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Abstract 
Neuromodulation, specifically spinal cord stimulation, has proven to be an effective treatment for 

treatment of various chronic pain symptoms. For this project, a prototype of a system capable of 

providing spinal cord stimulation through an implanted device was developed. The developed system 

was notable for its relatively small size and low power wireless communication using Bluetooth Low 

Energy. The implantable pulse generator is capable of providing biphasic pulses with amplitudes up to 

25mA. 
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Background 

Neuromodulation Therapy 
Neuromodulation is the process of controlling or modifying the function of the nervous system through 

the use of electrical stimulation. Therapeutic neuromodulation for the relief of pain was first 

documented by the researchers Wall and Sweet in 1967. They performed neuromodulation on a 

peripheral nerve. Researchers Shealy and Mortimer followed with stimulation of a nerves in the spinal 

cord that same year [1]. Modern applications of neuromodulation include pain relief and treatment of 

functional conditions like incontinence. It has become a versatile and attractive treatment option for 

clinical applications [2]. 

Spinal Neuromodulation for Pain Treatment 
Neuromodulation provides pain relief through the mechanism of the Gate Control Theory of pain, 

published by Wall and Melzack. The theory states that two separate types of neural fibers carry sensory 

information to the brain. Thick fibers carry signals indicating sensations like touch, pressure, and 

vibration, while thin fibers carry pain signals. Pain relief is provided by stimulation of the thick fibers, 

which prevents pain signals from the thin fibers from being transmitted to the brain [3]. The gate control 

theory has proven over the course of more than 30 years to provide an excellent synthesis of many of 

the observations and theories of pain that have been developed [4]. 

Spinal cord stimulation has proven to be an effective method of pain relief for a variety of different 

types of pain. In one study of patients who suffer from failed back surgery symptom, more than 40% of 

the individuals who received spinal cord stimulation received at least 50% reduction in pain, as opposed 

to those who only received other conventional treatments, of whom only 9% received a 50% reduction 

in pain [5]. In a study evaluating treatment of patients experiencing chronic intractable pain treated with 

permanent implants which performed spinal cord stimulation, 52% of the patients experienced at least 

50% continued relief of pain [6]. A literature review of many different studies on spinal cord stimulation 

“found that SCS had a positive, symptomatic, long-term effect in cases of refractory angina pain, severe 

ischemic limb pain secondary to peripheral vascular disease, peripheral neuropathic pain, and chronic 

low-back pain” [7]. 
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Motivation 
The goal of this project was to develop a prototype system demonstrating the capabilities required to 

provide wirelessly controlled neuromodulation from an implantable device capable of providing spinal 

cord stimulation. Many conventional systems rely on wired communication and are relatively high 

power. This system will aim to provide low power, wireless communication, and a small size implantable 

device. The system consists of two main components. The first component is a prototype of the 

implantable device with the capability to respond to wireless. The second major component was a 

device capable of sending wireless control signals to multiple stimulator devices, while providing a 

convenient interface for the user. A diagram of the desired system architecture appears below in Figure 

1. 

 

Figure 1: System Architecture Overview 

Implantable Device Prototype 
The goal of the prototype implantable device was to develop a self-contained unit displaying all the 

functionality necessary in an implantable neuromodulation device. Micro-Leads had chosen an ASIC for 

generating the neuromodulation waveforms, and chose TI’s CC2650 microcontroller to provide wireless 

communication using Bluetooth Low Energy (BLE) and generate digital control signals for the ASIC. 

Creating the prototype would require implementation of TI’s BLE stack software to establish the 

Bluetooth link, creating an appropriate message format for the wirelessly transmitted data, and 

designing a custom PCB. 

Control Station Prototype 
The control station prototype’s function was to provide a method for wirelessly communicating with 

one or more of the implantable device prototypes over BLE. The goal was to include setting of 

stimulation parameters and device status information, and to provide the user with a convenient 

interface. 
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Design Methodology 

Design of Implantable Device Prototype 
Before the start of the project, Micro-Leads had acquired a test board for the ASIC to be used for the 

project from the ASIC manufacturer. This board featured the ASIC, an MSP430 microcontroller, and an 

FTDI USB to UART chip. A custom PC application, also provided by the ASIC manufacturer, 

communicated with the MSP430 via the FTDI chip, and in turn the MSP430 commanded the ASIC to 

generate appropriate waveforms. 

Wireless Communication 
The first step taken was to insert two CC2650 microcontrollers, incorporated in TI development kits, into 

the communication chain between the computer running the custom application from the ASIC designer 

and the MSP430 controlling the ASIC. One CC3650 development kit was connected to the computer, 

with an FTDI chip on the development kit board providing USB to UART communication from the 

computer to the CC2650. This development kit would transmit the data it received via UART over BLE to 

the second development kit. The second development kit then communicated the information to the 

MSP430 on the ASIC test board via UART. This process was undertaken to develop familiarity with the 

CC2650 and TI’s BLE stack software, which was being used as a starting point for the project. An 

overview of this first system architecture is shown below in Figure 2. 

 

Figure 2: First System Architecture 
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The Bluetooth Low Energy stack from TI implements the framework defined by the Bluetooth Special 

Interest Group for Bluetooth Low Energy. This framework provides for two different types of devices, 

client devices and server devices. Client devices are responsible for issuing Generic Attribute Profile 

(GATT) commands and requests, and server devices respond to these requests. Server devices have one 

or more services, representing functions the device can perform. Services are groups of one or more 

characteristics, which are individual pieces of data related to performing the function of the service. 

These characteristics are read or written by the client device. Figure 3 below provides a visual 

illustration of the Bluetooth Low Energy architecture. 

 

Figure 3: Bluetooth Low Energy Architecture 

To provide a more concrete example of the Bluetooth Low Energy architecture, an illustration of an 

example architecture has been provided below. These figures demonstrate a cell phone communicating 

with a temperature sensor which provides the temperature based on an average of some number of 

recent temperature samples. Figure 4 shows an example of a GATT characteristic read request. The 

client (the cell phone in this example) requests to read the temperature characteristic. The server (the 

temperature sensor) responds with the temperature it has calculated. Figure 5 shows an example of a 

GATT write request. The client asks to write to the sample frequency characteristic, and the server 

responds with a message indicating the result of the operation. 

 

Figure 4: BLE Architecture Example – Read 
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Figure 5: BLE Architecture Example - Write 

For this project, a single custom service was implemented, which contained only one characteristic. The 

CC2650 development kit connected to the computer was set up as a client device, and the one 

connected to the ASIC test board was configured as a server device. The server implemented a custom 

service providing a single characteristic. The message generated by the custom application on the 

computer was written to this single characteristic by the client device. After the characteristic had been 

written, the server device relayed the message over UART to the MSP430 on the ASIC test board. 

One significant challenge faced in the process of implementing this system was the size of the message 

generated by the custom PC application. The PC application generated a message that was several 

hundred bytes long. Bluetooth Low Energy has a maximum transmission unit (MTU) with a default value 

of 23 bytes. This required use of the GATT commands for long characteristic values, in which the 

messages include an offset field, indicating which segment of the characteristic each packet represents. 

However, the number of packets required to transmit an entire message proved problematic for the BLE 

stack architecture TI provides. The BLE stack architecture provided by TI operates using a FIFO queue of 

events that need processing. During testing of the transmission of the message from the CPU, it was 

discovered that holding up this queue for too long processing a single transmission event would cause 

the application to crash. In order to overcome this obstacle, a new structure for message transmission 

events was developed. Each event would result in the transmission of a single packet of the message. 

Then, if more message remained, the event would add another transmission event to the end of the 

queue. This “recursive” event generation method allowed for the transmission of sufficiently long 

characteristic values without tying up the event queue for too long. 
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After the wireless communication protocol had been debugged, software was written for the CC2650 to 

replicate the functionality of the MSP430 on the original ASIC test board. A new breakout board for the 

ASIC was acquired which featured the ASIC without a microcontroller to command it. The CC2650 

evaluation board was connected to the computer by USB, and to this new evaluation board by jumper 

wires. No wireless communication was used for this step. The custom PC application was used to send 

messages to the CC2650 over UART, which in turn communicated with the ASIC using SPI to set 

waveform parameters. This setup was implemented in order to verify the ability to appropriately 

communicate with the ASIC, using the SPI bus and required control lines, without the added 

complication of implementing wireless communication at the same time. A diagram illustrating this 

second system architecture appears below in Figure 6. 

 

Figure 6: Second System Architecture 

Once the wireless communication and ASIC control projects had both been completed, the next step 

was to combine the two projects into one. In this iteration, the computer was connected to one CC2650 

evaluation board via USB, and communicated with the CC2650 via UART. This microcontroller then 

transmitted the data it received from the PC to a second CC2650 via BLE. The second CC2650 was 

connected the new ASIC breakout board, and was responsible for controlling the ASIC to generate the 

desired waveforms. At this stage, the second CC2650 and ASIC were functioning as they would be 

expected to in the implantable device. An overview of this architecture is shown below in Figure 7. 

 

Figure 7: Third System Architecture 
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Printed Circuit Board Layout 
Following development of appropriate software for an implantable device, a custom printed circuit 

board was designed. Included on the circuit board were the ASIC responsible for generating 

neuromodulation waveforms, the CC2650 microcontroller, and wireless power circuitry designed by an 

employee of Micro-Leads. This circuit board was designed to incorporate the functionality of the CC2650 

development kit and the ASIC test board connected by SPI in the system architecture shown in Figure 7, 

in addition to providing for battery power of the device. The board was also designed with two different 

voltage regulation schemes available so that each could be tested for efficiency and effectiveness. 

The two most significant challenges faced during design of this PCB were the design of the RF microstrip 

line to connect the CC2650 to its antenna and the goal of achieving a small size such that feasibility of 

implanting the device into humans or smaller animals could be demonstrated. For ease of 

implementation, an end-mount coaxial connector was chosen for the antenna for the board. This 

solution was determined because it was anticipated that it would be most likely to work without having 

to debug RF interference or trace antenna shape. 

The design of the RF microstrip portion of the PCB was based on a reference design provided by TI. The 

reference design used was the CC2650EM-7ID. This design is for a 2 layer PCB that can be mounted onto 

the larger development kit board. The design also includes a trace antenna. A portion of the schematic 

for the design appears below in Figure 8. Shown below are the required power supply bypass capacitors, 

the 2 different required clock crystals, and the matching network for the antenna. All of these 

components were copied in the custom PCB. 

 

Figure 8: Reference Design Schematic 
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TI also supplied board layout files in the reference design, which were used to provide a template for the 

layout of the RF microstrip line as well as the layout of the clock crystals. The reference design layout is 

shown below in Figure 9. 

 

Figure 9: Reference Design Layout 

The microstrip line runs from top side of the chip on the 2 rightmost pins towards the top of the board, 

and an effort was made to lay out the microstrip in the custom PCB nearly identically to help ensure 

good RF performance. The two clock crystals, Y1 and Y2, can also be seen connected to pins in the top 

right corner of the chip. Their layout was also mirrored in the custom PCB to help ensure good 

performance. However, because the reference design is a 2 layer PCB, and the custom PCB was designed 

to be a 4 layer board, the microstrip width had to be recalculated for the design. To perform these 

calculations, National Intstruments’ microstrip calculator TX-LINE was used. The transmission line type 
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used in the TI reference design was a coplanar wave guide with ground plane, so this same type of line 

was used in the custom PCB. The calculations to establish the appropriate dimensions for the microstrip 

transition line were performed using TX-LINE as shown in Figure 10 below. 

 

Figure 10: TX-LINE Microstrip Calculations 

The small desired size of the PCB was also a design challenge, and resulted in the layout going through 

several iterations before being sent for manufacturing. Each redesigned resulted in successively smaller 

overall footprints, until total size began to be limited by the size of the ASIC itself, at which point it was 

determined little further progress would be made without reducing the size of the ASIC. 

Once the PCB design had been sent to the manufacturer for a price quote, a further redesign was 

undertaken. The presence of blind vias in the design had resulted in a price quote that was determined 

to be out of the project’s budget. To reduce the quote, all blind vias were replaced with through vias, 

requiring significant re-routing to be undertaken. 

Design of Control Station Prototype 
The control station was implemented using a Raspberry Pi with a BLE USB dongle. The goal for the 

control station was to replace the computer running the custom application from the ASIC vendor and 

the CC2650 attached to the computer, and to provide a convenient user interface that would provide for 

easy control of multiple implantable devices. This was important because the custom application only 

provided for control of one stimulator, and imposed limits on the format of the message being sent. 

The gatttool linux command line tool was used to send BLE messages to the CC2650 on the custom PCB 

from the Raspberry Pi. Gatttool allowed for direct control of the USB dongle on the Raspberry Pi. The 

tool provides for transmission of various GATT messages, such as requesting a list of available 

characteristics, reading characteristic values, and writing values to characteristics. A python script was 

written that made system calls to gatttool. This script was capable of connecting to a device based on 

Bluetooth address, reading available characteristics, and sending a message by writing to those 

characteristics. 
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Results 
Overall, this project demonstrated a successful proof of concept for a system capable of providing 

wirelessly controlled neuromodulation from implantable devices. The work has led to successful 

iterations towards a product from the sponsoring company, with improvements to both the implantable 

device and control station based on the work presented here. 

Implantable Device 
The message architecture designed for transmitting stimulation parameters over BLE was successful, 

proving the suitability of BLE for serving as the communication channel in an implantable 

neuromodulation device. Below in Figure 11 is an image showing the setup used to test this 

communication with the computer application running on a PC, the CC2650 development kit 

transmitting the BLE messages, and the custom PCB receiving the messages and generating stimulation 

waveforms. 

 

Figure 11: Custom PC Application Wireless Control 

The custom PCB, although not small enough to serve as an implantable product, was successfully made 

reasonably compact given the quantity and size of components included, and was successful in 

implementing its core functions of wireless communication over BLE and generation of 

neuromodulation waveforms. The final design size was 40mm x 50mm. Included below are images of 

the layout for the top and bottom layers, as well as a picture of the PCB itself. Figure 12 shows the 

layout of the top side of the PCB, and Figure 13 shows the layout of the bottom. A photo of the top side 

of the assembled PCB is shown in Figure 14. 
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Figure 12: PCB Top Layout 

 

Figure 13: PCB Bottom Layout 
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Figure 14: PCB Photo 

After work for this project had concluded, Micro-Leads improved on the design of the PCB to move the 

device from prototype towards product. One important improvement made to the implantable device 

was to shrink the size. This was accomplished largely through a reduction in the size of the ASIC, in 

addition to refinement of wireless power circuitry and use of a chip antenna. 

Control Station 
The Raspberry Pi control station was shown to be capable of communicating with the implantable 

devices as desired. Shown below is the test setup used to demonstrate this functionality. The computer 

uses SSH to log in to the Raspberry Pi and run the python script to send messages to the custom PCB. 

Figure 15 below shows this test setup. 

 

Figure 15: SSH Terminal Wireless Control 
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Another option for use of the Raspberry Pi was to connect a monitor, keyboard, and mouse, log into the 

device’s operating system, and access the command line in that manner. Although this script 

accomplished the goal of demonstrating the ability of the Raspberry Pi to transmit messages to the 

implantable device, it fell short on the goal of providing a convenient user interface. Changing the device 

being controlled or the message being sent required editing the script in this implementation. These 

limitations were largely due to time limitations, and have since been rectified by Micro-Leads. 

One of the key steps forward that was accomplished however was the ability to change the format of 

the message being generated by the computer. While before the BLE link had to operate within the 

framework of the single long serial message generated by the PC application that Micro-Leads already 

had, now the control signals could be generated in a way that better fit the BLE paradigm of shorter 

individual messages. 

Micro-Leads built on the work accomplished during this project to create a very effective control station 

based on the Raspberry Pi. The simple python script written for the prototype control station was 

replaced with a web server hosted by the Raspberry Pi. The web server provided a much more user-

friendly interface. Any computer on the same network as the Raspberry Pi can log into the web server 

and use an intuitive GUI to see nearby devices, read their status, and modify stimulation parameters. 

The communication protocol between the two devices was also rewritten to better reflect the BLE 

paradigm. The implantable device now implements a service with multiple different characteristics, a 

different one for each message type and stimulation channel. The control station now communicates 

using shorter messages, and message type is determined by which characteristic is written to as 

opposed to a field in the message. 
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