
Cite as: Zhang, M.: Implementation of a two-equation soot model for sprayFoam. In Proceedings of CFD

with OpenSource Software, 2019, Edited by Nilsson. H., http://dx.doi.org/10.17196/OS_CFD#YEAR_2019

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Implementation of a two-equation soot
model for sprayFoam

Developed for OpenFOAM-v1712

Author:
Min Zhang
Technical University of Denmark
mzhang@mek.dtu.dk

Peer reviewed by:

Luis Fernando Garcia
Rodriguez

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 14, 2020

Learning outcomes

The main requirements of a tutorial is that it should teach the four points: How to use it, The
theory of it, How it is implemented, and How to modify it. Therefore the list of learning outcomes
is organized with those headers.

The reader will learn:

How to use it:

• How to use the sprayFoam to run the AachenBomb case

• How to set basic spray parameters including the breakup model and injector parameters

• How to set chemkin file

The theory of it:

• Basic knowledge of soot formation and oxidation

• Two transport equations for soot model will be discussed

How it is implemented:

• A brief overview for how the sprayFoam links the soot model included in thermophysicalModel
library

• A basic understanding for existed mixtureFractionSoot model to see how it calculate soot using
the single chemical reaction.

How to modify it:

• The existed mixtureFractionSoot model is only used for the single chemical reaction. In fact,
the soot formation is affected by a great range of species including C2H2, OH and O2, also by
turbulence.

• To make the soot model take the turbulence and key species into account, the newly soot model
will be developed by adding the two transport equations. These two transport equations govern
the distribution of soot

• The source terms in the transport equations need to be modeled by soot modelling.

• Corresponding species are needed read from thermophysicalModel library

• Corresponding fields for soot model will be created

• Corresponding soot constants should be set from soot properties in constant fold

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• Basic theory of combustion

• Run standard document tutorials like sprayFoam tutorial

• It is strongly recommended to gain a brief insight into soot formation and oxidation from the
following journal [4] and PhD thesis [3](if accessible):

Pang, K.M., Jangi, M., Bai, X.S. and Schramm, J., 2015. Evaluation and optimisation of
phenomenological multi-step soot model for spray combustion under diesel engine-like operat-
ing conditions. Combustion Theory and Modelling, 19(3), pp.279-308.
Ong, J.C., 2017. Development of Lagrangian soot tracking method for the study of soot
morphology in diesel spray combustion (Doctoral dissertation, University of Nottingham).

2

Contents

1 Introduction 4

2 Theory 5
2.1 Soot formation and oxidation . 5
2.2 Transport equations . 6

3 Implementation to a radiation library 8
3.1 The creation of myRadiation library . 8
3.2 The understanding of file structure for mixtureFractionSoot model 8
3.3 The modification of multistep soot model . 9

4 Case tutorials 18
4.1 case modification . 18
4.2 case simulation and results . 23

3

Chapter 1

Introduction

The spray combustion event is recognized as one of the most complex in-cylinder phenomena to
understand and control. This event refers to fuel droplet atomisation, mixture preparation, ignition,
combustion and soot production. Soot particle is an important source of PM(particulate matter)2.5,
which causes severely healthy problem. Hence, investigation on soot production is an effective way
to reduce the emissions from the engine.

In OpenFoam-v1712, only one soot model called mixtureFractionSoot has been implemented. This
soot model is a simple state model. It does not solve the transport equations which control the
soot distribution. Also, this model calculate the soot mass fraction based on the CO2 mass fraction
instead of considering the soot formation and oxidation. Soot production is a extremely physical
and chemical process which refers to soot inception, coagulation, surface growth, oxidation by OH
and O2. Hence, implementing a multistep soot model and transport equations to OpenFOAM is
necessary.

4

Chapter 2

Theory

2.1 Soot formation and oxidation

A successful modelling of soot requires accurate accounting for both formation and oxidation of
soot. Furthermore, it is important that the soot models developed and employed are able to give
good predictions of soot information and oxidation. Models of different sophistication levels have
been proposed and applied in many practical systems, and can be generally classified into below
four categories:

• Empirical model: It uses correlations of experimental data to predict trends in soot production.
They are implemented and provide excellent correlations for a given set of operating conditions.
Obviously, the empirical soot model can not predict well when the operating conditions are
changed a lot compared to the given operating conditions.

• Semi-empirical model: It solves rate equations that are calibrated using experimental data

• Detailed model: It contains full panoply of soot phenomena, from the initial pyrolysis of fuel
to the inception of soot particles, surface growth, coagulation and oxidation. However, such
comprehensive models impose heavy computational cost.

• Phenomenological multistep soot model: Phenomenological multistep models use sub-models
developed to describe the different processes. These sub-models can be empirically developed
by using basic physical and chemical relations. Basically, the global reaction steps can be used
to describe the every submodel.

As mentioned earlier, the phenomenological multistep models have advantages in both cheap com-
putation and good computational accuracy. Figure 2.1 shows the basic process of multistep soot
model.

Figure 2.1: phenomenological multistep models process.

5

2.2. TRANSPORT EQUATIONS CHAPTER 2. THEORY

From the Figure 2.1, we can see the soot model consists of inception, coagulation, surface growth,
oxidation by OH and O2. Particle inception can be considered to be a process of physical conden-
sation or a process of chemical (reactive) condensation. The coagulation and agglomeration process
are physical processes. Coagulation,sometimes called coalescence, is the process where two or more
particles collide and combine to form a larger particle. Surface growth is the process of adding mass
to the surface of a nucleated soot particle. Soot particle oxidation is the mechanism by which soot
particles is oxidised and converted back into gaseous species. Just like surface growth, oxidation is
a heterogeneous process that takes place on the particle surface and occurs throughout the entire
course of the soot formation. These submodels with their respective descriptions and model constant
values are summarized in table 2.1

i Description C b Ta n
inc Inception 10000 0 21000 0
sg Surface growth (p/pref)1.4 0 12100 0.5
OH Oxidation due to OH 0.36 0.5 0 1
O2 Oxidation due to O2 10000 0.5 19778 1

Table 2.1: The multistep soot model constant values

The reaction rate of each sub-process is calculated using the Arrhenius expression,

ki = CiT
b,i · exp

(
−Ta,i
T

)
(Ssoot)

n,i (2.1)

T in equation 2.1 represents the gas temperature, Ci here denotes the model constant, while Ta,i
is the activation temperature. It should be noted that Ssoot is the soot specific area in the soot
model. From the formulation, we can see that the inception rate is independent of this parameter
while the surface growth rate and oxidation rate are a square root function and a linear function
of this parameter, respectively. When we describe the soot distribution, the most important two
parameters are the soot mass fraction, Msoot, and particle number density, Nsoot. The source term
for the Msoot transport equation denotes the net soot mass production and is modelled according
to the expression,

dMsoot

dt
= kinc[Xprec] + ksgs[C2H2]− kOH [OH]− kO2

[O2] (2.2)

where Msoot denotes the soot mass concentration.
For the particle number density, Nsoot, it is the instantaneous production rate of soot particles,
which is subjected to inception from the gas phase and coagulation in the free molecular regime and
it is computed using equation 2.3,

dNsoot

dt
= Nakinc − kcoag (2.3)

where Na is the Avogadro constant, kinc is the inception rate, kcoag is the coagulation rate and
described as below[4],

kcog = kcog(
24RT

ρsootNA
)1/2(

6Msoot

ρsootπ
)1/6(Nsoot)

11/6 (2.4)

2.2 Transport equations

The well-know transport equations are Moss-Brookes (MB) two transport equations. These two
transport equations are computed via Eulerian method and able to account for individual soot
processes and turbulence effect. Below these two equations are given as,

∂

∂t
(ρYsoot) +∇ · (ρUYsoot) = ∇ · [µt

Prsoot
∇Ysoot] +

dMsoot

dt
(2.5)

6

2.2. TRANSPORT EQUATIONS CHAPTER 2. THEORY

where rho is density, U is flow speed, Ysoot is soot mass fraction and µt is the effective turbulent
viscosity.

∂

∂t
(ρb∗nuc) +∇ · (ρUb∗nuc) = ∇ · [µt

Prnuc
∇b∗nuc] +

1

Nnormal

dNsoot

dt
(2.6)

where b∗nuc is the normalised radical nuclei concentration, the turbulent Prandtl number for soot
transport and nuclei transport is represented by Prsoot and Prnuc, respectively. Nnormal is a nor-
malisation factor with a value of 1015particles. The source term for the soot mass fraction, Ysoot in
equation 2.5 computes the production of soot mass and is expressed as equation 2.2. The source
term for the normalised radical nuclei concentration, b∗nuc in equation 2.6 is given in equation 2.3.

7

Chapter 3

Implementation to a radiation
library

3.1 The creation of myRadiation library

The soot model is invoked by radiation model and the radiation model is created by:

#include "createRadiationModel.H"

Therefore, we need to copy the radiation library into the user project folder $WM_PROJECT_USER_DIR
without any changes.

of1712

foam

cp -r --parents src/thermophysicalModels/radiation $WM_PROJECT_USER_DIR

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels/

Rename the library name by following command,

mv radiation myRadiation

Modify the executable name to libmyradiationModels.so by conducting the follow command,

cd myRadiation

sed -i s/libradiationModels/libmyradiationModels/g Make/files

In order to make the executable file ”libmyradiationModels.so” locate at the $FOAM_USER_LIBBIN

instead of $FOAM_LIBBIN, we need to conduct following command,

sed -i s/FOAM_LIBBIN/FOAM_USER_LIBBIN/g Make/files

Compile it after changing,

wmake

If successful, you will see the output at the end like ”libmyradiationModels.so”

3.2 The understanding of file structure for mixtureFraction-
Soot model

Let’s go into mixtureFractionSoot model by following commands,

cd submodels/sootModel/mixtureFractionSoot

8

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

The mixtureFractionSoot consists of three files. The mixtureFractionSoots.C file is responsible
for making a new type for mixtureFractionSoot. The mixtureFractionSoot.H is used to declare
the member data and functions. The mixtureFractionSoot.C is used to initialize the data member
and define the member function. The soot mass fraction is calculated by the member function
correct(). The definition of correct() is given as bellow,

const volScalarField& mapField =

mesh_.lookupObject<volScalarField>(mappingFieldName_);

soot_ = sootMax_*(mapField/mapFieldMax_);

If you want to see more detailed tutorials about the mixtureFractionSoot model, you can refer to
the [6]

3.3 The modification of multistep soot model

As mentioned before, there is only mixtureFractionSoot model existed in OpenFOAM. We need to
do the modification based on this soot model. Hence, copy the folder and rename it.

cd ..

cp -r mixtureFractionSoot multistepSoot

Also, we need to rename the files inside the folder,

cd multistepSoot

mv mixtureFractionSoot.C multistepSoot.C

mv mixtureFractionSoot.H multistepSoot.H

mv mixtureFractionSoots.C multistepSoots.C

All these three files need to be modified, the multistepSoots.C is used to change the soot type from
”mixtureFractionSoot” to ”multistepSoot” by using the below commands,

sed -i s/mixtureFractionSoot/multistepSoot/g multistepSoots.C

For the multistepSoot.H, we also need to change the mixtureFractionSoot to multistepSoot by
using following command,

sed -i s/mixtureFractionSoot/multistepSoot/g multistepSoot.H

In order to solve a couple of chemistry reactions, we have to change the singleStepReactingMixture.H
to reactingMixture.H by following command,

sed -i s/singleStepReactingMixture/reactingMixture/g multistepSoot.H

In order to consider the turbulent effect on soot distribution and read the effective turbulent vis-
cosity from turbulence model, the turbulentFluidThermoModel.H should be included after the
reactingMixture.H.
All the declarations are written in multistepSoot.H, considering to add the multistep soot model and
two transport equations into the multistepSoot model, the following declarations should be added
under the //Private data,

volScalarField PDSoot_;

volScalarField dNSootdt_;

volScalarField SootVF_;

volScalarField SSoot_;

volScalarField dMSootdt_;

volScalarField r1_;

volScalarField r2_;

volScalarField r3_;

9

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

volScalarField r4_;

volScalarField r5_;

volScalarField MSoot_;

volScalarField NSoot_;

scalar Sct_;

scalar MWc_;

scalar wPrec_;

scalar rhoS_;

scalar Ca_;

scalar Ta_;

scalar Cb_;

scalar Cg_;

scalar Tg_;

scalar m_;

scalar q_;

scalar Cw1_;

scalar CollEff_;

scalar Cw2_;

scalar Tw2_;

scalar NA_;

It should be noted that PDSoot_ is the soot particle density, dNSootdt_ is the soot particle changing
rate, YSoot_ is the soot mass fraction, SootVF_ is soot volume fraction, SSoot_ is the soot surface
area, dMSootdt_ is the soot mass changing rate, r1_ is the inception rate, r2_ is the coagulation
rate, r3_ is the surface growth rate, r4_ is the soot oxidation rate by OH, r5 is the soot oxidation
rate by O2, MSoot_ is soot mass, NSoot_ is the soot particle number.

There are some declarations including nuSoot_, Wsoot_,sootMax_, mappingFieldName_, mapFieldMax_
and mixture_ for mixtureFractioSoot model we do not need them any more, we just delete them.

The final file we need to modify is multistepSoot.C, we should define the data member and mem-
ber functions here. Firstly, we need to change the mixtureFractionSoot to the multistepSoot by
using sed command,

sed -i s/mixtureFractionSoot/multistepSoot/g multistepSoot.C

Similar to the multistepSoot.H file, we also need to change the singleStepReactingMixture.H

to reactingMixture.H,

sed -i s/singleStepReactingMixture/reactingMixture/g multistepSoot.C

We need to add two transport equations to this model, following header file should be included,

#include "fvmDdt.H"

#include "fvmDiv.H"

#include "fvcDiv.H"

#include "fvmLaplacian.H"

As we do not need to use the way in mixtureFractionModel to calculate the soot, we can delete all
the unnecessary codes. First, we delete the codes after the coeffsDict_(dict...), and before the
thermo_(mesh...),. Meanwhile, we add the follow codes between these two aforementioned line
codes to to initialize the data member.

Sct_(readScalar(coeffsDict_.lookup("Sct"))),

MWc_(readScalar(coeffsDict_.lookup("MWc"))),

10

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

wPrec_(readScalar(coeffsDict_.lookup("wPrec"))),

rhoS_(readScalar(coeffsDict_.lookup("rhoS"))),

Ca_(readScalar(coeffsDict_.lookup("Ca"))),

Ta_(readScalar(coeffsDict_.lookup("Ta"))),

Cb_(readScalar(coeffsDict_.lookup("Cb"))),

Cg_(readScalar(coeffsDict_.lookup("Cg"))),

Tg_(readScalar(coeffsDict_.lookup("Tg"))),

m_(readScalar(coeffsDict_.lookup("m"))),

q_(readScalar(coeffsDict_.lookup("q"))),

Cw1_(readScalar(coeffsDict_.lookup("Cw1"))),

CollEff_(readScalar(coeffsDict_.lookup("CollEff"))),

Cw2_(readScalar(coeffsDict_.lookup("Cw2"))),

Tw2_(readScalar(coeffsDict_.lookup("Tw2"))),

NA_(readScalar(coeffsDict_.lookup("NA"))),

Then, we also do not need to have mixture_(checkThermo(thermo_)), it should be deleted. Mean-
while, note that the comma , after the thermo_(mesh...), should be deleted.
To create the the relevant fields for multistep soot model, before the coeffsDict_(dict...),, we
add the following codes,

PDSoot_

(

IOobject

(

"PDSoot",

mesh_.time().timeName(),

mesh_,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh_

),

dNSootdt_

(

IOobject

(

"dNSootdt",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("dNSootdt", dimensionSet(0,-3,-1,0,0,0,0), 0.0)

),

SootVF_

(

IOobject

(

"SootVF",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

11

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("dNSootdt", dimensionSet(0,-3,-1,0,0,0,0), 0.0)

),

SSoot_

(

IOobject

(

"SSoot",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("SSoot", dimensionSet(0,-1,0,0,0,0,0), 0.0)

),

dMSootdt_

(

IOobject

(

"dMSootdt",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("dMSootdt", dimensionSet(1,-3,-1,0,0,0,0), 0.0)

),

r1_

(

IOobject

(

"r1",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("r1", dimensionSet(0,-3,-1,0,1,0,0), 0.0)

),

r2_

(

IOobject

(

"r2",

mesh_.time().timeName(),

12

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("r2",dimensionSet(0,-3,-1,0,0,0,0), 0.0)

),

r3_

(

IOobject

(

"r3",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("r3", dimensionSet(0,-3,-1,0,1,0,0), 0.0)

),

r4_

(

IOobject

(

"r4",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("r4", dimensionSet(0,-3,-1,0,1,0,0), 0.0)

),

r5_

(

IOobject

(

"r5",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("r5", dimensionSet(0,-3,-1,0,1,0,0), 0.0)

),

MSoot_

(

IOobject

(

13

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

"MSoot",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("MSoot", dimensionSet(1,-3,0,0,0,0,0), 0.0)

),

NSoot_

(

IOobject

(

"NSoot",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("NSoot", dimensionSet(0,-3,0,0,0,0,0), 0.0)

),

YPrec_

(

IOobject

(

"YPrec",

mesh_.time().timeName(),

mesh_,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh_,

dimensionedScalar("YPrec", dimensionSet(0,0,0,0,0,0,0), 0.0)

),

It should be noted that the PDSoot and soot must read from 0 folder.

For the constructor we delete all the code in the { }.For the Member Functions we also need
to delete the codes in the { } and add the new code inside. Following codes are added with the
order we give in this tutorial.

To read the flux, density, temperature and pressure, we use the following codes,

const surfaceScalarField& phi_(mesh_.lookupObject<surfaceScalarField>("phi"));

const volScalarField& rho_(mesh_.lookupObject<volScalarField>("rho"));

const volScalarField& T = thermo_.T();

const volScalarField& p = thermo_.p();

Some chemistry constants are given as follows,

scalar kb = 1.3806488e-23;

scalar Pref = 101325;

14

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

scalar wC2H2 = 26.03824;

scalar wOH = 17.00737;

scalar wO2 = 31.9988;

In the multistep soot model, some key species concentration including OH and O2 should be obtained
to calculate the submodel rate. The following codes are included to look up the concentration,

const volScalarField& Y_C2H2 = mesh_.lookupObject<volScalarField>("C2H2");

const volScalarField& Y_O2 = mesh_.lookupObject<volScalarField>("O2");

The following codes are added to calculate the submodel rate in equation 2.1,

forAll(T, celli)

{

scalar Ti = T[celli];

if (soot_[celli]<1.0e-12)

{

MSoot_[celli] = 0.0;

}

else

{

MSoot_[celli] = soot_[celli]*rho_[celli];

}

if (PDSoot_[celli]<1.0e-15)

{

NSoot_[celli] = 0.0;

}

else

{

NSoot_[celli] = PDSoot_[celli]*rho_[celli]*NA_;

}

SootVF_[celli] = soot_[celli]*rho_[celli]/rhoS_;

SSoot_[celli] = pow(6*MSoot_[celli]/rhoS_,2.0/3.0)*pow(constant::mathematical::

pi*NSoot_[celli],1.0/3.0);

r1_[celli] = Ca_*(Y_C2H2[celli]*rho_[celli]/wPrec_)*exp(-Ta_/Ti);

r2_[celli] = Cb_*sqrt(24*kb*T[celli]/rhoS_)*pow(6*MSoot_[celli]/constant::mathematical::

pi/rhoS_,1.0/6.0)*pow(NSoot_[celli],11.0/6.0);

if (m_ == 0.5) //

{

r3_[celli] = pow(p[celli]/Pref,q_)*Cg_*(Y_C2H2[celli]*

rho_[celli]/wC2H2)*exp(-Tg_/Ti)*sqrt(SSoot_[celli]);

}

else if (m_ == 1.0)

{

r3_[celli] = pow(p[celli]/Pref,q_)*Cg_*(Y_C2H2[celli]*

rho_[celli]/wC2H2)*exp(-Tg_/Ti)*SSoot_[celli];

}

else

{

FatalErrorIn

(

""

) << "Invalid integer value for m" << nl

<< "Valid integer values are 0.5 and 1.0" << nl

<< "m = 0.5 indicates surface growth rate is a

15

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

square root function of SSoot" << nl

<< "m = 1.0 indicates surface growth rate is a

linear function SSoot" << nl

<< exit(FatalError);

}

if (Cw1_ > 0)

{

const volScalarField& Y_OH = mesh_.lookupObject<volScalarField>("OH");

r4_[celli] = Cw1_*CollEff_*(Y_OH[celli]*rho_[celli]/wOH)*sqrt(Ti)*SSoot_[celli];

}

r5_[celli] = Cw2_*(Y_O2[celli]*rho_[celli]/wO2)*exp(-Tw2_/Ti)*sqrt(Ti)*SSoot_[celli];

dNSootdt_[celli] = NA_*r1_[celli]-r2_[celli];

dMSootdt_[celli] = MWc_*(100*r1_[celli]+2*r3_[celli]-r4_[celli]-r5_[celli]);

scalar deltaT =0.0;

deltaT = this -> mesh().time().deltaTValue();

if (MSoot_[celli]+dMSootdt_[celli]*deltaT<0.0)

dMSootdt_[celli]=-MSoot_[celli]/deltaT;

if (NSoot_[celli]+dNSootdt_[celli]*deltaT<0.0)

dNSootdt_[celli]=-NSoot_[celli]/deltaT;

}

In the two transport equations, there is a term called effective eddy viscosity, we have to read this
from turbulence model using the following commands,

const compressible::turbulenceModel&

turbModel = rho_.db().lookupObject<compressible::turbulenceModel>

(

turbulenceModel::propertiesName

);

To solve the two transport 2.5 and 2.6, the following codes need to be added,

tmp<fvScalarMatrix> PDSootEqn

(

fvm::ddt(rho_, PDSoot_)

+fvm::div(phi_, PDSoot_)

-fvm::laplacian(turbModel.muEff()/Sct_, PDSoot_)

==

dNSootdt_/(NA_*dimensionedScalar("unity",dimless/dimMoles,1.0))

);

solve(PDSootEqn);

tmp<fvScalarMatrix> sootEqn

(

fvm::ddt(rho_, soot_)

+fvm::div(phi_,soot_)

-fvm::laplacian(turbModel.muEff()/Sct_, soot_)

==

dMSootdt_

);

solve(sootEqn);

Before we compile this model, we need to add this model to Make/files in myRadiation,

cd $WM_PROJECT_USER_DIR/src/thermophysicalModels/myRadiation

vi Make/files

Add following code after submodels/sootModel/mixtureFractionSoot/mixtureFractionSoots.C,

16

3.3. THE MODIFICATION OF MULTISTEP SOOT MODELCHAPTER 3. IMPLEMENTATION TO A RADIATION LIBRARY

submodels/sootModel/multistepSoot/multistepSoots.C

Also, we need to link the turbulence library to Make/options, under the EXE_INC = \, add

-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \

-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

under the LIB_LIBS = \, add

-lcompressibleTurbulenceModels \

-lturbulenceModels \

Recompile myRadiation with the new multistep soot model

wclean

wmake

17

Chapter 4

Case tutorials

In this tutorial, the aachenBomb case is used as the basic case. We will go deep into the case and
explain the injection configuration and how to get the parameters for the injection from ECN which
is organized by Sandia Lab in US. Also, the chemkin file will be explained. More importantly, the
radiationProperties will be modified to provide the soot model constants. Finally, we will crate a
multistepSootBomb case to run the sprayFoam solver.

4.1 case modification

For the case introduction, report [7] has already given a detailed description. In this tutorial, we
more focus on how to set a case according the parameters from ECN.
Let’s copy the aachenBomb case from the tutorials to user directory and rename

run

cp -r $FOAM_TUTORIALS/lagrangian/sprayFoam/aachenBomb .

mv aachenBomb multistepSootBomb

cd multistepSootBomb

In ECN, the geometry is a cube with length 108 mm, hence we have to modify the blockMeshDict.
Only the vertices and blocks need to be changed, the modified part is shown as bellow by typing
vi system/blockMeshDict

vertices

(

(-54 0 -54)

(54 0 -54)

(54 108 -54)

(-54 108 -54)

(-54 0 54)

(54 0 54)

(54 108 54)

(-54 108 54)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (54 54 54) simpleGrading (1 1 1)

);

18

4.1. CASE MODIFICATION CHAPTER 4. CASE TUTORIALS

As the flame region is far smaller than cube domain, it is better to use the refined mesh for the
liquid and vapour region.
Copy the file Allrun from the tutorial,

cp $FOAM_TUTORIALS/incompressible/simpleFoam/airFoil2D/Allrun .

Comment runApplication inside of Allrun,

sed -i s/runApplication/#runApplication/g Allrun

To generate the blockMesh, we need to insert blockMesh command into the Allrun,

echo 'blockMesh > log.blockMesh 2>&1' >> Allrun

To define the fine mesh region, we need to insert topoSet command into the Allrun,

echo 'topoSet > log.topoSet.1 2>&1' >> Allrun

To get the fine mesh, we need to insert refineMesh command into the Allrun,

echo 'refineMesh -overwrite > log.refineMesh.1 2>&1' >> Allrun

TopoSet and refine again to get the final refined mesh,

echo 'topoSet > log.topoSet.1 2>&1' >> Allrun

echo 'refineMesh -overwrite > log.refineMesh.1 2>&1' >> Allrun

As there is lacking of topoSetDict in aachenBomb case, we need to copy it from other case in
tutorial and change it,

cp $FOAM_TUTORIALS/combustion/fireFoam/LES/smallPoolFire2D/system/topoSetDict system

Change the name of topoSet region from f0 to refineCells,

sed -i s/f0/refineCells/g system/topoSetDict

Change the faceSet to cellSet,

sed -i s/faceSet/cellSet/g system/topoSetDict

Change the boxToFace to boxToCell,

sed -i s/boxToFace/boxToCell/g system/topoSetDict

Set the reasonable refined region for the current case,

sed -i s/'-0.0529 -0.001 -0.1'/'-0.008 0.03 -0.008'/g system/topoSetDict

sed -i s/'0.0529 0.002 0.1'/'0.008 0.108 0.008'/g system/topoSetDict

Copy the refineMeshDict from other case,

cp $FOAM_TUTORIALS/combustion/fireFoam/LES/oppositeBurningPanels/

system/refineMeshDict system

Spray properties is one of the most important parts in spray combustion. All the spray parameters
are specified in file contant/sprayCloudProperties. We can search the relevant data from [1].Figure
4.1 give a example for ECN data base. You can choose different fuel, density, temperature and so
on.

According to the parameters provided in ECN, we give a part of modified codes:injectionModels
which is a model setting inside of sprayCloudProperties file.” The massTotal has been changed from
6e-6 to 18e-6. outerDiameter has been changed from 1.9e-4 to 10e-5. Duration has been changed
from 1.25e-3 to 0.0068. Cd is changed from 0.9 to 0.8.

19

4.1. CASE MODIFICATION CHAPTER 4. CASE TUTORIALS

Figure 4.1: The example of data base in ECN

It should be note that the flowType is changed to pressureDrivenVelocity.Inject pressure: Pinj 1557e5+
has been added after flowtype pressureDrivenVelocity.
Basically, for the RosinRammlerDistribution, the minValue equals to the diameter of injector,
the maxValue is larger one order than the diameter of injector, the meanValue is around the
70 percent of maxValue. Meanwhile, we also need to change dispersionModel from none to
stochasticDispersionRAS and stochasticDispersionRAS to none. T0 is changed to 373. The
modified injectionModels are given as following,

...

injectionModels

{

model1

{

type coneNozzleInjection;

SOI 0;

massTotal 18e-06;

parcelBasisType mass;

injectionMethod disc;

//flowType flowRateAndDischarge;

flowType pressureDrivenVelocity;

Pinj 1557e+5;//

outerDiameter 10e-5;

innerDiameter 0;

duration 0.0068;

position (0 0 0);

direction (0 -1 0);

parcelsPerSecond 16000000; //baseline:20000000

flowRateProfile table

(

(0 0)

(0.00008 1)

(0.00672 1)

(0.00680 0)

);

Cd constant 0.8;

20

4.1. CASE MODIFICATION CHAPTER 4. CASE TUTORIALS

thetaInner constant 0.0;

thetaOuter constant 10.0;

sizeDistribution

{

type RosinRammler;

RosinRammlerDistribution

{

minValue 10e-6;

maxValue 10e-5;

d 7e-5;

n 3;

}

}

}

}

...

The radiationProperties under the constant folder contains the inputs of radiation model and other
submodels. The submodels include absorptionEmissionModel, scatterModel, transmissivityModel,
sootModel. To evoke the soot model, the radiation model has to be switched on. The constants for
multistepSoot model also need to be provided. The modified file is given as follow,

radiation on;

radiationModel P1;

solverFreq 10;

absorptionEmissionModel none;

scatterModel none;

transmissivityModel none;

sootModel multistepSoot<gasHThermoPhysics>;

multistepSootCoeffs

{

Sct 0.7;

MWc 12;

wPrec 26;

rhoS 2000;

Ca 10000;

Ta 21000;

Cb 3;

Cg 21;

Csg 6000;

Tg 12100;

m 0.5;

q 1.4;

Cw1 127;

CollEff 0.13;

Cw2 10000;

Tw2 19800;

NA 6.02214e+26;

}

The radiation model needs to a input file G under the 0 folder and a boundaryRadiationProperties
file under the constant folder. This is done as follows,

cp $FOAM_TUTORIALS/combustion/fireFoam/LES/smallPoolFire3D/0/G 0

21

4.1. CASE MODIFICATION CHAPTER 4. CASE TUTORIALS

cp $FOAM_TUTORIALS/combustion/fireFoam/LES/smallPoolFire3D/constant/

boundaryRadiationProperties constant

Note that the new multistepSoot model have two unknown variables(soot and PDSoot) which must
be read from the 0 folder. Hence, we should copy or create these two file. This is done as following,

cp 0/O2 0/soot

cp 0/O2 0/PDSoot

sed -i s/O2/soot/g 0/soot

sed -i s/O2/PDSoot/g 0/PDSoot

sed -i s/'0 0 0 0 0 0 0 '/'-1 0 0 0 1 0 0 '/g 0/PDSoot

To solve the two transport equations, we have to add the discredited scheme and iteration solver for
soot and PDSoot in the system/fvScheme and system/fvSolution. In the system/fvScheme, we
add following codes after the div(phi,Yi_h) Gauss upwind;,

div(phi,soot) Gauss upwind;

div(phi,PDSoot) Gauss upwind;

In the system/fvSolution, the following codes are included,

"(soot|PDSoot)"

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-6;

relTol 0;

}

"(soot|PDSoot)Final"

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-6;

relTol 0;

}

The entry Gfinal should also be included in system/fvSolution file. It should be include in the
solvers after the hFinal,

GFinal

{

solver PCG;

preconditioner DIC;

tolerance 1e-05;

relTol 0.1;

}

In the aachenBomb case, only one step chemical reaction is offered, which is extremely not accurate
to predict the combustion properties and soot production. In this tutorial, we will provide a way
to include a couple reactions under the chemkin folder. Here, we use the Liu mechanism with 44
species and 112 reactions. You can download this mechanisms from [2]. Also, you can find other
mechanism form this address. The chem.inp and therm.dat should be replaced by the download
file (Also, you can use the chemkin folder provided by this tutorial). There are three different
contents inside the chem.inp including the ELEMENTS, SPECIES and REACTIONS. For the meaning
of number in REACTIONS, you can find it from Report [5]. Similarly, the tutorial for therm.dat

and transportProperties also can be found in Report [5]. For the runTime control, open the
system/controlDict and set deltaT as 2e-7, set adjustTimeStep to no.

22

4.2. CASE SIMULATION AND RESULTS CHAPTER 4. CASE TUTORIALS

4.2 case simulation and results

Before the running case, we have to dynamically link the libmyradiationModels library so that it
can be called by the sprayFoam solver. To complete this link, we open the file system/controlDict

by following commands,

vi system/controlDict

And then add the following as the last line code in system/controlDict,

libs ("libmyradiationModels.so");

As the time step and grid size are quite small to capture the chemistry phenomena, using the
parallel calculation is recommended to reduce the computational time. Thus, we can use the
decomposeParDict.

cp $FOAM_TUTORIALS/compressible/rhoPimpleFoam/RAS/squareBendLiq/

system/decomposeParDict system

As the mesh structure is simple, simple decomposition has been selected

sed -i s/'hierarchical;'/'simple;'/g system/decomposeParDict

sed -i s/'8 1 1'/'1 8 1'/g system/decomposeParDict

This command is used to change the decomposition direction Finally, we need to generate the mesh
and run the case by using the following codes,

./Allrun

decomposePar

mpirun -np 8 sprayFoam -parallel

Figure 4.2 shows the temperature distribution calculated by the Liu 44 mechanism. The highest
temperature is around 2300K.

Figure 4.3 shows the distribution of C2H2 concentration, the C2H2 is the soot precursor which
determine the soot mass and distribution directly. The maximum C2H2 concentration is around
1.9e-2. The shape of C2H2 has a big head and two tails.

From figure 4.4, we can see the soot distribution is similar to the C2H2 distribution. The maximum
soot concentration is one order smaller than the C2H2. But the shape of soot is smaller than C2H2,
this is because the oxidation by OH and O2.

Figure 4.5 shows the distribution of OH, which encircles the soot. OH is a product of high-
temperature chemistry. The region of OH corresponds to the high temperature region in flame.
You can see the shape of red region in Figure 4.2 is almost the same as the shape of OH.

Figure 4.6 shows the distribution of O2 where the O2 is consumed in the region of combustion.
Thus, you can only see the very low value in the combustion region.

23

4.2. CASE SIMULATION AND RESULTS CHAPTER 4. CASE TUTORIALS

Figure 4.2: Temperature field at 1.4 ms

Figure 4.3: C2H2 field at 1.4 ms

24

4.2. CASE SIMULATION AND RESULTS CHAPTER 4. CASE TUTORIALS

Figure 4.4: soot field at 1.4 ms

Figure 4.5: OH field at 1.4 ms

25

4.2. CASE SIMULATION AND RESULTS CHAPTER 4. CASE TUTORIALS

Figure 4.6: O2 field at 1.4 ms

26

Study questions

1. How to set injector parameters according the data from ECN?

2. How to solve the two transport equations in this tutorial?

3. How to invoke the multistepSoot model?

4. How and where can the multistepSoot model read the submodel constant?

5. how to read the effective turbulent viscosity from turbulence model?

6. how to read initial value from the 0 folder in a case?

27

Bibliography

[1] url: https://ecn.sandia.gov/ecn-data-search.

[2] url: +https://web.stanford.edu/group/+.

[3] Jiun Cai Ong. “Development of Lagrangian soot tracking method for the study of soot mor-
phology in diesel spray combustion”. PhD thesis. University of Nottingham, 2017.

[4] Kar Mun Pang et al. “Evaluation and optimisation of phenomenological multi-step soot model
for spray combustion under diesel engine-like operating conditions”. In: Combustion Theory and
Modelling 19.3 (2015), pp. 279–308.

[5] Carlsson Per. “A dieselFoam tutorial”. In: In Proceedings of CFD with OpenSource Software,
2008 (2008).

[6] Pandian Vignesh. “Implementation of soot model for aachenBomb tutorial”. In: In Proceedings
of CFD with OpenSource Software (2016).

[7] S.J Xu. “he implementation of a stochastic reactor (StoR) combustion mode”. In: In Proceedings
of CFD with OpenSource Software (2018).

28

