
Implementation in Competitive Programming

Oliver-Matis Lill

March 27, 2017

Oliver-Matis Lill Implementation in Competitive Programming



Lecture Structure

At the beginning I will hold a lecture

Rest of the lecture will be spent on problem solving

Subjects

Work environment

Standard library

Implementation tips

Oliver-Matis Lill Implementation in Competitive Programming



My Programming Environment

Oliver-Matis Lill Implementation in Competitive Programming



My Tools

Bash on Ubuntu on Windows - Linux command line on
windows, more convenient than a virtual machine

Notepad++ - Good text editor for windows

Windows Explorer - You can run stu� from the address bar

g++ - Compiles C++ �les

gdb - Debugging tool

Oliver-Matis Lill Implementation in Competitive Programming



Standard Library

Most languages have their own standard library

Contains a lot of functions, objects and other stu� that give
you a lot of power

Accessible in almost any environment (including in
programming contests)

Very useful in contests

Oliver-Matis Lill Implementation in Competitive Programming



Elements from the Standard Library

Some useful C++ standard library functions/classes:

1 vector - resizeable array of objects

2 sort - sorting function. Can use your own predicate.
O(N logN) complexity

3 lower_bound\upper_bound - binary search on sorted array.
O(logN) complexity

4 priority_queue - heap. O(logN) insertion, deletion, maximum
�nding

5 set\map - very powerful self-balancing binary tree. O(logN)
insertion, deletion, lookup. In practice, these operations are
slower than binary search and heap operations

Problems 1, 2, 3 test your skill with the Standard Library

Oliver-Matis Lill Implementation in Competitive Programming



Standard Library Summary

Learn to use some standard library reference. My favorite for
C++ is: http://www.cplusplus.com/reference/

Experiment with the standard library as much as possible
(especially in competitive programming)

Useful everywhere

Oliver-Matis Lill Implementation in Competitive Programming

http://www.cplusplus.com/reference/


Implementation

Implementation is creative work

There are many ways to implement the same thing, some
better than others

Focus on the readability and elegance of your code. Those
attributes are useful for example:

1 For avoiding and �xing bugs
2 For implementing very complicated stu�
3 For focusing when writing code
4 When sharing code with others

The following tips should be helpful in achieving that

Oliver-Matis Lill Implementation in Competitive Programming



Locality

Declare your variables in as small scope as possible

Makes it clearer where and how the variables are used

Allows you to better reuse variable names

Helps you avoid mixing up variables

Example

//... includes, etc ...
int ind, a, b;
long long dp[20][20];

int main() {
//... some code ...
if(something) {

//... use the variables ...
}

}

→

//... includes, etc ...

int main() {
//... some code ...
if(something) {

int ind, a, b;
long long dp[20][20];
//... use the variables ...

}
}

Oliver-Matis Lill Implementation in Competitive Programming



Scope

Scope can be created without keywords (like if/while)

Useful for creating locality

Example

//... includes, etc ...
int main() {

//... some code ...

int x, y, dx, dy;
//... use those variables ...

//... some unrelated code ...

double xd, yd, dxd, dyd;
//... use those variables ...

}

→

//... includes, etc ...
int main() {

//... some code ...
{

int x, y, dx, dy;
//... use those variables ...

}
//... some unrelated code ...
{

double x, y, dx, dy;
//... use those variables ...

}
}

Oliver-Matis Lill Implementation in Competitive Programming



Keyword static

Enables you to declare global variables in local scope, giving
them the bene�ts of locality

Example

//... includes, etc ...
int dp1[1001][1001];
double dp2[101][50001];

int function1() {
//... calculation on dp1 ...
return dp1[1000][1000]

}
double function2() {

//... calculation on dp2 ...
return dp2[100][50000];

}
// ... rest of the code ...

→

//... includes, etc ...

int function1() {
static int dp[1001][1001];
//... calculation on dp ...
return dp[1000][1000]

}
double function2() {

static double dp[101][50001];
//... calculation on dp ...
return dp[100][50000];

}
// ... rest of the code ...

Oliver-Matis Lill Implementation in Competitive Programming



Object Oriented Programming

OOP (Object Oriented Programming) is a very powerful tool.
Learn to use it!

Allows you to logically connect variables, functions and etc.

Gives you more options to create locality

Allows you to declare functions locally

Oliver-Matis Lill Implementation in Competitive Programming



Object Oriented Programming

Example

//... includes, etc ...
vector<int> arc[2][100000];
int weight[2][100000];

void construct(int i, int seed) {
//uses arc[i] and weight[i]

}
int calculate(int i) {

//uses arc[i] and weight[i]
}
int main() {

construct(0, 15);
construct(1, 2017);
cout<<calculate(0)<<' ';
cout<<calculate(1)<<'\n';

}

→

//... includes, etc ...
struct Graph {

vector<int> arc[100000];
int weight[100000];
//constructor
Graph(int seed) {

//uses arc and weight
}
int calculate() {

//uses arc and weight
}

};
int main() {

static Graph g1(15), g2(2107);
cout<<g1.calculate()<<' ';
cout<<g2.calculate()<<'\n';

}

Oliver-Matis Lill Implementation in Competitive Programming



Initializer List

Gives you a very elegant way to initialize objects

Can be used to initialize standard library objects

Example

//... includes, etc ...
struct Object {

int cnt, val, size;
};
int main() {

Object cur;
cur.cnt = 1, cur.val = 10;
cur.size = 2;
vector<int> arr(3);
arr[0] = 2, arr[1] = 15;
arr[2] = 52;

}

→

//... includes, etc ...
struct Object {

int cnt, val, size;
};
int main() {

Object cur = {1, 10, 2};
vector<int> arr = {2, 15, 52};

}

Oliver-Matis Lill Implementation in Competitive Programming



Lambda Functions

Allows you to create one-time, nameless local functions

Makes sorting with a function simpler and more readable

Example

//... includes, etc ...
bool pred(Object l, Object r) {

return l.cnt∗l.val <
r.cnt∗r.val;

}
int main() {

//... some code ...
vector<Object> objects;
//... construct objects ...
sort(objects.begin(),

objects.end(),
pred);

}

→

//... includes, etc ...
int main() {

//... some code ...
vector<Object> objects;
//... construct objects ...
sort(objects.begin(),

objects.end(),
[](Object l, Object r)
{return l.cnt∗l.val <

r.cnt∗r.val;});
}

Oliver-Matis Lill Implementation in Competitive Programming



Pointers

More convenient way to refer to objects than indices,
cur->next[1]->next[3] is better than next[next[cur][1]][3]

Useful for �nding multiple orderings of an array of objects

Example

vector<Object∗> byVal(n);
for(int i=0;i<n;i++) byVal[i] = &object[i];
sort(byVal.begin(), byVal.end(),

[](Object∗ l, Object∗ r) {return l−>val < r−>val;});

vector<Object∗> odd(n/2);
for(int i=1;i<n;i+=2) odd[i/2] = byVal[i];
sort(odd.begin(), odd.end(),

[](Object∗ l, Object∗ r) {return l−>size < r−>size;});

for(int i=0;i<n/2;i++) odd[i]−>result += i;

Oliver-Matis Lill Implementation in Competitive Programming



Summary

Competitive programming can help direct you to write a lot of
code

Use it to develop your implementation skill and to learn to
write more elegant and readable code

The aforementioned tips are only tools, use them intelligently.
Don't try to forcibly use something if it's not helpful

Implementation is creative work and can be quite interesting

Oliver-Matis Lill Implementation in Competitive Programming


