actual processing capacity* of the NFV node (processing costs)
- A number/size trade-off for the VNFs sharing a NFV node exists
 - Few big VNFs lead to low context switching costs but high upscaling costs
 - A lot of small VNFs lead to high context switching costs but low upscaling costs


System model The physical topology

- Physical nodes
 - All of them have forwarding capabilities
 - Some of them are *NFV nodes* and are described by
 - The number of CPU cores (processing capacity)
 - The upscaling costs
 - The context switching costs
- *Physical links*: are characterized by
 - Their bandwidth capacity
 - The latency introduced by crossing them

System model The SCs and the VNFs

- Every service chain consists in
 - Two fixed end points
 - A set of chained VNFs
 - A set of virtual links chaining End Points/VNFs
- Every service chain is associated to
 - A maximum tolerated latency
 - A requested bandwidth
- Every VNF is characterized by its processing requirement



MILP optimization problem Consolidation of VNFs

- We formulate a Mixed Integer Linear Programming (MILP) model to capture the optimal placement of a set of SCs
- Our **objective** is to *consolidate* as much as possible the deployed VNFs
 - Maximum consolidation ⇔ Minimization of the number of *active* NFV nodes

MILP optimization problem Inputs and outputs

- Our MILP model decides
 - Where the VNFs are placed
 - What is the size of the placed VNFs
 - How the traffic between VNFs is routed in the physical network for each SC

MILP optimization problem Sets and parameters

Sets and topologies

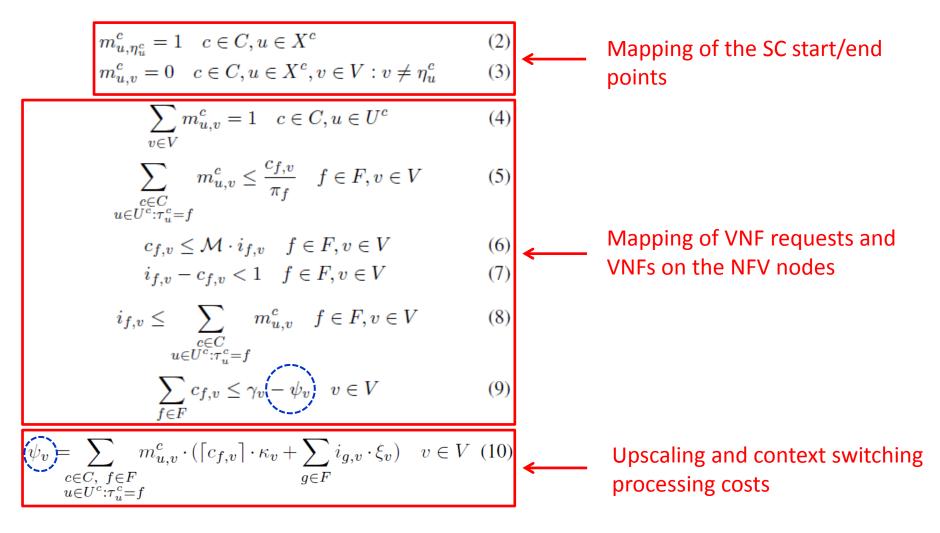
Parameters

				<u>.</u>	
Graph/Set	Description	Parameter	Domain	Description	
$\mathcal{G} = (V, E)$	Physical network graph, where V is the set of	$ au_u^c$	$c \in C$	VNF requested by the VNF request u	
	physical nodes v and E is the set of physical		$u \in U^c$	in the SC $c \ (\tau_u^c \in F)$	
	links (v, v') connecting the nodes v and v'	η^c_u	$c \in C$	Physical node where the start/end point	
C	Set of the service chains c that must be		$u \in X^c$	u for the SC c is mapped to $(\eta_u^c \in V)$	
	embedded in the physical network \mathcal{G}	π_f	$f \in F$	Fraction of the CPU processing re-	
$\mathcal{C}^c = (X^c \cup U^c, G^c)$	Simple-chain graph for the SC c , where X^c	J	5 -	quired by each VNF request u for the	
	is the set of fixed start/end point u, U^c is the			VNF f	
	set of VNF requests u, G^c is the set of virtual	γ_v	$v \in V$	Number of the CPU cores hosted by the	
	links (u, u') connecting the VNF request (or	, .	_	node v	
	start point) u and the VNF request (or end	$\beta_{v,v'}$	$(v, v') \in E$	Bandwidth capacity of the physical link	
	point) u'	1 0,0	(, , –	(v,v')	
F	Set of VNFs f that can be requested and deployed in the network	$\lambda_{v,v'}$	$(v, v') \in E$	Latency of the physical link (v, v')	
	deployed in the network	μ_v	$v \in V$	Upscaling latency of the node v	
		ω_v	$v \in V$	Context switching latency of the node v	
		κ_v	$v \in V$	Upscaling processing of the node v	
	ξ_v	$v \in V$	Context switching processing of the		
N.B.: We d			node v		
VNE f and	$\delta^c_{u,u'}$	$c \in C$	Requested bandwidth on the virtual link		
<i>VNF f</i> and	u, u	$(u, u') \in G^c$	(u, u') for the SC c		
		φ^c	$c \in C$	Maximum tolerated latency by the SC c	
		\mathcal{M}		Big-M parameter	

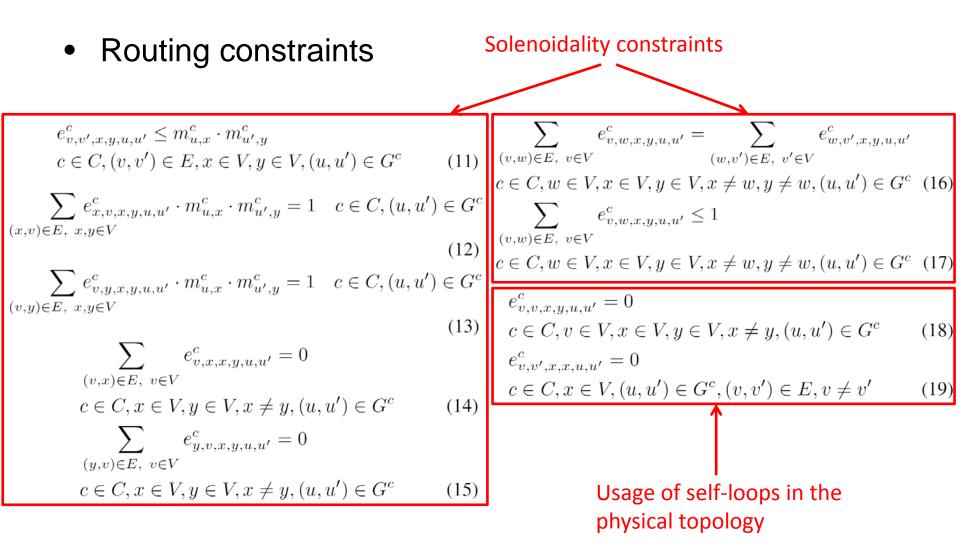
MILP optimization problem Decision variables

Variable	Domain	Description	
$m_{u,v}^c \in \{0,1\}$	$c \in C$	Binary variable such that	
,	$u \in U^c$	$m_{u,v}^c = 1$ iff the VNF	VNF requests $u \rightarrow NFV$ nodes v
	$v \in V$	request u for the SC c is	VINF requests $u \rightarrow infv nodes v$
		mapped to the node v , oth-	mapping variable
		erwise $m_{u,v}^c = 0$	
$c_{f,v} \in [0, \gamma_v]$	$f \in F$	Real variable indicating the	
	$v \in V$	fraction of the CPU cores	
		in the node v used by the	
		VNF f	VNFs $f \rightarrow$ NFV nodes v
$i_{f,v} \in \{0,1\}$	$f \in F$	Binary variable such that	mapping variables
	$v \in V$	$i_{f,v} = 1$ iff the VNF f	
		is hosted by the node v ,	
		otherwise $i_{f,v} = 0$	
$e^{c}_{v,v',x,y,u,u'} \in \{0,1\}$	$c \in C$	Binary variable such that	
0,0,2,2,9,0,0	$(v, v') \in E$	$e^{c}_{v,v',x,y,u,u'} = 1$ iff	
	$x \in V$	the physical link (v, v')	
	$y \in V$	belongs to the path be-	Virtual links $(u, u') \rightarrow$ Physical
	$(u, u') \in G^c$	tween the nodes x and y ,	
		where the VNF requests	paths $\sum(v, v')$ mapping variable
		u and u' for the SC c	
		are mapped to, otherwise	
		$e^c_{v,v',x,y,u,u'} = 0$	
$a_v \in \{0, 1\}$	$v \in V$	Binary variable such that	
		$a_v = 1$ iff the node v is	
		active, otherwise $a_v = 0$	

MILP optimization problem Objective function and contraints


Objective function

$$\min \sum_{v \in V} a_v$$


- The objective of the optimization problem is to minimize the number of NFV active nodes in the network
- The **constraints** are grouped in three different categories
 - Request placement constraints: correct mapping VNFs → NFV nodes and VNF requests → NFV nodes
 - Routing constraints: correct mapping Virtual links → Physical paths
 - Performance constraints: guarantee of the performance requirements

MILP optimization problem Constraints

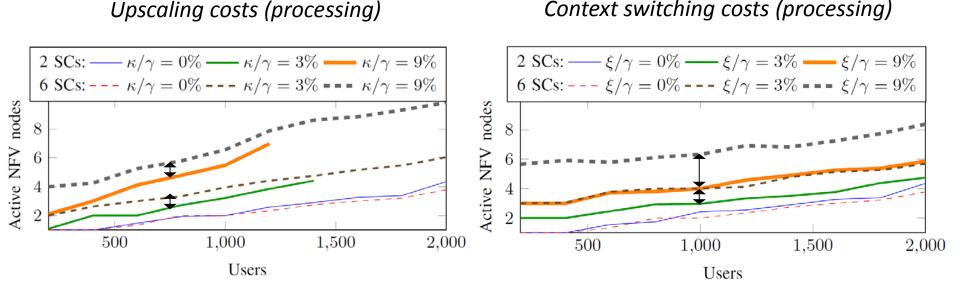
• Request placement constraints

MILP optimization problem Constraints

MILP optimization problem Constraints

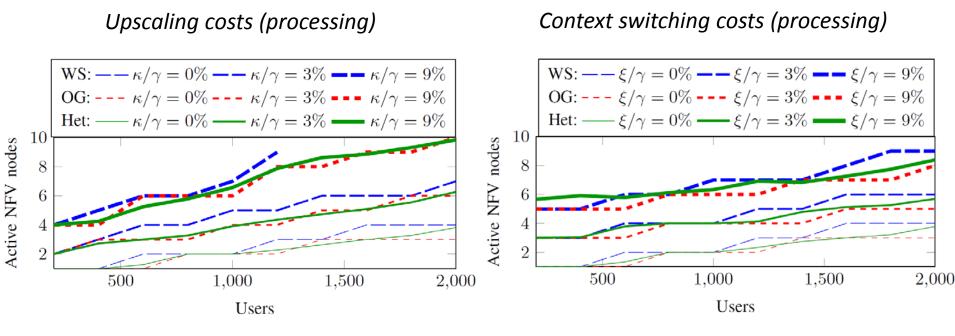
• Performance constraints

$$\begin{split} \sum_{\substack{c \in C, \ x, y \in V \\ (u,u') \in G^c}} e_{v,v',x,y,u,u'}^c \cdot \delta_{u,u'}^c \leq \beta_{v,v'} \quad (v,v') \in E \quad (20) \\ &\longleftarrow \text{Bandwidth constraint for the links} \\ \hline \sum_{\substack{(v,v') \in E, \ x, y \in V \\ (u,u') \in G^c}} e_{v,v',x,y,u,u'}^c \cdot l_{v,v'} + \sigma \leq \varphi^c \quad c \in C \quad (21) \\ &\longleftarrow \text{Latency constraint for the Service Chains} \\ \hline \sigma^c = \sum_{\substack{f \in F, \ v \in V \\ u \in U^c: \tau_u^c = f}} m_{u,v}^c \cdot (\lceil c_{f,v} \rceil \cdot \mu_v + \sum_{g \in F} i_{g,v} \cdot \omega_v) \quad c \in C \quad (22) \\ &\longleftarrow \text{Upscaling and context switching latency costs} \\ \hline \sum_{\substack{f \in F \\ u \in V}} i_{f,v} \leq \mathcal{M} \cdot a_v \quad v \in V \quad (23) \\ a_v \leq \sum_{f \in F} i_{f,v} \quad v \in V \quad (24) \\ \hline \end{split}$$


Numerical results Simulation settings

- We consider the following simulation settings
 - Physical topology: Internet2 network (10 nodes)
 - Service Chains: four different types

Service Chain	Chained VNFs	δ	arphi
Web Service	NAT-FW-TM-WOC-IDPS	100 kbit/s	500 ms
VoIP	NAT-FW-TM-FW-NAT	64 kbit/s	100 ms
Video Streaming	NAT-FW-TM-VOC-IDPS	4 Mbit/s	100 ms
Online Gaming	NAT-FW-VOC-WOC-IDPS	50 kbit/s	60 ms


- We chose the CPU processing requirements for each VNF according to some middleboxes datasheets
- We defined two scenarios
 - Heterogeneous scenario: we randomize the choice of start/end points and of the SCs to be deployed
 - Homogeneous scenario: we randomize the choice of start/end points but we consider only one type of SC

Numerical results Heterogeneous scenario

- As the number of users increases, the number of NFV active nodes increases
- The number of SCs does not significantly affect how higher upscaling costs translate into the number of active NFV nodes
- As the number of deployed SCs grows, the impact of higher context switching costs on the number of active NFV nodes is amplified

Numerical results Homogeneous scenario (6 SCs)

- We consider the deployment of Web Service (*WS*) and Online Gaming (*OG*) homogeneous SCs
- The deployment of homogeneous types of SCs does not significantly impact on the number of active NFV nodes, even with respect to the heterogeneous (*Het*) case

Conclusion

- We investigated the impact of processing resource sharing among VNFs when multiple SCs are placed in the network
- We took into account the upscaling and the context switching costs
 - Higher context switching costs significantly amplify the number of active NFV nodes when an increasing number of SCs is considered, while the upscaling costs don't
 - The deployment of homogeneous and heterogeneous SCs has a similar impact on the VNF consolidation
- Current work
 - Development of a heuristic algorithm to improve the scalability of the model

THANK YOU! Questions?