
This implementation guide provides
key learnings and configuration
insights to integrate technologies
with optimal business value.

If you are responsible for…
• Technology decisions:

You will learn how to implement
a storage-as-a-service (STaaS)
solution using MinIO*. You’ll
also find tips for optimizing
performance with Intel®
technologies and best practices
for deploying MinIO.

Learn how to deploy a storage-as-a-service (STaaS) solution based on MinIO*
with Intel® technology to create a scalable, S3 object store that features high
performance, strict consistency and enterprise security

Implementation Guide for
MinIO* Storage-as-a-Service

ImplementatIon GuIde
Service Provider
Data Center

Introduction
MinIO* is a self-contained, distributed object storage server that is optimized for
Intel® technology. MinIO provides a compelling storage-as-a-service (StaaS) object
storage platform when combined with Intel’s broad selection of products and
technologies, such as Intel® Non-Volatile Memory express* (NVMe*)-based Solid
State Drives (SSDs), Intel® Ethernet products and Intel® Xeon® Scalable processors,
augmented by Intel® Advanced Vector Extensions 512 (Intel® AVX-512) single
instruction multiple data (SIMD) instructions for x86 architecture. Collaborative
open source developer communities are also available for MinIO.

An object storage solution should handle a broad spectrum of use cases including
big data, artificial intelligence (AI), machine learning and application data. Unlike
other object storage solutions that are built for archival use cases only, the MinIO
platform is designed to deliver the high-performance object storage that is
required by modern big data applications.

MinIO includes enterprise features such as:

• Hyperscale architecture to enable multi-data center expansion through
federation

• High performance to serve large volumes of data needed by cloud-native
applications

• Ease of use with non-disruptive upgrades, no tuning knobs and simple support

• High availability to serve data and survive multiple disk and node failures

• Enhanced security by encrypting each object with a unique key

Use the information in this implementation guide to deploy MinIO object storage
and unleash the power of STaaS.

Solution Overview
MinIO consists of a server, optional client and optional software development kits
(SDKs):

• MinIO Server. A 100 percent open source Amazon S3*-compatible object storage
server that provides both high performance and strict consistency. Enterprise-
grade encryption is used to help secure objects, and high-performance erasure

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 2

Table of Contents

Introduction . 1

Solution Overview 1

Intel® Technologies 2

System Requirements 3
Software Requirements 3
Hardware Requirements 3

Installation and Configuration 4
Step 1 - Download and Install
the Linux OS of Choice 4
Step 2 - Configure the Network 5
Step 3 - Configure the Hosts 6
Step 4 - Download the MinIO
Executables .7
Step 5 - Start the MinIO Cluster 8
Step 6 - Test the MinIO Cluster 8

Accessing and Managing the MinIO
Cluster . 8

MinIO Client (MC) . 8
AWS Command-Line Interface (CLI) . . . 8
S3cmd CLI . 9
MinIO Go Client SDK for Amazon
S3-Compatible Cloud Storage 9

Operating MinIO . 9
Parity and Erasure Coding 9
Dealing with Hardware Failures 9
Healing Objects . 9
Updating MinIO . 9
Checking MinIO Cluster Status 10
Monitoring MinIO Using
Prometheus* . 10

Support for MinIO 10
MinIO Slack* Channel 10
MinIO SUBNET . 10

Scaling MinIO Clusters with
Federation . 10

Automating MinIO Deployments
Using Kubernetes* 11

MinIO Best Practices 11
Cluster Sizing . 11
Performance and Networking 12

Summary . 12

References . 12

Appendix A: Linux Kernel Tuning
Parameters . 13

Solutions Proven by Your Peers 14

code algorithms are used to provide data durability. With MinIO data protection,
a cluster can lose up to half of its servers, and half of its drives, and continue to
serve data. User and application authentication are provided via tight integration
with industry-standard identity providers.

• MinIO Client. Called MC, the MinIO Client is a modern and cloud-native
alternative to the familiar UNIX* commands like ls, cat, cp, mirror, diff,
find and mv. The MinIO Client commands work with both object servers and
file systems. Among the most powerful features of the MinIO Client is a tool for
mirroring objects between S3-compatible object servers.

• MinIO SDKs. The MinIO Client SDKs provide simple APIs for accessing any
Amazon S3-compatible object storage. MinIO repositories on GitHub* offer SDKs
for popular development languages such as Golang*, JavaScript*, .Net*, Python*
and Java*.

The use cases for MinIO span a wide variety of workloads and applications (see
Figure 1).

Figure 1. MinIO* object storage provides the high performance required by modern
big data applications.

Intel® Technologies
Several Intel® technologies, both hardware and software, provide the performance
and reliability foundation of a MinIO-based solution. See the “References” section
for links.

• Data durability and performance boost. MinIO protects the integrity and
durability of objects with erasure coding and uses hash checksums to protect
against bitrot. These performance-critical algorithms have been accelerated
using the SIMD instructions on Intel® architecture using Intel® Advanced Vector
Extensions 2 (Intel® AVX2) and Intel AVX-512. Offloading these calculations has a
positive impact on system performance.

• Enhanced storage performance. Intel® Serial AT Attachment (SATA)-based, Intel
NVMe-based and Intel® Optane™ SSDs provide performance, stability, efficiency
and low power consumption. Intel NVMe-based SSDs provide a fast storage layer
which MinIO in turn translates into fast throughput for S3 object PUTs and GETs.

• Linear scaling with Intel® processors. The Intel Xeon processor Scalable family
provides a wide range of performance options. High-end Intel® processors deliver
energy efficiency and high performance for intensive STaaS workloads. An
alternative is to choose a lower-performance option for less demanding STaaS
workloads such as archive storage workloads.

MinIO*

Data Analytics

Spark*
Flink 1.0*
Presto*
Hive*

Data Ingestion

Kafka*
MQTT*
AMQP*

Fluentd*

AI & ML

TensorFlow*
H2O.ai*

PyTorch*

Database

Elasticsearch*
PostgreSQL*

MySQL*

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 3

• Increased server bandwidth. Intel® Ethernet Network Adapters provide flexible bandwidth options.
They are available with 10, 25 and 40 Gigabit Ethernet (GbE) ports to support whatever network
infrastructure may be deployed in your data center. The MinIO Server works fastest with high-speed,
low-latency networking connections between servers in a cluster and between a MinIO cluster and
its clients.

System Requirements

Software Requirements
• MinIO software. As of the publication date, the current version of MinIO is RELEASE.2019-04-04T18-

31-46Z.

• Compatible OS. MinIO will work effectively with any Linux* distribution. Intel recommends that you
deploy MinIO on one of the three major Linux distributions: CentOS*/Red Hat Enterprise Linux* (RHEL*),
SUSE*, or Ubuntu*.

Hardware Requirements

MinIO was designed to run on industry-standard hardware. The notes in Table 1 provide guidance for
selecting components.

Table 1. Server Configuration

GbE = Gigabit Ethernet NVMe = Non-Volatile Memory express SATA = Serial AT Attachment

Component Range of Options Notes

CPU
2x Intel® Xeon® Scalable
processors

Erasure coding will take advantage of Intel®
Advanced Vector Extensions 512 (Intel® AVX-512).

Memory 96 GB

MinIO does not require a large amount of
server memory. 96 GB is a “balanced” memory
configuration for both 1st and 2nd Generation Intel
Xeon Scalable processors.

Data Storage

• SATA-based solid state
drives (SSDs)

• NVMe*-based SSDs

• Intel® Optane™ Data
Center SSDs

MinIO can use all the drives in a server. A common
high-performance deployment choice is a 2U
24-drive chassis with SATA- or NVMe-based SSDs.

For archive workloads, a 4U 45-drive chassis with
high-density SATA-based SSDs works well.

The use of faster drives allows MinIO to provide
more throughput.

Network
10/25/40/50/100 GbE
network interface cards
(NICs)

The use of faster networks allows MinIO to provide
higher levels of throughput. Bonding multiple
networks together both creates a high-availability
configuration and makes additional throughput
possible.

Cluster Size 4 to 32 nodes

The minimum cluster size is 4 nodes.

The maximum cluster size is 32 nodes.

Multiple MinIO clusters can be federated to create
larger clusters.

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 4

Installation and Configuration
There are six steps to deploying a MinIO cluster:

1. Download and install the Linux OS

2. Configure the network

3. Configure the hosts

4. Download the MinIO executables

5. Start the MinIO cluster

6. Test the MinIO cluster

Step 1: Download and Install the Linux OS of Choice

MinIO requires only the “basic server” option from the distribution. Often IT organizations have
determined best practices for Linux OS provisioning and system hardening and these recommendations
should be followed. Intel recommends that several utilities be added to the “basic server” bundle to
manage Intel® devices. Additional services and libraries are also needed to support the health of the
MinIO cluster. The following subsections provide information about the recommended additional
services and libraries, utilities, Intel® tools and drivers and firmware.

Additional Services and Libraries
The following services and libraries should be present to support the MinIO cluster:

• Network time protocol (NTP) time server configured to synchronize time between all MinIO servers

• Domain Name Service (DNS)

• Secure Shell (SSH) libraries

• Secure Sockets Layer (SSL) libraries

Recommended Utilities
The following utilities are useful for managing hardware:

• numactl

• pci-utils (lspci)

• nvme-cli

• sdparm

• hdparm

• sysstat (perf, dstat)

• git

• python

• screen

• tree

• ipmitool

• wget

• curl

• vim-enhanced (or emacs)

• collectd

• parted

The Yellowdog Updater, Modified (YUM) tool can be used to install the above 16 utilities, as shown here:

yum install numactl pci-utils nvme-cli sdparm hdparm systat git python screen

tree ipmitool wget vim-enhanced curl collectd parted -y

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 5

Intel® Tools
The Intel® SSD Data Center Tool (Intel® SSD DCT) provides manageability and configuration functionality
for Intel® SSDs with Peripheral Component Interconnect Express* (PCIe*) and SATA interfaces. This tool
is used to upgrade firmware on SSD controllers and to apply advanced settings. This tool is separate
from the nvme-cli utility, which is used only for managing NVMe-based devices and does not support
updating drive firmware.

The Intel SSD DCT can be downloaded from the following link: https://downloadcenter.intel.com/
download/28594/Intel-SSD-Data-Center-Tool-Intel-SSD-DCT-

Drivers and Firmware
Ensure that the following drivers and firmware are at their most current levels:

• BIOS. Follow the instructions provided by the server vendor.

• Intel SSD. Follow the instructions in the Intel SSD DCT Guide

• Intel® NIC. Download the latest driver and firmware packages. Note: 10/25/40 GbE NICs use the same
i40e driver package.

Intel NIC drivers are available at the following link: https://downloadcenter.intel.com/download/24411/
Intel-Network-Adapter-Driver-for-PCIe-40-Gigabit-Ethernet-Network-Connections-Under-Linux-
?product=95260

Intel firmware is available at the following link: https://downloadcenter.intel.com/download/25791/Non-
Volatile-Memory-NVM-Update-Utility-for-Intel-Ethernet-Adapters-710-Series-Linux-?product=95260

Step 2 - Configure the Network

Open Port 9000
By default, MinIO uses port 9000 to listen for incoming connections. If there is a need to employ a
different port number, then this can be selected when the MinIO server is started. Ensure that the port is
open on the firewall on each host.

Find the active zones:

firewall-cmd --zone=<my _ zone> --add-port=9000/tcp --permanent

Configure firewall:

firewall-cmd --zone=<my _ zone> --add-port=9000/tcp --permanent

Reload firewall:

firewall-cmd --reload

Choosing Hostnames

It is best to name the hosts with a logical sequence of hostnames. This is done to make starting and managing
the MinIO cluster simple. For example, Table 2 shows a naming convention for N number of nodes.

Table 2. Hostname Examples

Node 1 minio1.example.com

Node 2 minio2.example.com

… …

Node N minioN.example.com

https://downloadcenter.intel.com/download/28594/Intel-SSD-Data-Center-Tool-Intel-SSD-DCT-
https://downloadcenter.intel.com/download/28594/Intel-SSD-Data-Center-Tool-Intel-SSD-DCT-
https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-Driver-for-PCIe-40-Gigabit-Eth
https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-Driver-for-PCIe-40-Gigabit-Eth
https://downloadcenter.intel.com/download/24411/Intel-Network-Adapter-Driver-for-PCIe-40-Gigabit-Eth
https://downloadcenter.intel.com/download/25791/Non-Volatile-Memory-NVM-Update-Utility-for-Intel-Eth
https://downloadcenter.intel.com/download/25791/Non-Volatile-Memory-NVM-Update-Utility-for-Intel-Eth

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 6

Enabling Jumbo Frames
The use of jumbo frames can improve network bandwidth. However, the maximum transmission unit
(MTU) must be set globally for every host, client and switch. Intel recommends setting MTU = 9000 for
client nodes, storage nodes and switches.

Enabling Bonding
Network bonding offers redundancy for the networks that connect MinIO hosts and MinIO hosts and
clients. Bonding can also increase the network bandwidth between clients and hosts. When using a
bonded interface, the transmit hash policy should use upper-layer protocol information, which allows
the traffic to span multiple slaves.

The transmit hash policy is set with the following command.

$ echo “layer3+4” > /sys/class/net/bond0/bonding/xmit _ hash _ policy

Adding MinIO Host and Cluster Names to the DNS

Add all of the MinIO hosts, hostnames and IP addresses to the DNS.

Create a DNS entry with a name and IP address for the cluster. Use a round-robin algorithm to point
incoming requests to individual hosts in the MinIO cluster.

Advanced Network Tuning Parameters
Configuring interrupt request (IRQ) affinity to assign interrupts and applications to the same core can
have a positive impact on network performance. To configure IRQ affinity, stop irqbalance and then
either use the set_irq_affinity script from the i40e source package (recommended) or pin queues
manually. With each interrupt mapped to its own CPU, performance can increase when the interrupt
handling is done on the cores closest to the device.

The following example sets the IRQ affinity to all cores for the Ethernet adapters.

First, disable user-space IRQ balancer to enable queue pinning:

systemctl disable irqbalance

systemctl stop irqbalance

Then set IRQ affinity to all cores for ethX devices:

[path-to-i40epackage]/scripts/set _ irq _ affinity -x all ethX

Detailed instructions for setting IRQ affinity are provided in the Intel® X710/XL710 Linux Performance
Tuning Guide, available at the following link: https://www.intel.com/content/dam/www/public/us/en/
documents/reference-guides/xl710-x710-performance-tuning-linux-guide.pdf

Testing the Network
The last step to configuring the network is to verify connectivity and name resolution between MinIO
nodes. Each node should be able to connect with all of the other nodes. Run a command such as the
following on all MinIO hosts:

for i in $(seq 1 16); do ping -t2 host$(i); done

Step 3 - Configure the Hosts

Kernel Tuning Parameters
Most Linux systems should provide adequate performance out of the box. If you want to tune the
OS for maximum performance, then Intel recommends applying specific kernel settings to the sysctl
configuration file. The settings in the /etc/sysctl.conf file will be used to override the default kernel
parameter values and survive system reboots.

https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/xl710-x710-performance
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/xl710-x710-performance

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 7

“Appendix A: Linux Kernel Tuning Parameters” contains a list of recommended tuning parameters and
values. Upload the text in Appendix A to each host, append the text to the sysctl.conf file, and then
refresh the new configuration.

cat tuning.txt >> /etc/sysctl.conf

sysctl -p

Preparing the SSD Media
If the drives already contain data, or their provenance is unknown, Intel recommends conditioning the
drives by running the following command twice (or more) on each drive:

nohup dd if=/dev/zero of=/dev/<drive> oflag=direct bs=2M &

This can also be scripted:

 for i in {0..24}; do nohup dd if=/dev/zero of=/dev/nvme$i{i}
oflag=direct bs=2M &; done

Partitioning and Formatting Devices

All of the devices that will be used with MinIO must be partitioned and formatted with a file system. The
XFS file system is recommended, but the ext4 file system is also valid. To make starting and managing
the MinIO cluster simple, name the drive partitions and mount points logically, as shown in the following
example. Repeat this task on each host.

Partition:

parted /dev/nvme0n1 name 1 ”minio-data1”

parted /dev/nvme1n1 name 1 ”minio-data2”

parted /dev/nvme2n1 name 1 ”minio-data3”

Create a file system:

mkfs -t xfs /dev/nvme0n1

mkfs -t xfs /dev/nvme1n1

mkfs -t xfs /dev/nvme2n1

Mount the devices:

mount /dev/nvme0n1 /mnt/minio-data1

mount /dev/nvme1n1 /mnt/minio-data2

mount /dev/nvme2n1 /mnt/minio-data3

Step 4 - Download the MinIO Executables

Download the MinIO server binary to each node in the cluster and add executable permissions with the
following commands. Note: This command will retrieve the latest stable build.

wget https://dl.minio.io/server/miniorelease/linux-amd64/minio

chmod +x minio

Download the MinIO Client (MC) to a client or laptop with the following command. The MinIO Client
allows you to manage and test the cluster. Note: This command will retrieve the latest stable build.

wget https://dl.minio.io/server/minio/release/linux-amd64/minio

chmod +x minio

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 8

Step 5 - Start the MinIO Cluster

Starting a MinIO cluster is done by simply starting the MinIO executable on each node in the cluster. If
you have followed the advice on suggested naming conventions for host names and mount points, then
the command line that is used to start the cluster will be quite elegant.

Creating a Script to Start the MinIO Cluster
When starting a MinIO cluster, it is recommended to create a shell script containing the needed
commands. After creating this script, copy it to all nodes in the cluster. The following example script
starts a distributed MinIO server on a 32-node cluster where each node has 24 drives, the cluster uses an
access key of “minio” and a secret key of “minio123”.

export MINIO _ ACCESS _ KEY=minio

export MINIO _ SECRET _ KEY=minio123

./minio server http://node{1...32}.example.com/mnt/export{1...24}

Starting the MinIO Cluster

Run the MinIO cluster shell script on each host. The MinIO executable will seek to connect with the MinIO
servers running the other nodes specified in the command line. Once all of the nodes connect with each
other, the cluster will report that it has started.

Run the shell script as a background task. As an alternative, add the MinIO cluster startup commands to
the init/service scripts on each host as described next.

Using Init or Service Scripts to Start MinIO
MinIO cluster commands can be added to the init/service scripts of each host. A collection of example
scripts for systemd, sysvinit and upstart is located at the following GitHub download page: https://github.
com/minio/minio-service

Step 6 - Test the MinIO Cluster

MinIO Server comes with an embedded web-based object browser. To access the MinIO object server,
point a web browser to the DNS name of the cluster, or to an individual node in the cluster. From the web
browser you will be able to view buckets and objects stored on the server.

http://minioclustername.example.com:9000

Accessing and Managing the MinIO Cluster
There are multiple methods to access the MinIO cluster.

MinIO Client (MC)

The MC provides a modern alternative to UNIX commands like ls, cat, cp, mirror, diff and find.
It supports both filesystems and Amazon S3-compatible cloud storage service (Amazon Web Services
Signature* v2 and v4).

The MC is also used to manage the MinIO Server. The range of commands that it supports includes
starting and stopping the server, managing users and monitoring CPU and memory statistics.

For instructions on using the MC to manage the MinIO Server, refer to this documentation: https://docs.
minio.io/docs/minio-admin-complete-guide.html

AWS Command-Line Interface (CLI)

The AWS CLI is a unified tool to manage AWS services. It is frequently the tool used to transfer data in
and out of AWS S3. It works with any S3-compatible cloud storage service.

For instructions on using the AWS CLI with the MinIO Server, refer to this documentation: https://docs.
minio.io/docs/aws-cli-with-minio

https://github.com/minio/minio-service
https://github.com/minio/minio-service
https://docs.minio.io/docs/minio-admin-complete-guide.html
https://docs.minio.io/docs/minio-admin-complete-guide.html
https://docs.minio.io/docs/aws-cli-with-minio
https://docs.minio.io/docs/aws-cli-with-minio

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 9

S3cmd CLI

S3cmd is a CLI client for managing data in AWS S3, Google Cloud Storage or any cloud storage service
provider that uses the S3 protocol. S3cmd is open source and is distributed under the GPLv2 license.

For instructions on using S3cmd with the MinIO Server, refer to this documentation: https://docs.minio.io/
docs/s3cmd-with-minio

MinIO Go Client SDK for Amazon S3-Compatible Cloud Storage

The MinIO Go Client SDK provides simple APIs to access any Amazon S3-compatible object storage.
A quick-start guide shows you how to install the MinIO Go Client SDK, connect to MinIO and provide
a walkthrough for a simple file uploader.

The MinIO Go Client SDK quick-start guide is available at the following link: https://docs.minio.io/docs/
golang-client-quickstart-guide

Operating MinIO

Parity and Erasure Coding

MinIO helps protect data against hardware failures and silent data corruption using erasure code and
bitrot checksums. Erasure code is a mathematical algorithm used to reconstruct missing or corrupted
data. MinIO uses Reed-Solomon code to shard objects into data and parity blocks. MinIO’s erasure code
algorithms are performed inline and are accelerated by using the Intel AVX-512 instruction set. This
increases the performance of the MinIO object storage solution. Erasure code is a powerful technique of
providing high durability with low storage overhead.

Dealing with Hardware Failures

MinIO is purposely designed to survive multiple hardware failures. During disk and server failures, the
MinIO cluster continues to serve objects normally. Unlike other solutions, there is no urgency to replace
failed drives, even next business day is considered overkill for maintaining a MinIO cluster. This relaxed
approach to system maintenance means you can reduce the human labor, and potential for human
errors, needed to operate a MinIO cluster.

Healing Objects

The heal command can be used to check the health of individual objects and the health of all objects on
the system. When a new disk is used to replace a failed disk, the heal command can be used to recreate
any erasure coded object data that was previously stored on the failed disk.

The following MC command is used after replacing a disk. It recursively heals all buckets and objects on
the MinIO cluster ‘myminio’.

mc admin heal --recursive myminio

Updating MinIO

Upgrading a MinIO cluster is a two-step process. First, run the minio update command on each node
in the cluster to download a new MinIO server executable. Then restart the MinIO server cluster using the
mc admin service restart command. This will restart the entire cluster, an action which is non-
disruptive to the clients connected to the cluster.

$ minio update

Update to RELEASE.2019-04-04T18-31-46Z [yes]: yes

Minio updated to version RELEASE.2019-04-04T18-31-46Z
successfully.

$ mc admin service restart myminio

Restart command successfully sent to `myminiò .

Restarted `myminiò successfully.

https://docs.minio.io/docs/s3cmd-with-minio
https://docs.minio.io/docs/s3cmd-with-minio
https://docs.minio.io/docs/golang-client-quickstart-guide
https://docs.minio.io/docs/golang-client-quickstart-guide

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 10

Checking MinIO Cluster Status

To check the status of the MinIO cluster use the mc admin info command:

$ mc admin info play

 127.0.0.1:9000

 Status : online

 Uptime : 20 hours

 Version : 2019-04-04T20:48:34Z

 Region : us-east-1

 Storage : Used 16 GiB

Monitoring MinIO Using Prometheus*

MinIO includes built-in support for exporting Prometheus*-compatible data on an unauthenticated
endpoint. This enables Prometheus monitoring for MinIO server deployments without sharing server
credentials and eliminates the need to run an external Prometheus exporter.

Details on monitoring MinIO are provided here: https://docs.minio.io/docs/minio-monitoring-guide.html

Support for MinIO

MinIO Slack* Channel

There is a large community of people devoted to supporting MinIO and answering questions about MinIO
on a public Slack* channel.

Sign up for the Slack channel here: https://slack.min.io

MinIO SUBNET

MinIO SUBNET is an annual subscription that combines software and services to facilitate the production
success of MinIO customers. While MinIO is available under the open source Apache V2 license,
customers may choose to purchase the software on a subscription basis. Their reasons for doing so
differ, but they are unified in the value they see in the software coupled with a desire to have a deeper
relationship with the team behind MinIO.

Sign up for MinIO SUBNET here: https://min.io/subscription

Scaling MinIO Clusters with Federation
The designers of MinIO believe that building durable large-scale object stores is best done by creating
individual clusters which are then connected together to create a federation of clusters. This approach
was learned after studying the scaling methods used by the hyperscalers that employ a method of
scaling that joins simple building blocks together. A large MinIO cluster is created first by deploying a
single MinIO cluster and then joining additional MinIO clusters together to create a federation of clusters
and a single global namespace (see Figure 2).

There are multiple benefits to MinIO’s cluster and federation architecture:

• Each node is an equal member of a MinIO cluster. There is no master node.

• Each node can serve requests for any object in the cluster, even concurrently.

• Each cluster uses a Distributed Locking Manager (DLM) to control updates and deletes to individual
objects.

• The performance of individual clusters remains constant as more clusters are joined to the federation.

• Failure domains are kept within a single cluster. An issue with one cluster does not affect the entire
federation.

• Individual clusters can range in size from 4 to 32 nodes and they can employ different server hardware,
drive types and sizes.

https://docs.minio.io/docs/minio-monitoring-guide.html
https://slack.min.io
https://min.io/subscription

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 11

When deploying a cluster, it is recommended that you use a programmable DNS, such as CoreDNS*,
to route HTTP(S) requests to the appropriate cluster. Global configuration parameters can be stored
and managed in etcd (an open-source distributed key-value store). Documentation of MinIO federation
feature is located here: https://docs.min.io/docs/minio-federation-quickstart-guide.html

Figure 2. Federation is used to build very large MinIO* clusters with a single global namespace.

Automating MinIO Deployments Using Kubernetes*
MinIO is lightweight and container-friendly. When combined with Kuberbetes*-like orchestration
platforms, MinIO object storage resources can be managed just like compute resources. With
Kubernetes, launching a new MinIO instance is as easy as helm install stable/minio.

By using persistent volumes (PVs) and persistent volume claims (PVCs), Kubernetes makes it easy
to abstract physical storage details from your application. MinIO Servers can be used to aggregate
persistent volumes (PVs) into a scalable distributed object storage server that can be provisioned
as needed.

At the time of deployment, the MinIO Server makes a request for a PVC, which will be used for disk space
and memory. Kubernetes fulfills the claim by mapping it to a matching PV. If a MinIO container goes
down, Kubernetes automatically deploys a replacement MinIO container and ensures that the PV
is attached to the new replacement container.

MinIO Best Practices

Cluster Sizing

Cluster sizing with MinIO is as simple as calculating the number of nodes and the number of drives in a
cluster to determine the total capacity of the cluster. A single MinIO cluster can be created with anywhere
from 4 to 32 nodes. Individual servers from Dell, Supermicro and others feature 24, 32, 45 or even 90
drives. Table 3 shows the total capacity of several example clusters.

When choosing the size of the nodes and the size of the cluster, pay attention to the failure domain.
Generally, Intel recommends keeping the failure domain as small as possible. This keeps the blast radius
of operational problems as small as possible.

MinIO* Server Federation (Bucket Lookup)
MinIO Server supports etcd and CoreDNS*

Collection of MinIO Clusters

ApplicationResolve DNS address for buckets from CoreDNS

coreDNS etcd etcd etcd ‘bucket1.example.net’
resolves to cluster1

‘bucket2.example.net’
resolves to cluster2

https://docs.min.io/docs/minio-federation-quickstart-guide.html

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 12

Table 3. Cluster Storage Capacities

Performance and Networking

MinIO is able to consume fast networking technologies, even 100 GbE, in each server. Your cluster
will benefit from using fast networking in each MinIO node. The choice of networking speed is largely
determined by the types of applications running on your clients. For example, if you have graphics
processing unit (GPU)-accelerated AI workloads, then you will most likely benefit from creating a high-
performance MinIO object storage cluster.

Summary
Cloud service providers are facing spiraling data volumes, inefficient storage appliances and increasing
demand from customers for cost-effective storage. Software-defined STaaS solutions can solve these
challenges by abstracting the storage software from the storage hardware. A STaaS solution based
on MinIO supports a wide variety of use cases, including AI and machine learning, advanced analytics,
archival and application data. MinIO is optimized for Intel architecture and provides extreme scalability,
high performance and availability, excellent security and ease of use. This implementation guide shows
how to combine MinIO with Intel technologies such as NVMe-based Intel SSDs, Intel Ethernet products,
and Intel Xeon Scalable processors. Using these guidelines, you can build a MinIO-based STaaS solution
that provides the performance you need to successfully compete in the fast-growing STaaS market.

References
Here’s a summary of the primary external references relevant to this document:

MinIO:

• MinIO home page

• MinIO federation documentation

• MinIO Documentation

• MinIO Subnet

Intel:

• Intel® Cloud Insider Program

• Intel® Storage Builders Program

• Intel® Xeon® Scalable processors

• Intel® Solid State Drives

• Intel® Ethernet products

• Intel® Cache Acceleration Software (Intel® CAS)

• Intel® Intelligent Storage Acceleration Library (Intel® ISA-L)

• Tuning Throughput Performance for Intel® Ethernet Adapters

Cluster Size 4 Nodes 12 Nodes 24 Nodes 32 Nodes

Drives per Node 12 x 8 TB 24 x 8 TB 24 x 8 TB 32 x 8 TB

Total Capacity 384 TB 2,304 TB 4,608 TB 8,192 TB

https://min.io
https://docs.min.io
https://docs.min.io
https://min.io/subscription
https://www.intel.com/content/www/us/en/partner/cloud-insider/overview.html
https://builders.intel.com/datacenter
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives.html
https://www.intel.com/content/www/us/en/products/network-io/ethernet.html
https://www.intel.com/content/www/us/en/software/intel-cache-acceleration-software-performance.html
https://software.intel.com/en-us/storage/ISA-L
https://www.intel.com/content/www/us/en/support/articles/000005811/network-and-i-o/ethernet-products.html

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 13

Appendix A: Linux* Kernel Tuning Parameters
Most Linux* systems should provide adequate performance out of the box. If you want to tune the OS
for maximum performance, then Intel recommends the following kernel settings for software-defined
storage (SDS) solutions.

kernel.pid _ max=4194303

fs.file-max=4194303

vm.swappiness = 1

vm.vfs _ cache _ pressure = 10

vm.min _ free _ kbytes=1000000

net.core.rmem _ max=268435456

net.core.wmem _ max=268435456

net.core.rmem _ default=67108864

net.core.wmem _ default=67108864

net.core.netdev _ budget=1200

net.core.optmem _ max=134217728

net.core.somaxconn=65535

net.core.netdev _ max _ backlog=250000

net.ipv4.tcp _ rmem=67108864 134217728
268435456

net.ipv4.tcp _ wmem=67108864 134217728
268435456

net.ipv4.tcp _ low _ latency=1

net.ipv4.tcp _ adv _ win _ scale=1

net.ipv4.tcp _ max _ syn _ backlog=30000

net.ipv4.tcp _ max _ tw _ buckets=2000000

net.ipv4.tcp _ tw _ reuse=1

net.ipv4.tcp _ tw _ recycle=1

net.ipv4.tcp _ fin _ timeout=5

net.ipv4.udp _ rmem _ min=8192

net.ipv4.udp _ wmem _ min=8192

net.ipv4.conf.all.send _ redirects=0

net.ipv4.conf.all.accept _ redirects=0

net.ipv4.conf.all.accept _ source _ route=0

net.ipv4.tcp _ mtu _ probing=1

Implementation Guide | Implementation Guide for MinIO* Storage-as-a-Service 14

Solutions Proven by Your Peers
A STaaS platform, powered by Intel technology, provides high performance and easy manageability. This
and other solutions are based on real-world experience gathered from customers who have successfully
tested, piloted and/or deployed the solutions in specific use cases. Intel Solutions Architects are
technology experts who work with the world’s largest and most successful companies to design business
solutions that solve pressing business challenges. The solutions architects and technology experts for
this solution reference architecture include:

• Daniel Ferber, Solutions Architect, Intel Sales & Marketing Group

• Karl Vietmeier, Solutions Architect, Intel Sales & Marketing Group

Find the solution that is right for your organization. Contact your Intel representative or visit
intel.com/CSP.

 Solution Provided By:

 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system
manufacturer or retailer or learn more at intel.com.

 All information provided here is subject to change without notices. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

 Intel, the Intel logo, Xeon, and Optane are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

 * Other names and brands may be claimed as the property of others.

 © Intel Corporation 0519/JS/CAT/PDF 338993-001EN

https://www.intel.com/content/www/us/en/cloud-computing/cloud-service-provider-resources.html

