
IMPLEMENTATION OF IEEE 802.15.4 PROTOCOL STACK FOR LINUX.

by

Sandeep Sirpatil

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in the

Department of Electrical and Computer Engineering

Charlotte

2006

Approved by:

Dr. James M. Conrad

Dr. Ivan L. Howitt

Dr. Bharat S. Joshi

ii

© 2006

Sandeep Sirpatil
ALL RIGHTS RESERVED

iii

ABSTRACT

SANDEEP SIRPATIL. Implementation of IEEE 802.15.4 Protocol Stack for Linux.
(Under the direction of DR. JAMES M. CONRAD)

The IEEE 802.15.4 is a new wireless standard introduced for low power, low cost

wireless communication with moderate data rates. It is intended to be used in embedded

applications for home/office automation, industrial control and sensor networks. In such

applications there is generally a need for a master controller, which will be responsible

for data acquisition and communicate with other systems. Linux is gaining popularity as

an embedded operating system. There are many industrial controllers / data acquisition

systems that use Linux as the operating system. These controllers could potentially be

used as the master controller for the wireless network. This thesis work implements a

subset features of IEEE 802.15.4 for Linux operating system and develop a modular

expandable Linux platform for IEEE 802.15.4 wireless systems. The developed software

stack is easily portable to other hardware platforms and operating systems. The system is

intended to be useful on research of various aspects of IEEE 802.15.4 standard.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and thank my advisor, Dr. James M.

Conrad for his constant encouragement, support and his belief in me for successful

completion of this thesis work. His approach and guidance to solve the problems I

encountered were of significant help. I would also Thankful to Dr Ivan L. Howitt and Dr

Bharat Joshi for accepting to be committee members and for their advice and support.

I would like to express my sincere appreciation and thank my friends Gajendra

Singh, Gurudatt Mysore, Michael Thomas and many others for their support throughout.

I also want to thank the open source developer community for their efforts and dedication

without which this work would not have been possible.

v

TABLE OF CONTENTS

LIST OF FIGURES...vii

LIST OF TABLE..viii

LIST OF ABBREVIATIONS...ix

CHAPTER1: INTRODUCTION .. 1

1.1 Motivation... 2

1.2 Current Work .. 3

1.3 Completed Thesis work .. 5

1.4 Organization of Thesis.. 6

CHAPTER2: INTRODUCTION TO IEEE 802.15.4 ... 7

2.1 Network Topologies.. 8

2.2 Architecture... 9

2.3 PHY specification ... 10

2.4 MAC sublayer specification ... 12

2.4.1 MAC frame format ... 13

2.4.2 Superframe structure... 14

2.4.3 Data transfer model... 15

2.4.4 CSMA-CA mechanism ... 18

2.4.5 Security ... 19

CHAPTER3: HARDWARE DESCRIPTION .. 20

3.1 System Architecture.. 20

3.2 CC2420 – RF Transceiver .. 20

3.3 CC2420DBK – Demonstration Board Kit .. 23

vi

3.3.1 Atmel ATmega128L Overview .. 24

3.4 TS-7200 overview... 25

CHAPTER4: SOFTWARE DESCRIPTION.. 27

4.1 System Setup... 27

4.2 Atmel Development Environment .. 28

4.2.1 AVR Studio... 28

4.2.2 WinAVR ... 29

4.3 Linux Environment ... 29

4.3.1 Cygwin.. 30

4.4 Stack Overview... 31

4.4.1 Linux - Media Access control (MAC) .. 32

4.4.2 Linux – Serial Line Internet Protocol (SLIP) ... 33

4.4.3 Linux – Serial port .. 34

4.4.4 ATmega128L – MAC... 34

4.4.5 ATmega128L – SLIP.. 35

4.4.6 ATmega128L – Serial driver .. 35

4.5 MAC Communication... 36

4.6 Setup for testing .. 38

CHAPTER5: CONCLUSION... 41

5.1 Future work... 42

REFERENCES..43

APPENDIX: CODE...46

vii

LIST OF FIGURES

FIGURE 2.1: Star and peer-to-peer networks [4]... 8

FIGURE 2.2: LR-WPAN device architecture [1]... 10

FIGURE 2.3: The channel structure in IEEE 802.15.4 [4]... 11

FIGURE 2.4: The PHY packet structure [4]... 12

FIGURE 2.5: The format of a genral MAC frame [4]..13

FIGURE 2.6: A MAC superframe structure [4] ... 15

FIGURE 2.7: Communication to a coordinator in a beacon enabled network [1] 16

FIGURE 2.8: Communication to a coordinator in a non beacon enabled network [1] ... 16

FIGURE 2.9: Communication from a coordinator in a beacon enabled network [1]....... 17

FIGURE 2.10: Communication from a coordinator in a nonbeacon enabled network [1]18

FIGURE 3.1: CC2420 simplified block diagram [6].. 22

FIGURE 3.2: CC2420DB Overview [5]... 23

FIGURE 3.3: TS-7200 Hardware Components [8] .. 26

FIGURE 4.1: Setup overview... 28

FIGURE 4.2: Software structure and data flow.. 32

FIGURE 4.3: The structure of MAC packet... 32

FIGURE 4.4: Packet Transmission Mechanism ... 36

FIGURE 4.5: Packet receiving mechanism .. 37

FIGURE 4.6: Test program menu... 39

FIGURE 4.7: A received frame by test program .. 39

viii

LIST OF TABLE

TABLE 2.1: Frequency bands and data rates [1].. 11

ix

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AES Advanced Encryption Standard

ALU Arithmetic and Logic Unit

API Application Program Interface

ARM Advanced RISC Machine

CC2420DB CC2420 Development Board

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

DHCP Dynamic Host Configuration Protocol

DLL Dynamic Link Library

DSSS Direct Sequence Spread Spectrum

ext2 Extended File System

FCS Frame Check Sequence

FFD Full Function device

FIFO First In First Out

GTS Guaranteed Time Slots

HAL Hardware Abstraction Layer

IDE Integrated Drive Electronics

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IF Intermediate Frequency

x

IP Internet Protocol

ISM Industrial, Scientific, and Medical

ITU-T Telecommunication Standardization Sector

JTAG Joint Test Action Group

LAN Local Area Network

LR-WPAN Low-Rate Wireless Personal Area Networks

MAC Medium Access Control Layer

MFR MAC Footer

MHR MAC Header

MIPS Million Instructions Per Second

MMU Memory Management Unit

MPDU MAC Protocol Data Unit

NFS Network File System

OHCI Open Host Controller Interface

O-QPSK Offset Quadrature Phase Shift Keying

PA Power Amplifier

PAN Personal Area Network

PC Personal Computer

PDA Personal Digital Assistant

PHY Physical Layer

POSIX Portable Operating System Interface

PPDU PHY Protocol Data Unit

PSDU PHY Service Data Unit

xi

PWM Pulse Width Modulation

RAM Random Access Memory

RF Radio Frequency

RFD Reduced Function Device

RISC Reduced Instruction Set Computer

RSSI Received Signal Strength Indication

RTC Real Time Counter

RXFIFO Receive First In First Out

SAP Service Access Points

SBC Single Board Computer

SDRAM Synchronous Dynamic RAM

SFD Start of Frame Delimiter

SLIP Serial Line IP

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SSH Secure Shell

TXFIFO Transmit First In First Out

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous Receiver Transmitter

USB Universal Serial Bus

WPAN Wireless Personal Area Network

CHAPTER1: INTRODUCTION

There has been tremendous growth in the field of wireless communication during

the last decade. The wide acceptance of 802.11 standards for wireless local area network

(WLAN) and cellular phone networks have proved that low cost wireless solutions are

feasible and acceptable. There are many applications that require low cost, low data rate,

low power and inexpensive solution to network within a small area thus requiring a low

rate wireless personal area network (LR-WPAN). There are many proprietary solutions

that address these needs, but they are expensive and incompatible between

manufacturers. The IEEE 802.15.4 is a new standard for LR-WPAN providing a low cost

and less complicated solution. The expected applications are home/office automation,

industrial sensors and control, distributed sensor networks and environment monitoring

[2].

The silicon implementation of the standard is inexpensive when compared to

other proprietary solutions, as the standard is open and available to everyone. As a result

the chip making companies compete to develop a better product at a lower cost. The cost

of a wireless node is an important factor as some applications require large number of

nodes.

The ZigBee alliance, an association of companies working together to develop

ZigBee standard based products for monitoring and control, has led to the increased

adoption of the IEEE 802.15.4 standard. The ZigBee standard defines upper layer that are

2

built on the IEEE 802.15.4 standard. The aim of the ZigBee alliance is to replace every

switchbox, electrical outlet and various sensors in a building by wireless nodes that

communicate with each other even though manufactured by different manufacturers. This

standard is being widely adopted by the industry and the numbers of products based on

the standard are increasing exponentially. The ZigBee alliance is forecasting that in the

next four to five years time, there could be 50 ZigBee devices per home and eventually as

many as 150 [15].

1.1 Motivation

The IEEE 802.15.4 is a relatively new standard and thus attracts new research on

its various aspects. Many universities are conducting research on the use of different

routing protocols, efficient energy use and coexistence issues of IEEE 802.15.4 with

other wireless technologies. The vast majority of applications will require the use of

embedded devices. The embedded devices used in the IEEE 802.15.4 wireless nodes can

range from a small battery-powered sensor to a large central controller with large

processing power and data storage ability. The central controller can also provide user

interface, connect with other wired/wireless networks and control other devices. These

central controllers require an embedded operating system for their operation as they have

to perform a variety of functions.

Linux is an open-source UNIX like kernel that can be freely distributed under the

terms of GNU General Public License (GPL). Linux was specifically developed as an

operating system for server/desktop environment. Currently there is a lot of interest

among the open source community to customize Linux for embedded applications. Linux

is growing as an embedded operating system of choice because of its advantages such as,

3

no licensing fees, scalability, reliability, a large programmer base and community support

[12]. According to a survey conducted by Venture Development Corporation, a

technology research and marketing firm, Linux owned the highest percentage of new

embedded-development projects of any operating system [13]. Linux is used in industrial

controllers, network routers, commercial devices and home entertainment systems. These

devices are expected to include IEEE 802.15.4 wireless functionality in the near future.

 There are many commercial implementations of IEEE 802.15.4 and ZigBee

stack. There are also a few community projects working on implementing an open source

version of the IEEE 802.15.4 stack. The current statuses of these projects indicate that

development has almost come to a stop [25, 26, 27]. The lack of a working open source

implementation of the standard was a big motivation factor to develop one and also

develop the setup as an embedded Linux wireless development platform.

1.2 Current Work

There are currently numerous research projects conducted in various aspects of

IEEE 802.15.4 standard. A paper titled “On the use of IEEE 802.15.4 to enable wireless

sensor networks in building automation” [2] provides an insight into the application of

the standard and its effects on building maintenance, energy consumption, safety and

security. An article “Home networking with ZigBee” [28] presents the comparison of

Bluetooth, ZigBee, 802.11 and other proprietary solutions and shows that ZigBee will

succeed where others failed in home networking.

The results of the work presented in a paper titled “Coexistence of IEEE 802.15.4

with other Systems in the 2.4 GHz –ISM –Band” [3] show that IEEE 802.15.4 can co

exist with other networks , is robust and reliable even in the presence of some

4

interference. Another paper titled “An Experiment on Performance Study of IEEE

802.15.4 Wireless Networks” [11] presents the results of an experiment conducted to

evaluate the performance of various features such as, direct and indirect transmissions,

CSMA-CA mechanism, data payload size and beacon enabled mode. The data

throughput, delivery ratio and received signal strength were investigated as performance

metrics. The results show that non beacon network has better raw data rates and

utilization ratio as compared to beacon enabled networks.

The hardware board developed by Mr. Assad [29] is an inexpensive IEEE

802.15.4 evaluation board. Mr. Rai [30] used this setup in evaluating energy consumption

in IEEE 802.15.4 communication. Their work very helpful as it is very important to

determine energy consumption of wireless nodes as they are expected to operate for long

time on small batteries.

A paper titled “Embedded Linux Outlook in PostPC Industry” [14] presents an

analysis of embedded Linux in the industry, how it compares to other commercial

embedded OS. The paper concludes with a forecast in growth of industry adoption of

Linux and proposes standardization measures to sustain the growth. Linux is inherently a

non real-time OS; there have been many efforts to add real-time functionality to Linux

kernel. A paper titled “A Measurement-Based Analysis of the Responsiveness of the

Linux Kernel” [31] presents experiments conducted on various non preemptible sections

of the kernel code and quantified its effects on interrupt latency. The results show the

user-space task do not influence the kernel’s response time to external interrupts. In

general, many of the net applications, network device drivers, several file systems even

5

under heavy fragmentation, do not represent source of unresponsiveness and thus, Linux

can safely adopted in soft real time systems.

With kernel version 2.6.18, basic real-time support is now available in the main

kernel source and thus improves the real time performance. With the growing

advancements in Linux, it is projected to continue its growth as an embedded OS.

1.3 Completed Thesis work

The work started with an investigation of IEEE 802.15.4. It is gaining wide

support from industry for its adoption and attracting new research in various aspects of it.

Further investigation found no open source working implementation of IEEE 802.15.4

for Linux. With Linux gaining foothold in embedded operating systems mainly for it

being open source and the number of devices using Linux is increasing everyday. Many

of these devices will need to add IEEE 802.15.4 functionality to them and the current

work is expected to be helpful in this regard.

Many single board computers were considered and evaluated for their

performance, features, price and software support. A SBC with inadequate support from

the manufacturer in the form of device drivers, kernel patches and operating system will

require enormous individual effort. TS-7200 SBC was selected for its features, good

support by the manufacturer and huge user community. The TS 7200 manufacturer

supports Debian distribution, it is well recognized for its stability and component package

management, it also has a large advanced user community. Debian version 3.0 (‘woody’)

was installed on a 512MB compact flash and TS-7200’s RedBoot boot loader was

6

configured accordingly. Debian hosts development tools for large number of

programming languages this adds to the adaptability of the setup to any system.

The CC2420DBK was selected to be used as IEEE 802.15.4 for its features and

availability of development tools for it in the lab. The possible ways to interface CC2420

to the TS-7200 were (set of designs of system were) evaluated for their flexibility,

modularity and complexity, and the system was designed to have a good balance of these

attributes.

A subset of IEEE 802.15.4 protocol was implemented for Linux in C

programming language. A test program was developed to use the stack and communicate

with another IEEE 802.15.4 device. The setup is developed as an embedded wireless

Linux platform.

The contribution of the work is to provide an open source GPL licensed IEEE

802.15.4 protocol stack and publish a paper on the work. The work also provides a test

setup to evaluate standard on Linux operating system.

1.4 Organization of Thesis

The thesis report is divided into five chapters. Chapter 2 introduces the IEEE

802.15.4 protocol. It discusses various features, network topologies, communication

mechanisms and layer of the protocol. Chapter 3 describes the hardware setup and the

features of the individual components. Chapter 4 introduces the software component. It

describes the software development environment, the Linux environment, the software

stack developed and testing. Chapter 5 details results and conclusions and suggests future

work.

CHAPTER2: INTRODUCTION TO IEEE 802.15.4

The IEEE 802.15 defines the Wireless Personal Area Network (WPAN). The

Task Group 4 is working on defining a standard for low rate WPAN (LR-WPAN). The

standard defines the physical (PHY) and medium access control (MAC) layer

specifications.

The devices that take part in a LR-WPAN can be either a reduced function device

(RFD) or full function device (FFD). The FFD can take one of the three roles, a personal

area network (PAN) coordinator, a coordinator or a device. An FFD can communicate

with other FFDs or RFDs, while an RFD can communicate only with an FFD. An RFD is

intended for simple devices in the network, such as a light switch; which does not operate

continuously or send large data and generally associates with a single FFD. Therefore an

RFD can be implemented with very minimum resources. A WPAN consists of two or

more devices within radio reach communicating on the same physical channel. A WPAN

shall include at least one FFD operating as the PAN coordinator of the network [1].

8

2.1 Network Topologies

A LR-PAN can be setup to operate in either of the two topologies; the star

topology or the peer-to-peer topology. As shown in the Figure 2.1, the PAN coordinator

forms the central node in the star topology. Every device in the network communicates

with the central node. The PAN coordinator is used to initiate, terminate or route

communication around the network. The PAN coordinator is the primary controller of the

network. All devices generally have a 64 bit extended address. This address can be used

or exchanged for a shorter address allocated by the PAN coordinator when the device

associates with the PAN coordinator. The PAN coordinator may be powered by mains

outlet, while the devices generally are battery powered. The applications of star topology

are home automation, personal computer (PC) peripherals, toys and games.

The peer-to-peer topology allows any device to communicate with any other

device within the radio reach, but requires a PAN coordinator to form the network. This

topology allows formation of complex network configurations, such as mesh networking

Figure 2.1: Star and peer-to-peer networks [4]

9

topology. This type of topology is useful in applications such as industrial control and

monitoring, wireless sensor networks monitoring environment, inventory and tracking.

This topology allows the network to be ad hoc, self organizing and self healing. A device

may communicate with other devices out of its radio reach by routing the message

through other devices.

2.2 Architecture

A set of layers is used to describe the architecture of the LR-PAN. Each layer is

responsible for a logical part of the standard and offers services to the higher layers. The

layout of layers is based on the open systems interconnection (OSI) seven-layer model.

An LR-WPAN device comprises of a PHY, which contains the radio frequency

(RF) transceiver along with its low-level control mechanism and a MAC sublayer that

provides access to the physical channel for all types of transfers [1].

Figure 2.2 illustrates the layer arrangement in the standard. The upper layers

consists of network layer, which is responsible for network configuration and message

routing, and application layer, which provides the intended functionality for the device.

An IEEE 802.2 Type 1 logical link layer (LLC) can access the MAC sublayer through the

service specific convergence sublayer (SSCS) [1]. The LR-WPAN architecture can be

implemented in either an embedded device or as a device requiring support of an external

device such as PC.

10

2.3 PHY specification

The PHY layer is expected to provide two services: the PHY data service and

PHY management service interfacing to the physical layer management entity (PLME).

The PHY data service allows the transmission and reception of PHY protocol data units

(PPDU) across the physical radio channel. The features of PHY are activation and

deactivation of the radio transceiver, energy detection (ED), link quality indication,

channel selection, clear channel assessment (CCA), transmission and reception of packets

across the physical medium.

Figure 2.2: LR-WPAN device architecture [1]

11

The standard offers two PHY options which differ in frequency bands and data

rate. The Error! Reference source not found. summarizes the frequency bands,

modulation and spreading technique.

The standard defines 27 channels, numbered 0 to 26, across the three frequency

bands, as illustrated in Figure 2.3. Sixteen channels are available in the 2450 MHz band,

10 in the 915 MHz band and 1 in 868 MHz band. The relation between the channel

number and centre frequency is defined as:

Fc = 868.3 MHz for k = 0, (k is the channel number)

Table 2.1: Frequency bands and data rates [1]

Figure 2.3: The channel structure in IEEE 802.15.4 [4]

12

Fc = 906 + 2(k-1) MHz for k = 1, 2, ..., 10

Fc = 2405 + 5(k-11) MHz for k = 11, 12, …, 26

Figure 2.4 illustrates a PPDU. Each PPDU contains a synchronization header

(SHR), which consists of a preamble and start of packet delimiter (SFD), a PHY header

(PHR) containing frame length information, and PHY payload or PHY service data unit

(PSDU). The preamble field is used by the transceiver to obtain chip and symbol

synchronization with an incoming message. The preamble field is composed of 32 binary

zeros. The SFD is an 8 bit field indicating the end of preamble and start of packet data.

The PHY header specifies the length of PSDU in bytes. The PSDU field is variable and

carries the actual PHY packet. For all packet types of length five bytes or greater than

seven bytes, the PSDU contains the MAC sublayer frame [4].

2.4 MAC sublayer specification

The MAC sublayer provides two services: the MAC data service and the MAC

management service interfacing to the MAC sublayer management entity (MLME)

Figure 2.4: The PHY packet structure [4]

13

service access point (SAP). The MAC data service enables the transmission and

reception of MAC protocol data units (MPDU) across the PHY data service [1].

The features of the MAC sublayer are beacon management, channel access,

guaranteed time slot (GTS) management, frame validation, association and

disassociation.

2.4.1 MAC frame format

The MAC frame structure is designed to keep the complexity at a minimum while

ensuring they are sufficiently robust to be transmitted on a noisy channel. The general

format of a MAC frame is shown in the Figure 2.5.

A MAC frame is composed of the MAC header (MHR), MAC service data unit

(MSDU), and MAC footer (MFR). The first field of the header is the frame control field.

It indicates the type of the MAC frame, specifies format of the address field, and controls

Figure 2.5: The format of a general MAC frame [4]

14

acknowledgement. The address field is variable of length 0 to 20 bytes. Based on the

frame type, the address field may contain source and destination addresses, no address or

destination address. A short 8 bit device address or 64 bit IEEE device address may be

used [4].

The payload is of variable length with a restriction of 127 bytes for the complete

MAC frame. The data contained in payload is dependent on the frame type. The 802.15.4

MAC has four different frame types. These are the beacon frame, data frame,

acknowledgement frame and MAC command frames which are used for MAC peer-to-

peer communication.

The sequence number field is used to identify successful transmission of a frame

when the received acknowledgment frame contains the same sequence number. The

frame check sequence (FCS) is a 16 bit International Telecommunication Union –

Telecommunication Standardization Sector (ITU-T) cyclic redundancy check (CRC) to

ensure data integrity [1].

2.4.2 Superframe structure

The standard allows the optional use of a superframe structure illustrated in

Figure 2.6. The superframe is sent by the coordinator bounded by network beacons. It is

divided into 16 equally sized slots. A device can transmit at any time during the slot, but

must finish before the next superframe beacon. The channel access during the time slots

is contention based. For low latency applications or applications requiring specific data

bandwidth, the PAN coordinator may dedicate portions of the active superframe to that

application. These portions are called guaranteed time slots (GTS). The GTS form the

15

contention free period (CFP), which always appear at the end of the contention access

period (CAP). All contention based transactions must be complete before the CFP begins.

2.4.3 Data transfer model

There are three types of data transfer transactions. The first one is the data transfer

to a coordinator in which a device transmits the data. The second transaction is the data

transfer from a coordinator to the device. The third transaction is the data transfer

between the peer devices.

2.4.3.1 Data transfer to a coordinator

When a device needs to transfer data to a coordinator in a beacon enabled

network, it listens for the beacon, when the device finds a beacon it synchronizes to the

superframe structure. At an appropriate time it transmits data using slotted CSMA-CA to

the coordinator. The coordinator may send an optional acknowledgement frame to

complete the transaction. This sequence is summarized in Figure 2.7.

Figure 2.6: A MAC superframe structure [4]

16

If the device is in a non-beacon enabled network, it transmits the data frame using

an unslotted CSMA-CA, to the coordinator. The coordinator may acknowledge

successful reception with an optional acknowledgment frame. The sequence is

summarized in Figure 2.8.

2.4.3.2 Data transfer from coordinator

When the coordinator needs to transfer data to a device in a beacon enabled

network, it indicates in the network beacon that data message is pending. The device

periodically listens to the network beacon and if a message is pending, transmits a MAC

Figure 2.7: Communication to a coordinator in a beacon enabled network [1]

Figure 2.8: Communication to a coordinator in a non beacon enabled network [1]

17

command requesting the data using slotted CSMA-CA. The coordinator acknowledges

the successful reception of the data request from the device by transmitting an optional

acknowledgement frame. The requested data frame is then sent by the coordinator using

slotted CSMA-CA. The device may send an optional acknowledgement frame. The

coordinator will then remove the frame from its list of pending frames in the beacon. The

sequence is summarized in Figure 2.9 [1].

When the coordinator needs to transfer data to a device in a non beacon enabled

network, it stores the data and waits for the device to make contact and request the data.

The device will send a MAC command requesting the data using unslotted CSMA-CA.

The coordinator may send an optional acknowledgement frame indicating successful

reception of the request. If any data is pending, the coordinator transmits the data using

unslotted CSMA-CA to the device, else it will send a zero length payload frame

Figure 2.9: Communication from a coordinator in a beacon enabled network [1]

18

indicating there is no data available. The device acknowledges successful receptions with

optional acknowledgement frame. The sequence is summarized in Figure 2.10.

2.4.3.3 Peer-to-peer data transfers

In a peer-to-peer network, every device may communicate with every other

device within its radio reach. In order to achieve this effectively, the devices will need to

either turn their receiver on continuously or synchronize with each other. In the former

case, the devices can communicate using unslotted CSMA-CA. In the latter case, other

synchronization measures have to be used. Description of such measures is left to the

upper layers to decide and is beyond the scope of this standard.

2.4.4 CSMA-CA mechanism

The standard defines two types of channel access methods depending on the

network configuration. Non beacon enabled networks use unslotted CSMA-CA method.

The device wishing to transmit data will wait for a random period of time. If the channel

is found idle, it shall transmit the data, else if the channel was found to be busy, the

Figure 2.10: Communication from a coordinator in a non beacon enabled network [1]

19

device waits for another random period of time before trying to access the channel again.

Acknowledgment frames are sent without using CSMA-CA mechanism.

The beacon enabled networks use slotted CSMA-CA mechanism where the

backoff slots are aligned with the start of the beacon transmission. A device wishing to

transmit data during CAP, will locate the boundary of the next backoff slot and then wait

for a random number of backoff slots. If the channel is busy, following this wait, the

device waits for another random number of backoff slots before trying to access the

channel again. If the channel is found idle, the device can begin transmitting on the next

available slot. Acknowledgement and beacon frames are sent without using a CSMA-CA

mechanism [1].

2.4.5 Security

The MAC sublayer provides a baseline security measures such as maintaining an

access control list (ACL) and symmetric cryptography to protect transmitted frames. The

higher layers determine when security is to be used at the MAC sublayer and provide all

the necessary keying material to provide the security services.

This chapter provided a brief introduction to the IEEE 802.15.4 standard. For a

complete specification, readers are advised to refer to the reference [1].

CHAPTER3: HARDWARE DESCRIPTION

3.1 System Architecture

The aim was to use the existing hardware in the lab, keeping the cost down yet

maintaining modularity and expandability in the system. The CC2420 DBK is a

demonstration kit from Chipcon consisting of a pair of CC2420DB boards, each

containing a CC2420 IEEE 802.15.4 compliant RF transceiver and an Atmel

ATmega128L microcontroller. This kit was considered for our familiarity with AVR

microcontrollers and easy availability of JTAGICE mkII debugger for microcontroller.

There are dozens of small single board computers available which are capable of

executing Linux on them varying is physical size, CPU speed and features. Our

requirements were low cost, easily expandable, good support from the manufacturer and

community. A number of SBC’s were considered and TS-7200 from Technologic

systems was selected.

3.2 CC2420 – RF Transceiver

Chipcon was one of the first companies to develop a silicon implementation of the

standard in the form of CC2420 IC. The CC2420 is a true single-chip 2.4GHz IEEE

802.15.4 complaint RF transceiver designed for low power and low voltage applications.

CC2420 includes a digital direct sequence spread spectrum base band modem providing a

spreading gain of 9dB and an effective data rate of 250 kbps.

21

 The CC2420 provides extensive hardware support for packet handling, data

buffering, burst transmissions, data encryption, data authentication, clear channel

assessment, link quality indication and packet timing information. These features reduce

the load on the host controller and allow CC2420 to interface with low-cost

microcontrollers. The CC2420 is designed as an SPI slave peripheral.

Figure 3.1 illustrates a simplified block diagram of CC2420, which features a

low- intermediate frequency (IF) receiver. The received RF signal is amplified by the

low-noise amplifier (LNA) and down converted in quadrature (I and Q) to the IF. At IF

(2 MHz), the complex I/Q signal is filtered and amplified, and then digitized by the

ADCs. Automatic gain control, final channel filtering, de-spreading, symbol correlation

and byte synchronization are performed digitally. The SFD pin goes high when a start of

frame delimiter has been detected. CC2420 buffers the incoming data in a 128 byte

receive FIFO buffer. The user may read the FIFO through the SPI interface. CRC is

verified in hardware while the RSSI and correlation values are appended to the frame.

CCA is available on a pin in receive mode [6].

22

The CC2420 transmitter is based on direct up-conversion. The data is buffered in

a 128 byte transmit FIFO (separate from the receive FIFO). The preamble and start-of-

frame delimiter are generated by hardware. Each symbol (4 bits) is spread using the IEEE

802.15.4 spreading sequence to 32 chips and output to the digital-to-analog converters

(DACs). An analog low-pass filter passes the signal to the quadrature (I and Q) up-

conversion mixers. The RF signal is amplified in the power amplifier (PA) and fed to the

antenna.

.

Figure 3.1: CC2420 simplified block diagram [6]

23

3.3 CC2420DBK – Demonstration Board Kit

The CC2420DBK Demonstration Board Kit includes two CC2420DB

Demonstration Boards. These boards contain a CC2420 with necessary support

components, an Atmel ATmega128L AVR microcontroller, 32 Kbytes external RAM, a

PCB antenna, as well as a joystick, buttons and LED’s that can be used to implement a

visual user application interface. The demonstration board is also furnished with

connectors for JTAG, ISP and direct access to CC2420 for expansion [5].

Figure 3.2: CC2420DB Overview [5]

24

Figure 3.2 illustrates the various features on the CC2420DB demonstration board.

The board serves as a development platform. There is an onboard voltage regulator,

which allows it to be powered by either a 9V battery for portability or a wall adaptor of 4-

10V. It has a standard DB9 connector for RS232 communication with the microcontroller

and headers for ISP and JTAG connections, which can be used to program the

microcontroller and debug the application. The ATmega128L has the ability to interface

an external RAM; the board contains a 32KB external RAM, which is quite sufficient for

the program. The board also features a 5-way joystick, buttons and LED’s. A small

potentiometer is connected to the on-chip ADC of ATmega128L.

3.3.1 Atmel ATmega128L Overview

The ATmega128L is a low power CMOS 8-bit microcontroller based on the AVR

enhanced RISC architecture. By executing powerful instructions in a clock cycle, the

ATmega128L achieves throughputs approaching 1 MIPS per MHz. The AVR core

combines a rich instruction set with 32 general-purpose working registers. All the 32

registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two

independent registers to be accessed in one single instruction executed in one clock cycle

[7].

The ATmega128L provides the following features:

• 128K bytes of in-system programmable Flash

• 4K bytes EEPROM

• 4K bytes SRAM

• Real Time Counter (RTC)

• 2 USART

25

• SPI port

• 8-channel, 10-bit ADC

• Two 8-bit Timer/Counters and two 16-bit Timer/Counters

• JTAG test interface

3.4 TS-7200 overview

The TS-7200 is a compact, full-featured single board computer (SBC. This board

was selected based on its features and the manufacturer provided good support for Linux

by providing precompiled Linux Kernel, Debian distribution and tool-chain. This board is

small in size and priced economically.

 TS-7200 is based on the Cirrus EP9302 ARM9 CPU. The EP9302 features an

advanced 200 MHz processor design with a memory management unit (MMU) that

allows support for high level operating systems such as Linux, Windows CE, and others

[8]. As a general-purpose controller, it provides a standard set of peripherals on board.

Figure 3.3 illustrates the hardware components on TS-7200 [8].

The features of TS-7200 are:

• 200 MHz ARM9 CPU with MMU

• 8 MB Strata Flash drive (16 MB Optional)

• 32 MB SDRAM (64 MB Optional)

• True Integrated Drive Electronics (IDE) Compact Flash socket

• 2 USB 2.0 OHCI ports (12 Mbit/s max)

• 2 serial ports (up to 230 Kbaud)

• 10/100 Ethernet port

• Watchdog Timer

26

• SPI bus interface

• PC/104 expansion bus

The TS-7200 features a true IDE compact Flash socket. A compact Flash card in

the socket appears as a hard drive to the operating system. Compact Flash cards are

available in a wide range of capacities. A 512 MB card is sufficient to install a

customized version of Debian Linux distribution. The board also features USB and

Ethernet ports which can be used to connect to other devices. This board serves right for

a PAN coordinator as it is expected to be the master controller.

Figure 3.3: TS-7200 Hardware Components [8]

CHAPTER4: SOFTWARE DESCRIPTION

4.1 System Setup

The setup consists of the CC2420DBK, TS-7200, Desktop, Laptop, Router, and

two JTAGICE mkII debuggers. Figure 4.1 illustrates the setup. The laptop, desktop and

TS-7200 were connected to the router to form a local area network (LAN). The desktop

computer is connected to one of the CC2420DB via JTAGICE mkII debugger. This setup

forms one node of the wireless network. The other CC2420DB and TS-7200 connected

via RS-232 form another node and this CC2420DB is connected to the Laptop via

another JTAGICE mkII.

The router is the dynamic host configuration protocol (DHCP) server of the

network. The DHCP server was configured to assign specific Internet Protocol (IP)

addresses to the desktop, laptop and TS-7200 which were 192.168.100, 192.168.0.101

and 192.168.0.102 respectively.

28

4.2 Atmel Development Environment

4.2.1 AVR Studio

AVR Studio is an Integrated Development Environment (IDE) for assembling and

debugging AVR application in windows environment. It provides a project management

tool, source file editor and chip simulator and interfaces with the JTAGICE mkII for

downloading and debugging of applications. The AVR Studio also has a symbolic source

level debugger, with features for Break Points, variables watch/ edit, single stepping.

Additional features can be added through the use of plugins.

Figure 4.1: Setup overview

29

4.2.2 WinAVR

WinAVR is a suite of executable, open source software development tools for the

Atmel AVR series of microcontrollers hosted in windows platform. The installation and

usage instructions can be found in the user manual [24].

The software development tools include:

• Compilers

• Assemblers

• Linker

• Librarian

• File converters

• C Library

• Debugger

• In-Circuit Emulator software

• Many support utilities.

All the software for the ATmega128L microcontroller was developed using

WinAVR tools version 20060421 and AVR Studio version 4.12b.

4.3 Linux Environment

The TS-7200 comes with TS-Linux embedded distribution installed in the on-

board Flash memory. TS-Linux is a compact distribution, based on Busybox, ideal for

small footprint. BusyBox combines tiny versions of many common Linux/UNIX utilities

into a single small executable. A full featured Linux distribution can also be run on either

the Network File System (NFS) root file system or installed on a large CompactFlash

card.

30

The on-board Flash contains the TS-Linux kernel which is a standard kernel with

patches to customize for this hardware. The version of the on-board kernel was ts-8. A

newer version ts-10 based on standard kernel version 2.4.26 was available and the on-

board Flash was updated with this version.

A 512MB CompactFlash card was formatted with the second extended file system

(ext2) on a desktop running Linux via a USB – CompactFlash card reader. The

customized Debian 3.0 (Woody) distribution available on Technologic system website

was installed on the CompactFlash card. The configuration of the RedBoot bootloader

was updated to specify the CompactFlash card file system as the root file system to the

kernel.

There are many advantages of running a full featured Linux distribution where the

associated tools, utilities, application and software development environment are

available. The Debian distribution; as a default runs a secure shell (SSH) server. Any

SSH client could be used to login into this Linux. PuTTY is one such client and is

available as free software for many operating environment including windows. Its easy to

install and configure [23]. A terminal over SSH was preferred over the standard terminal

available on the serial port, as this terminal was found to be more stable and the

applications were found to interact well with it.

4.3.1 Cygwin

Cygwin is a Linux-like environment for Windows. It consists of a Dynamic Link

Library (DLL) named cygwin1.dll, which acts as an emulation layer providing substantial

Portable Operating System Interface (POSIX) system call functionality, and a collection

31

of tools, which provide a Linux look and feel. Many of the Linux applications are ported

to execute in Cygwin environment [22].

An NFS server was installed in the Cygwin, the installation steps [17] by H.

Sparks were found helpful. It was setup to run and export a local folder “/usr/Sandy”. The

TS-7200 was configured to mount this folder at location “/mnt/laptop/” automatically on

boot up by adding an entry in the “/etc/fstab” file. This setup would make the folder

visible to both the systems, thus enabling file and application sharing. Additional

installation and configuration information can be found in the Linux NFS how to [16].

Technologic Systems provides Linux programming tools (toolchain) for Cygwin

environment. The toochain was installed on Cygwin, thus allowing Linux applications for

TS-7200 to be built from the Cygwin environment. The Cygwin environment was

preferred over natively building applications on TS-7200, since the laptop computer

offered more computational resources.

4.4 Stack Overview

The software stack implementation is split into two parts, one part of the stack is

implemented on the Linux side and the other part resides on the ATmega128L

microcontroller. The Linux section implements the device independent higher level

functionality of the stack. The device specific part is implemented on the ATmega128L.

This allows for easy porting to new 802.15.4 RF transceivers.

32

4.4.1 Linux - Media Access control (MAC)

As illustrated in the Figure 4.2, the software is implemented in layers. The Media

Access Control (MAC) layer is the top layer and it provides a set of functions to

initialize, configure, control, send and receive packets of data over the radio. The MAC

layer on the Linux side maintains the state and configuration of the node. It

communicates with its counterpart on the microcontroller in the form of data packets.

Figure 4.2: Software structure and data flow

Figure 4.3: The structure of MAC packet

33

Figure 4.3 shows the structure of a MAC packet as composed of 3 fields. The first

field, “FrameID” identifies the type of packet and is of 2 bytes in length. The next field is

“Length”, a 1 byte field specifying the total length of the packet in bytes. The third field

“Data”, is the actual data, its length varies based on the type of packet. The largest

number for the “Length” field can be 255 and the header i.e. “FrameID” and “Length”

fields take 3 bytes, consequently a maximum of 252 bytes is available for the “Data”

field.

The MAC layer defines a function called MAC_Process(), which must be called

often. This function receives packets from SLIP and processes them accordingly. It is

best to place a call to this function in the infinite loop part of the software, if the software

is multi-threaded a separate thread can be assigned to execute this function periodically.

4.4.2 Linux – Serial Line Internet Protocol (SLIP)

The SLIP was designed to encapsulate IP datagram and send it over serial lines. It

encapsulates data to form frames so that the receiving end can differentiate the frames

and provide the data to the upper layers. SLIP protocol defines two special characters:

“END” (octal 300) and “ESC” (octal 333). To send a packet, a starting character of

“END “is sent first, it is followed by the data in the packet. If a data byte is the same code

as “END” character, a two byte sequence of “ESC” and octal 334 is sent instead. If it is

the same as an “ESC” character, a two byte sequence of “ESC” and octal 335 is sent

instead. After the entire data in the packet is sent, an “END” character is sent to end the

frame [9]. SLIP encapsulation drops corrupted packets, thus ensuring that the MAC layer

34

always receives a complete data packet. SLIP is a simple protocol and causes very less

overhead.

4.4.3 Linux – Serial port

Serial port access in Linux is fairly simple and easy. Each serial port on the

system is available as a “ttyS#” device file, # representing the port number, 0 for

“COM1”, 1 for “COM2” and so on. These files are located under “/dev” directory. The

configuration for the serial port is stored in a structure “termios” which is defined in the

header file “termios.h”. The “COM2” of the TS-7200 is connected to the CC2420DB,

which can be accessed by the device file “/dev/ttyAM1”. The serial port is configured for

sending and receiving of raw data bytes. The data can be sent and received via write()

and read() functions respectively. The reference [9], is a good guide for serial port

programming in Linux.

4.4.4 ATmega128L – MAC

This layer complements the Linux’s MAC layer with implementation of device

specific functionality. The MAC layer receives MAC frames from the SLIP layer and

processes them. When a 802.15.4 packet is received, it is wrapped with MAC frame and

sent to the Linux MAC layer through SLIP. This layer utilizes the sample code provided

by Chipcon to communicate with CC2420. The current stack code expects the

MAC_Process() function to be called in the infinite while loop of the microcontroller.

This function checks for a new 802.15.4 packet, processes it, it then checks for any new

frame in the SLIP layer to process.

35

The sample code consists of Hardware definition files, Hardware Abstraction

Layer (HAL) and Basic RF Library. The Hardware definition files define macros to the

registers in the microcontroller and CC2420, thus providing an easier way to access the

hardware. To support program development, hardware abstraction layer presents with

functions and macros to access most of the CC2420 and microcontroller resources. These

functions and macros can be used without hardware specific knowledge. The Basic RF

library provides simple function to send and receive 802.15.4 packets through CC2420.

4.4.5 ATmega128L – SLIP

The SLIP layer functionality is the same as in Linux’s SLIP layer. It encapsulates

every MAC frame being sent and unpacks every received frame and provides it to the

MAC layer. The current implementation buffers a single MAC frame received.

4.4.6 ATmega128L – Serial driver

The serial driver provides an interrupt based buffered mechanism for transmitting

and receiving data. It implements two circular buffers for transmission and reception. The

data being transmitted is copied to the transmit buffer and the transmit interrupt is

triggered. The transmit interrupt routine checks for an available data byte and copies it to

the transmit data register, if the transmit data buffer is empty, it disables further interrupt

triggers. When a byte of data is received in the microcontroller, it triggers the receive

interrupt routine which copies the data byte to receive buffer.

36

4.5 MAC Communication

Figure 4.4 illustrates the mechanism to send data from “Node 1” to “Node 2”. The

data packed into a MAC frame and wrapped with SLIP is sent from the TS7200 to the

CC2420DB. The microcontroller receives the frame and identifying as data to transmit,

sends it to CC2420 for transmission over radio. If the acknowledgement option was set,

the microcontroller waits for an acknowledgement from the other node before it times

out, If it receives an valid acknowledgement it forwards it to the Linux MAC else it sends

an transmission error.

Figure 4.4: Packet Transmission Mechanism

37

Figure 4.5 illustrates the packet reception. The “Node 2” sends a data packet

addressed to “Node 1”. Upon receiving it, the CC2420 interrupts the microcontroller. The

microcontroller gets the data from CC2420 buffer, if the packet requested

acknowledgement, it sends an acknowledgement to CC2420 for transmission. The

microcontroller then encapsulates the data with a MAC frame and sends it to the Linux

SBC.

Figure 4.5: Packet receiving mechanism

38

4.6 Setup for testing

The system was setup as described in the section 4.1 and illustrated in Figure 4.1.

The sample demo program provided by Chipcon for CC2420DB was used in testing. The

program establishes a point-to-point RF link between two CC2420DB nodes for

communication using the 802.15.4 MAC frames. The program uses 0x2420 as the PAN

ID of the nodes and uses channel 26. The short address of the node is selected based on

the joystick position, if it was pressed down a short address of 0x1234 is selected else if

moved in any direction an address of 0x5678 is selected for the node at startup. If the

potentiometer is turned or the joystick centre button is held down, a data packet

containing the potentiometer value is sent to the other node, which is used to control the

Pulse Width Modulation (PWM) duty cycle thus effectively controlling the brightness of

the Orange LED.

The standalone “Node 2” was programmed with the sample demo program. For

the “Node 1”, a test program was written which would execute on the Linux SBC and use

the stack to communicate with the “Node2”. The test program would perform the same

Figure 4.6: The test setup.

39

functionality as the demo program, but uses user inputs for the PWM duty cycle and

displays the contents on the received packets.

Figure 4.7 shows the menu system of the test program. Menu option 1 sends a

packet to “Node 2” with a user input value for the PWM duty cycle and the node address.

Upon receiving the packet “Node 2” would update the PWM duty cycle value and can be

noticed on the brightness of the LED. Other functions of the test program were tested

similarly by making appropriate changes on the demo program of “Node 2”.

Figure 4.7: Test program menu

Figure 4.8: A received frame by test program

40

Figure 4.8 shows the contents of a received packet on “Node1” from “Node 2”.

The test program displays the various fields associated with the packet received, it also

displays the raw bytes of the packet.

CHAPTER5: CONCLUSION

The objectives of the thesis work has been achieved with the implementation of

subset features of IEEE 802.15.4 features on a Linux SBC and demonstrate the use of

such a controller in LR-PAN. The SBC with Linux setup and the development tools form

the embedded Linux development system. The complete system with the hardware setup

and the software stack can be used in the following ways.

• Serves as an embedded Linux development system with the development tools,

other interfaces such as Ethernet and USB, and many applications.

• Can be used in investigating and developing upper layer protocols such as

ZigBee.

• Evaluating various aspects of IEEE 802.15.4 protocol.

• As a tool in the study of co-existence of IEEE 802.15.4 with other wireless

standards.

• As a packet logger/analyzer in IEEE 802.15.4 networks.

• As an educational tool in teaching LR-PAN and embedded Linux.

• As a valuable resource in the ongoing research of IEEE 802.15.4 at UNC

Charlotte.

42

5.1 Future work

This thesis work can be extended in many ways. The stack can be enhanced with

the support for beacon enabled networks. The current version lacks support for security

features, which can be implemented.

The stack can be ported to operating systems such as Windows CE, which is

another popular embedded operating system. As Windows CE is widely used in personal

digital assistants and cell phones, IEEE 802.15.4 wireless functionality can be added to

such devices.

REFERENCES

[1] Institute of Electrical and Electronic Engineers, Inc., ”IEEE Std. 802.15.4-
2003, IEEE Standard for Information Technology – Telecommunications and
Information Exchange between Systems – Local and Metropolitan Area
Networks – specific Requirements – Part 15.4 : Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (LR-WPAN)”
http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf

[2] J.A. Gutierrez, “On the use of IEEE 802.15.4 to enable wireless sensor

networks in building automation” Proc.of IEEE Int. Conf. Personal, Indoor
and Mobile Radio Communications (PIMRC’04), Barcelona, Spain
September 2004, Vol 3 pp. 1865-1869.

[3] A. Sikora, V.F. Groza, “Coexistence of IEEE 802.15.4 with other Systems in

the 2.4 GHz- ISM-Band” Proc. of IEEE – Instrumentation and Measurement
Technology Conference (IMTC’05), Ottawa, Canada May 2005, pp 1786-
1791.

[4] E. Callaway, P. Gorday, L. Hester, J.A.Gutierrez, M. Naeve, B. Heile, V.Bahl

“Home Networking with IEEE 802.15.4: A Developing Standard for Low-
Rate Wireless Personal Area Networks”, IEEE Communication Magazine,
August 2002.

[5] Chipcon, “User Manual Rev1.3 SmartRF ® CC2420DBK Demonstration

Board Kit”
http://www.chipcon.com/files/CC2420DBK_User_Manual_1_3.pdf

[6] Chipcon, “SmartRF® CC2420: 2.4GHz IEEE802.15.4/Zigbee RF

Transceiver,” http://www.chipcon.com/files/CC2420_Data_Sheet_1_4.pdf

[7] ATMEL, ATMEGA 128L AVR 8-Bit RISC – Datasheet
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

[8] TS-7200 Datasheet. http://www.embeddedarm.com/Manuals/ts-7200-

datasheet.pdf

[9] G. Frerking, “Serial programming HOW TO”.

http://tldp.org/HOWTO/Serial-Programming-HOWTO/

[10] J. Romkey “RFC 1055 - Nonstandard for transmission of IP datagrams over

serial lines: SLIP” http://www.faqs.org/rfcs/rfc1055.html

44

[11] J. Lee, “ An Experiment on Performance Study of IEEE 802.15.4 Wireless
Networks” Proc. of Emerging Technologies and Factory Automation, 2005
Volume 2, 19-22 Sept. 2005 Page(s):451-458

[12] A. Lennon, “Embedding Linux” IEE Review Volume 47, Issue 3, May 2001

Page(s):33 – 37

[13] D. Geer, “Survey: Embedded Linux Ahead of the Pack” Distributed Systems

Online, IEEE Volume 5, Issue 10, Oct. 2004 Page(s):3 – 3

[14] S. Hong, “Embedded Linux Outlook in the PostPC Industry” Proc. of Object-

Oriented Real-Time Distributed Computing, 2003. 14-16 May 2003
Page(s):37 – 40

[15] C. Evans-Pughe, “Bzzzz zzz [ZigBee wireless standard]” IEE Review

Volume 49, Issue 3, March 2003 Page(s):28 – 31

[16] C. Smith “Linux NFS-HOWTO” http://nfs.sourceforge.net/nfs-howto/

[17] H. Sparks “ Cygwin NFS Server HOWTO”
http://www.csparks.com/CygwinNFS/index.xhtml

[18] A. Rodland, “Novice's Guide to AVR Development”

http://www.atmel.com/dyn/resources/prod_documents/novice.pdf

[19] C. O'Flynn, “Downloading, Installing and Configuring WinAVR”

http://winavr.sourceforge.net/install_config_WinAVR.pdf

[20] TS-7200 User’s Manual http://www.embeddedarm.com/Manuals/ts-7200-

manual-rev2.2.pdf

[21] Linux for ARM on TS-7000 User's Guide
http://www.embeddedarm.com/Manuals/linuxarm-guide-rev2.0.pdf

[22] Cygwin User/s guide http://cygwin.com/cygwin-ug-net/cygwin-ug-net.html

[23] PuTTY user manual http://www.putty.nl/0.58/htmldoc/

[24] WinAVR manual http://winavr.sourceforge.net/install_config_WinAVR.pdf

[25] Linux wireless sensor LAN project http://linux-802-15-4.sourceforge.net/

[26] Universal ZigBee Stack http://sourceforge.net/projects/zigzagbee/

45

[27] ZigBuzz http://sourceforge.net/projects/zigbuzz/

[28] M. Galeev, “Home Networking with ZigBee”
http://www.embedded.com/showArticle.jhtml?articleID=18902431

[29] A. H. Ansari “Hardware Development of an Embedded Wireless Evaluation

Board”, MS Thesis, University of North Carolina - Charlotte, Dec. 2005.

[30] R. Rai "IEEE 802.15.4 Protocol Implementation and Measurement of Current

Consumption", M.S Thesis, University of North Carolina- Charlotte, Dec.
2005.

[31] M. Marchesotti, M. Migliardi, R. Podesta, “A Measurement-Based Analysis
of the Responsiveness of the Linux Kernel” Proc. of International
Symposium and Workshop on Engineering of Computer Based Systems, 27-
30 March 2006.

APPENDIX

ATmega128L code

/** *******
* File Name: MAC.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file contains constansta for MAC *
* and function prototypes *
* *
*** ******/

#ifndef MAC_H
#define MAC_H

// Define Frame IDs

#define MAC_SET_PAN_ID 1
#define MAC_GET_PAN_ID 2
#define MAC_SET_ADDR 3
#define MAC_GET_ADDR 4
#define MAC_SET_CHANNEL 5
#define MAC_GET_CHANNEL 6
#define MAC_SET_RECEIVER 7
#define MAC_GET_RECEIVER 8
#define MAC_XMIT_PACKET 9
#define MAC_RECV_PACKET 10
#define MAC_SET_ACK 11
#define MAC_GET_ACK 12

// FrameID + length + seqNum+SrcAdd+srcPanID+AckReq +Rssi+length
// 2 + 1 + 1 + 2 + 2 + 1 + 1 + 1 =
11
#define MAC_RECV_PKT_OVERHEAD 11

int MAC_Init();

int MAC_Process();

#endif // MAC_H

/************** END ***************************** *******/
/** *******
* File Name: MAC.c *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file implements the device specific *
* functionality of IEEE 802.15.4 *
* *
*** ******/

47

#include "include.h"
#include "SLIP.h"
#include "MAC.h"

#define SLIP_TX_BUF_SIZE 140
#define SLIP_RX_BUF_SIZE 140

// Structure for local copy of the received packet
// This RX Struct will get written into when a pack et is received from
radio.
// This copy of the received packet should be used for further
processing.
volatile BASIC_RF_RX_INFO rf_rcv_info;
UINT8 rf_rx_buffer[BASIC_RF_MAX_PAYLOAD_SIZE];
volatile UINT8 received_newFrame;

UINT8 slip_TxBuff[SLIP_TX_BUF_SIZE];

UINT8 slip_RxBuff[SLIP_RX_BUF_SIZE];

 BASIC_RF_TX_INFO rf_Tx_Info;

UINT8 rf_Tx_Buffer[BASIC_RF_MAX_PAYLOAD_SIZE];

//extern volatile BASIC_RF_TX_INFO rf_Tx_Info;

// Initialize function
int MAC_Init(){
 rf_rcv_info.pPayload = rf_rx_buffer;
 rf_Tx_Info.pPayload = rf_Tx_Buffer;

 received_newFrame = FALSE;
 return 0;

}

// Primarily handles packets to be received by SLIP and transmitted via
radio.
// and handle packets received via radio to be sent over SLIP.

int mac_pr_ctr =0;
int MAC_Process(){
 UINT16 slipRxLength;
 int i=0;
 if(received_newFrame == TRUE){ // got a new frame from radio
 // Make a new SLIP frame and send it
 slip_TxBuff[0] = LOWER_BYTE(MAC_RECV_PACKET);
 slip_TxBuff[1] = UPPER_BYTE(MAC_RECV_PACKET);
 slip_TxBuff[2] = MAC_RECV_PKT_OVERHEAD +
rf_rcv_info.length;
 slip_TxBuff[3] = rf_rcv_info.seqNumber;

48

 slip_TxBuff[4] = LOWER_BYTE(rf_rcv_info.srcAddr);
 slip_TxBuff[5] = UPPER_BYTE(rf_rcv_info.srcAddr);
 slip_TxBuff[6] = LOWER_BYTE(rf_rcv_info.srcPanId) ;
 slip_TxBuff[7] = UPPER_BYTE(rf_rcv_info.srcPanId) ;
 slip_TxBuff[8] = rf_rcv_info.ackRequest;
 slip_TxBuff[9] = rf_rcv_info.rssi;
 slip_TxBuff[10] = rf_rcv_info.length;

 memcpy(
&slip_TxBuff[MAC_RECV_PKT_OVERHEAD],rf_rcv_info.pPa yload,rf_rcv_info.le
ngth);

 //for (i=0; i< rf_rcv_info.length; i++){
 // slip_TxBuff[MAC_RECV_PKT_OVERHEAD+i] =
rf_rcv_info.pPayload[i];
 // }

 SLIP_Send(slip_TxBuff,
MAC_RECV_PKT_OVERHEAD+rf_rcv_info.length);
 mac_pr_ctr++;
 received_newFrame = FALSE; // clear flag

 }

 // check for new any frames received on SLIP and p rocess them
 SLIP_process();
 if(SLIP_getFrame(slip_RxBuff, &slipRxLength) ==0) {
 // got a SLIP frame process it
 unsigned int frameId;
 frameId = GET_INT(slip_RxBuff[1], slip_RxBuf f[0]);

 switch(frameId){
 case MAC_SET_PAN_ID :{
 UINT8 n;
 UINT16 panid =
GET_INT(slip_RxBuff[4],slip_RxBuff[3]);
 rfSettings.panId = panid;

 halRfWaitForCrystalOscillator();
 DISABLE_GLOBAL_INT();
 //FASTSPI_WRITE_RAM_LE(&myAddr,
CC2420RAM_SHORTADDR, 2, n);
 FASTSPI_WRITE_RAM_LE(&panid, CC2420RAM_PANID , 2, n);
 ENABLE_GLOBAL_INT();
 }
 break;
 case MAC_GET_PAN_ID:
 break;
 case MAC_SET_ADDR :{
 UINT8 n;
 UINT16 addr =
GET_INT(slip_RxBuff[4],slip_RxBuff[3]);
 rfSettings.myAddr = addr;

 halRfWaitForCrystalOscillator();
 DISABLE_GLOBAL_INT();

49

 FASTSPI_WRITE_RAM_LE(&addr, CC2420RAM_SHORTA DDR, 2,
n);
 ENABLE_GLOBAL_INT();
 }
 break;

 case MAC_GET_ADDR:
 break;

 case MAC_SET_CHANNEL:
 // check channel range 11-26 valid
 if(10 < slip_RxBuff[3] && slip_RxBuff[3] <27){
 DISABLE_GLOBAL_INT();
 // if on turn it off
 if(rfSettings.receiveOn)
FASTSPI_STROBE(CC2420_SRFOFF);
 halRfSetChannel(slip_RxBuff[3]);
 if(rfSettings.receiveOn)
FASTSPI_STROBE(CC2420_SRXON);
 ENABLE_GLOBAL_INT();
 }
 break;

 case MAC_GET_CHANNEL:

 break;

 case MAC_SET_RECEIVER:
 if(slip_RxBuff[3]==0){ // rx off
 basicRfReceiveOff();
 //DISABLE_GLOBAL_INT();
 //FASTSPI_STROBE(CC2420_SRFOFF);
 //ENABLE_GLOBAL_INT();
 }else if(slip_RxBuff[3]==1){ // rx on
 basicRfReceiveOn();
 //DISABLE_GLOBAL_INT();
 //FASTSPI_STROBE(CC2420_SRXON);
 //ENABLE_GLOBAL_INT();
 }

 break;

 case MAC_GET_RECEIVER:
 break;

 case MAC_XMIT_PACKET:{ // receive from sli p and send it
via radio
 rf_Tx_Info.destAddr =
GET_INT(slip_RxBuff[4],slip_RxBuff[3]);
 rf_Tx_Info.ackRequest = slip_RxBuff[5];
 rf_Tx_Info.length = slip_RxBuff[6];
 memcpy(rf_Tx_Info.pPayload,
&slip_RxBuff[7],slip_RxBuff[6]);
 //basicRfSendPacket(rf_Tx_Info);
 if(basicRfSendPacket(&rf_Tx_Info)){ //TODO:
return status via SLIP
 TOGGLE_YLED();

50

 }else{
 TOGGLE_RLED();
 }
 }
 break;

 case MAC_RECV_PACKET:
 break;
 }

 }

 return 0;
}

UINT16 rx_cntr =0;

BASIC_RF_RX_INFO* basicRfReceivePacket(BASIC_RF_RX_ INFO *pRRI) {
// int i=0;
 // Adjust the led brightness
// PWM0_SET_DUTY_CYCLE(pRRI->pPayload[0]);

 // Blink the green LED
// SET_GLED();
// halWait(10000);
// CLR_GLED();
 rf_rcv_info.seqNumber = pRRI->seqNumber;
 rf_rcv_info.srcAddr = pRRI->srcAddr;
 rf_rcv_info.srcPanId = pRRI->srcPanId;
 rf_rcv_info.length = pRRI->length;

 rf_rcv_info.ackRequest = pRRI->ackRequest;
 rf_rcv_info.rssi = pRRI->rssi;
 memcpy(rf_rcv_info.pPayload, pRRI->pPayload, pRRI- >length);

 received_newFrame = TRUE;
 TOGGLE_GLED();
 rx_cntr++;

// for(i=0; i<pRRI->length;i++){
// rf_rcv_info.pPayload[i]= pRRI->pPayload[i];
// }

 // Continue using the (one and only) reception structure
 return pRRI;

} // basicRfReceivePacket

/************** END ***************************** *******/

51

/** *******
* File Name: SLIP.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file contains SLIP configuration *
* and function prototypes *
* *
*** ******/

#ifndef SLIP_H
#define SLIP_H

#define END 0300 /* indicates end of packet */
#define ESC 0333 /* indicates byte s tuffing */
#define ESC_END 0334 /* ESC ESC_END mean s END data byte */
#define ESC_ESC 0335 /* ESC ESC_ESC mean s ESC data byte */

int SLIP_Init();

int SLIP_Send(unsigned char *buf, int length);

void SLIP_process();

int SLIP_getFrame(UINT8 *buf, UINT16 *size);

#endif // SLIP_H
/************** END ***************************** *******/

/** *******
* File Name: SLIP.c *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file implements SLIP layer and *
* uses UART layer as serial driver *
* *
*** ******/

#include <include.h>
#include "USART.h"
#include "SLIP.h"

#define SLIP_TXBUF_SIZE 200
#define SLIP_RXBUF_SIZE 250

UINT8 slip_xmit_buf[SLIP_TXBUF_SIZE];
UINT8 rx_lastByte;

52

struct Slip_Rcv_Frame{
 UINT8 buffer[SLIP_RXBUF_SIZE];
 UINT16 length;
 UINT8 isEmpty;
 UINT8 writeFlag;
};

struct Slip_Rcv_Frame slip_rcv_frame;

int SLIP_Init(){
 slip_rcv_frame.isEmpty = TRUE;
 slip_rcv_frame.length = 0;
 slip_rcv_frame.writeFlag = FALSE;
 return 0;

}

int SLIP_Send(unsigned char *buf, int length){
 int idx=0;
 int i=0;

 slip_xmit_buf[idx] = END;
 idx++;

 for(i=0;i<length;i++){
 if(idx+2 >SLIP_TXBUF_SIZE){
 return -1; // Buffer overflow
 }
 switch(buf[i]){
 case END:
 slip_xmit_buf[idx] = ESC;
 idx++;
 slip_xmit_buf[idx] = ESC_END;
 idx++;
 break;
 case ESC:
 slip_xmit_buf[idx] = ESC;
 idx++;
 slip_xmit_buf[idx] = ESC_ESC;
 idx++;
 break;
 default:
 slip_xmit_buf[idx] = buf[i];
 idx++;
 }
 }

 slip_xmit_buf[idx] = END;
 idx++;

 return(USART1_Send(idx, slip_xmit_buf));

}

int SLIP_getFrame(UINT8 *buf, UINT16 *size){
 UINT16 i;

53

 // check the frame status
 if(slip_rcv_frame.isEmpty == FALSE){ // containe a new frame.
 // If new frame is available, copy the data and cl ear the
receiveframe
 for(i=0;i<slip_rcv_frame.length; i++){
 buf[i] = slip_rcv_frame.buffer[i];
 }
 *size = slip_rcv_frame.length;
 slip_rcv_frame.isEmpty = TRUE;
 return 0;
 }else{ // If no new frame avialable retunr -1

 return -1;
 }

}

/* This function is to be called as many times as p ossible.
 It checks the receiveframe, if found empty, it tri es to get data
from the
 USART layer and assemble a new frame.*/

void SLIP_process(){
 UINT8 ch;
 int moredata =1;

 if(slip_rcv_frame.isEmpty == TRUE){
 if(slip_rcv_frame.writeFlag == FALSE){ // begi nning of a new
frame
 slip_rcv_frame.length = 0;
 }
 while(moredata == TRUE){ // a getdata flag
 if(USART1_Recv(&ch) ==0){ // if a byte is received then
process it

 switch(ch){
 case END:
 if(slip_rcv_frame.writeFlag == FALSE){ //start
of new frame
 slip_rcv_frame.writeFlag = TRUE; //
indicate the write is in progress
 }else{ // End of frame receive d.
 slip_rcv_frame.isEmpty = F ALSE; //
indicate a new frame is stored.
 slip_rcv_frame.writeFlag =
FALSE;
 moredata = FALSE; // end t he while loop
 }
 break;

 case ESC:

54

 rx_lastByte = ESC; // keep a r ecord of it

 break;

 case ESC_END:
 if(rx_lastByte == ESC){

slip_rcv_frame.buffer[slip_rcv_frame.length] = END;
 slip_rcv_frame.length++;
 rx_lastByte = 0;
 }else{ // TODO: handle error
 }
 break;

 case ESC_ESC:
 if(rx_lastByte == ESC){

slip_rcv_frame.buffer[slip_rcv_frame.length] = ESC;
 slip_rcv_frame.length++;
 rx_lastByte = 0;
 }else{ // TODO: handle error
 }
 break;

 default:
 slip_rcv_frame.buffer[slip_rcv _frame.length]
= ch;
 slip_rcv_frame.length++;
 }
 }else{ // no more data in Queue
 moredata = FALSE;
 }
 } // while
 }
}

/************** END ***************************** *******/

/** *******
* File Name: USART.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: Provides varios configuration options fo r *
* UART driver. *
* *
*** ******/

#ifndef USART_H
#define USART_H

//#define USART_2XMODE 1; // Puts USART in 2x mod e. not preferred.

#ifdef USART_2XMODE

// (CPUCLOCK / 8*baud) -1
#define UART_BAUD_2K4 416

55

#define UART_BAUD_4K8 207
#define UART_BAUD_9K6 103
#define UART_BAUD_14K4 68
#define UART_BAUD_19K2 51
#define UART_BAUD_28K8 34
#define UART_BAUD_38K4 25
#define UART_BAUD_57K6 16
#define UART_BAUD_76K8 12
#define UART_BAUD_115K2 8
#define UART_BAUD_230K4 3
#define UART_BAUD_250K 3
#define UART_BAUD_500K 1
#define UART_BAUD_1M 0

#else
// (CPUCLOCK / 16*baud) -1
#define UART_BAUD_2K4 207
#define UART_BAUD_4K8 103
#define UART_BAUD_9K6 51
#define UART_BAUD_14K4 34
#define UART_BAUD_19K2 25
#define UART_BAUD_28K8 16
#define UART_BAUD_38K4 12
#define UART_BAUD_57K6 8
#define UART_BAUD_76K8 6
#define UART_BAUD_115K2 3
#define UART_BAUD_230K4 1
#define UART_BAUD_250K 1
#define UART_BAUD_500K 0
// #define UART_BAUD_1M 0 // not support ed

#endif

#define XMIT_BUF_SIZE 250
#define RECV_BUF_SIZE 250

extern volatile UINT8 uart_xmit_buf[XMIT_BUF_SIZE];
extern volatile UINT8 uart_xmit_buf[RECV_BUF_SIZE];

UINT8 USART1_Send(UINT8, UINT8*);
UINT8 USART1_Init(UINT8 , UINT8, UINT8, UINT8);
UINT8 USART1_Recv(UINT8*);

#endif

/************** END ***************************** *******/

56

/** *******
* File Name: USART.c *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: A circular buffer device driver for UAR T *
* *
* *
*** ******/

#include <include.h>
#include "USART.h"

#define UART1_TX_INT_ENABLE() do { UCSR1B |= BM(UDRIE1); } while
(0)
#define UART1_TX_INT_DISABLE() do { UCSR1B &= ~BM(UDRIE1); } while
(0)

volatile UINT8 uart_xmit_buf[XMIT_BUF_SIZE];
volatile UINT8 uart_recv_buf[RECV_BUF_SIZE];
volatile UINT16 uart_Recv_Ridx =0;
volatile UINT16 uart_Recv_Widx =0;

volatile UINT16 uart_Xmit_Ridx =0;
volatile UINT16 uart_Xmit_Widx =0;

volatile UINT16 txISRCntr =0;
volatile UINT16 rxISRCntr =0;
volatile UINT8 rxChar =0;

/* Initialize
UINT8 baud
UINT8 databits = Num of databits, generally 8
UINT8 stopbits = Num of stop bits, generally 1
UINT8 parity = 0-no parity, 1-even, 2- odd

*/

UINT8 USART1_Init(UINT8 baud, UINT8 databits, UINT 8 stopbits, UINT8
parity){

//INIT_UART1(UART_BAUDRATE_9K6,(UART_OPT_8_BITS_PER _CHAR||UART_OPT_ONE_
STOP_BIT||UART_OPT_NO_PARITY));
 // disable global int
 DISABLE_GLOBAL_INT();
 UBRR1H = (unsigned char) baud >>8;
 UBRR1L = baud;

 UCSR1A &= ~0x01; // Multi procesor disable
 UCSR1B = 0; // default state
 UCSR1C = 0x06; // default

 #ifdef USART_2XMODE
 UCSR1A |= BM(U2X1);

57

 #else
 UCSR1A &= ~BM(U2X1);
 #endif

 switch(databits){
 case 5:
 UCSR1C &= ~BM(UCSZ10);
 UCSR1C &= ~BM(UCSZ11);
 UCSR1B &= ~BM(UCSZ12);
 break;
 case 6:
 UCSR1C |= BM(UCSZ10);
 UCSR1C &= ~BM(UCSZ11);
 UCSR1B &= ~BM(UCSZ12);
 break;
 case 7:
 UCSR1C &= ~BM(UCSZ10);
 UCSR1C |= BM(UCSZ11);
 UCSR1B &= ~BM(UCSZ12);
 break;
 case 8:
 UCSR1C |= BM(UCSZ10);
 UCSR1C |= BM(UCSZ11);
 UCSR1B &= ~BM(UCSZ12);
 break;
 case 9:
 UCSR1C |= BM(UCSZ10);
 UCSR1C |= BM(UCSZ11);
 UCSR1B |= BM(UCSZ12);
 break;
 default:
 return -1;

 }

 if(stopbits ==1){
 UCSR1C &= ~BM(USBS1);
 }else if (stopbits ==2){
 UCSR1C |= BM(USBS1);
 }else{
 return -1;
 }

 if (parity ==0){
 UCSR1C &= ~BM(UPM11);
 UCSR1C &= ~BM(UPM10);

 }else if (parity==1){ // even
 UCSR1C |= BM(UPM11);
 UCSR1C &= ~BM(UPM10);

 }else if (parity ==2){ // odd
 UCSR1C |= BM(UPM11);
 UCSR1C |= BM(UPM10);

 }else{
 return -1;

58

 }

 UCSR1B |= (BM(RXEN1)|BM(RXCIE1)); // rx | int enab le
 UCSR1B |= BM(TXEN1); //tx enable

 // Initialize
 ENABLE_GLOBAL_INT();
 return 0;

}

/* Starts the interrupts for transmission*/
void USART1_startTx(UINT8 ch){

}

/* send function*/
UINT8 USART1_Send(UINT8 numBytes, UINT8* arry){
 UINT16 i=0;
 UINT16 xmit_Widx =0;
 xmit_Widx = uart_Xmit_Widx; // local copy

 for (i=0;i<numBytes; i++){

 if(xmit_Widx+1 == uart_Xmit_Ridx ||(xmit_Widx+1 ==
XMIT_BUF_SIZE && !uart_Xmit_Ridx)){
 return -1; // buffer full
 }
 uart_xmit_buf[xmit_Widx]= arry[i];
 xmit_Widx++;
 if(xmit_Widx == XMIT_BUF_SIZE) xmit_Widx = 0; // loop back

 }

 uart_Xmit_Widx = xmit_Widx; // restore the pointer
 // enable TX int
 UART1_TX_INT_ENABLE();
 return 0;
}

UINT8 USART1_Recv(UINT8 *ch){
 if(uart_Recv_Ridx == RECV_BUF_SIZE) uart_Recv_Ridx =0;
 if(uart_Recv_Ridx == uart_Recv_Widx){
 return -1;
 }else{
 uart_Recv_Ridx++;
 *ch = uart_recv_buf[uart_Recv_Ridx-1];
 return 0;
 }
}

59

/* Interrupt routine for Receive */
ISR(USART1_RX_vect){
 UINT8 ch;
 if(uart_Recv_Widx+1 == uart_Recv_Ridx ||(uart_Recv _Widx+1
==RECV_BUF_SIZE && !uart_Recv_Ridx)){
 // err cntr ++
 // dummy read ??
 ch = UDR1;
 }else{
 uart_recv_buf[uart_Recv_Widx] = UDR1;
 uart_Recv_Widx++;
 if(uart_Recv_Widx==RECV_BUF_SIZE) uart_Recv_Widx =0;
 }

}

/* ISR for TX*/
ISR(USART1_UDRE_vect){
 txISRCntr++;

 if(uart_Xmit_Ridx == XMIT_BUF_SIZE)
 uart_Xmit_Ridx = 0; // loop back
 if(uart_Xmit_Ridx == uart_Xmit_Widx){
 UART1_TX_INT_DISABLE();
 }else{
 uart_Xmit_Ridx++;
 UDR1 = uart_xmit_buf[uart_Xmit_Ridx-1];
 }

}

/************** END ***************************** *******/

/** ********
* File Name: util.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. . .*
* Purpose: provides utility macros *
* *
* *
*** *******/

#ifndef UTIL_H
#define UTIL_H

#define LOWER_BYTE(x) ((unsigned char)(x & 0xFF))
#define UPPER_BYTE(x) ((unsigned char)((x & 0xFF00) >>8))

#define GET_INT(x,y) ((((UINT8)x)<<8) |((UINT8)y))
#endif // UTIL_H

/************** END ***************************** *******/

60

Linux Code:

/** *******
* File Name: main.c *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: Sample test application *
* *
* *
*** ******/
#include "include.h"
#include <errno.h>
void sig_catcher(int sig);

void menu();

int main(){
 unsigned char ch,rxBuf[50],txBuf[50];
 int rxLen =0;
 int rtn;

 txBuf[0] = 'A';
 txBuf[1] = 'B';
 txBuf[2] = ESC;
 txBuf[3] = 'D';
 txBuf[4] = 'E';
 txBuf[5] = 'F';

 if(signal(SIGINT,sig_catcher)== SIG_ERR){
 fprintf(stderr,"Sigset cannot set SIGINT");
 }

 SLIP_Init();
 // SLIP_Send(txBuf,6);

 while(1){
 SLIP_Process();
 rtn = SLIP_Recv(rxBuf,&rxLen);
 if(rtn ==0){
 fprintf(stderr,"Got a packet\n");
 printBuf(rxBuf,rxLen);
 printPacket(rxBuf,rxLen);
 clearBuf(rxBuf,rxLen);
 }
 if(rxBuf[0] =='X')
 break;
 ch = getchar();
 if(ch =='z'){
 SLIP_Send(txBuf,6);
 }else if(ch=='m'){
 menu();
 }else if(ch =='a'){

61

 int duty;
 fprintf(stderr,"inside");
 txBuf[0]= LOWER_BYTE(MAC_XMIT_PACKET);
 txBuf[1]= UPPER_BYTE(MAC_XMIT_PACKET);
 txBuf[2]= 17; // length
 txBuf[3]= 0x34;
 txBuf[4]= 0x12;
 txBuf[5]=TRUE; // ack request
 txBuf[6]=10;
 //duty = getchar();
 //duty = getchar();
 //fprintf(stderr," before Errno %d %d", errno,rtn);
 scanf("%d",&duty);
 //rtn = fscanf(stdin, "Duty cycle %d",& duty);
 //fprintf(stderr,"Errno %d %d",errno,rt n);
 txBuf[7]=LOWER_BYTE(duty);
 // txBuf[7]=0xDE;

 SLIP_Send(txBuf,17);

 }
 fprintf(stderr,".");
 sleep(1);

 }

 SLIP_Term();

return 0;
}

void sig_catcher(int sig){
 fprintf(stderr,"SIG caught");
 SLIP_Term();

 exit(EXIT_FAILURE);
 perror("SIGINT: port closed and exit.");
}

void menu(){
 unsigned char txBuf[50];
 int menu;
 fprintf(stderr,"\n## Menu System ##\n");
 fprintf(stderr, "1) Send Packet \n");
 fprintf(stderr,"2) Set Channel \n");
 fprintf(stderr,"3) set Short Address\n");
 fprintf(stderr,"4) set Receiver control \n");
 fprintf(stderr,"5) set PAN ID \n");
 scanf("%d",&menu);
 switch(menu){
 case 1:{
 int add=0,duty;
 txBuf[0]= LOWER_BYTE(MAC_XMIT_PACKET);
 txBuf[1]= UPPER_BYTE(MAC_XMIT_PACKET);
 txBuf[2]= 17; // length

62

 txBuf[3]= 0x34;
 txBuf[4]= 0x12;
 txBuf[5]=TRUE; // ack request
 txBuf[6]=10;
 fprintf(stderr," Dest Addr in hex");
 scanf("%X",&add);
 if(add!=0){
 txBuf[3] =LOWER_BYTE(add);
 txBuf[4] =UPPER_BYTE(add);
 }
 fprintf(stderr,"LED Duty Cycle ");
 scanf("%d",&duty);
 txBuf[7]=LOWER_BYTE(duty);
 SLIP_Send(txBuf,17);
 fprintf(stderr,"\n");
 }break;
 case 2:{
 int chnl =0;
 txBuf[0]= LOWER_BYTE(MAC_SET_CHANNEL);
 txBuf[1]= UPPER_BYTE(MAC_SET_CHANNEL);
 txBuf[2]= 4; // length
 fprintf(stderr,"\nChannel range 11-26 : ");
 scanf("%d",&chnl);
 while((chnl < 11)|| (chnl > 26)){
 fprintf(stderr,"\nIncorrect Channel ");
 scanf("%d",&chnl);
 }
 txBuf[3] = LOWER_BYTE(chnl);
 SLIP_Send(txBuf,4);

 }break;
 case 3:{
 int addr;
 txBuf[0]=LOWER_BYTE(MAC_SET_ADDR);
 txBuf[1]=UPPER_BYTE(MAC_SET_ADDR);
 txBuf[2]=5;
 fprintf(stderr,"\nNode address in Hex:");
 scanf("%X",&addr);
 txBuf[3] = LOWER_BYTE(addr);
 txBuf[4] = UPPER_BYTE(addr);
 SLIP_Send(txBuf,5);
 }break;
 case 4:{
 int rxCntrl;
 txBuf[0]=LOWER_BYTE(MAC_SET_RECEIVER);
 txBuf[1]=UPPER_BYTE(MAC_SET_RECEIVER);
 txBuf[2]=4;
 fprintf(stderr,"\nReceiver control 1-0n , 0-Off");
 scanf("%d",&rxCntrl);
 while((rxCntrl!=0) &&(rxCntrl!=1)){
 fprintf(stderr,"\nIncorrect:");
 scanf("%d",&rxCntrl);
 }
 txBuf[3]=LOWER_BYTE(rxCntrl);
 SLIP_Send(txBuf,4);
 }break;
 case 5:{

63

 int panId;
 txBuf[0]=LOWER_BYTE(MAC_SET_PAN_ID);
 txBuf[1]=UPPER_BYTE(MAC_SET_PAN_ID);
 txBuf[2]=5;
 fprintf(stderr,"\nSet PanID in HEx ");
 scanf("%X",&panId);
 txBuf[3]=LOWER_BYTE(panId);
 txBuf[4]=UPPER_BYTE(panId);
 SLIP_Send(txBuf,5);
 }break;
 default:
 fprintf(stderr,"Incorrect choice");
 }

}
/************** END ***************************** *******/

/** *******
* File Name: MAC.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file contains constants for MAC *
* and function prototypes *
* *
*** ******/

#ifndef MAC_H
#define MAC_H

#define MAC_SET_PAN_ID 1
#define MAC_GET_PAN_ID 2
#define MAC_SET_ADDR 3
#define MAC_GET_ADDR 4
#define MAC_SET_CHANNEL 5
#define MAC_GET_CHANNEL 6
#define MAC_SET_RECEIVER 7
#define MAC_GET_RECEIVER 8
#define MAC_XMIT_PACKET 9
#define MAC_RECV_PACKET 10
#define MAC_SET_ACK 11
#define MAC_GET_ACK 12

// FrameID + length + seqNum+SrcAdd+srcPanID+AckReq +Rssi+length
// 2 + 1 + 1 + 2 + 2 + 1 + 1 + 1 =
11
#define MAC_RECV_PKT_OVERHEAD 11

#endif //MAC_H

/************** END ***************************** *******/

64

/** *******
* File Name: SLIP.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file contains SLIP configuration *
* and function prototypes *
* *
*** ******/
#ifndef SLIP_H
#define SLIP_H

/* SLIP definitions */
#define END 0300 /* indicates end of packet 0xC0 */
#define ESC 0333 /* indicates byte s tuffing 0xDB */
#define ESC_END 0334 /* ESC ESC_END mean s END data byte 0xDC
*/
#define ESC_ESC 0335 /* ESC ESC_ESC mean s ESC data byte 0xDD
*/

#define SLIP_TX_BUFF_SIZE 250
#define SLIP_RX_BUFF_SIZE 500
#define FRAME_SIZE 250

/* Serial port definitions */
#define BAUD_RATE B9600

//#define BAUD_RATE B57600
//#define BAUD_RATE B115200
//#define BAUD_RATE B230400

#define PORT "/dev/ttyAM1"

/* Function declerations*/
int SLIP_Init();
int SLIP_Term();

int SLIP_Process();
int SLIP_Send(unsigned char *buf, int len);
int SLIP_Recv(unsigned char *buf,int *length);

#endif //SLIP_H
/************** END ***************************** *******/

/** *******
* File Name: SLIP.c *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file implements SLIP Layer *
* *
* *
*** ******/
/* The file contains the code to interface to the s erial port

65

and send and receive SLIP frames*/

#include "include.h"

// Receive Circular buffer
static int rx_rdIdx =0;
static int rx_wrIdx = 0;
static unsigned char rx_buffer[SLIP_RX_BUFF_SIZE];
static unsigned char rx_lastByte;
struct rxFrame{
 unsigned char buffer[FRAME_SIZE];
 int length;
 int isEmpty;
 int writeFlag;
 };

struct rxFrame rx_frame;
struct termios oldconfig, newconfig;
int fd;

/* Function definitions of local functions */
int port_Open();
int port_Close();
int rx_putByte(char c);
int rx_getByte(unsigned char *c);

int SLIP_Init(){
 rx_frame.isEmpty = TRUE;
 rx_frame.writeFlag = FALSE;
 rx_frame.length =0;
 fd = 0;
 return (port_Open());

}

int SLIP_Term(){
 return (port_Close());

}

int port_Open(){
 int ret;
 /* O_NOCTTY - this is not the controlling termi nal program else
Cntr-C will close process */
 /* O_NDELAY or O_NONBLOCK - Do not care abt DC D line status and
non blocking read*/
 //fd = open("/dev/ttyAM1", O_RDWR | O_NOCTTY | O_NDELAY);
 fd = open(PORT, O_RDWR | O_NOCTTY | O_NDELAY);
 if(fd == -1){
 return -1; // port open failed
 }
 tcgetattr(fd, &oldconfig); // save the old conf ig

66

 tcgetattr(fd, &newconfig);
 // Set the port speed parameters
 cfsetispeed(&newconfig, BAUD_RATE);
 cfsetospeed(&newconfig, BAUD_RATE);
 // 8N1
 newconfig.c_cflag &= ~PARENB;
 newconfig.c_cflag &= ~CSTOPB;
 newconfig.c_cflag &= ~CSIZE;
 newconfig.c_cflag |= CS8;
 newconfig.c_cflag &= ~CRTSCTS; // No Flow contr ol
 newconfig.c_cflag |= (CLOCAL | CREAD); // local line no ownew
change and enable receiver
 // set line parameters for raw input; ie no pro cessing
 newconfig.c_lflag &= ~(ICANON |ECHO|ECHOE| ISIG);

 // Input flags
 newconfig.c_iflag &= ~(IXON|IXOFF |IXANY);

 // Output flags
 newconfig.c_oflag &= ~OPOST; // raw output
 // set the new options to the port
 ret = tcsetattr(fd, TCSANOW, &newconfig);

 return 0;
}

int port_Close(){
 //restore old port settinngs
 if(fd!=0 && fd!=-1){
 tcsetattr(fd, TCSANOW, &oldconfig);
 close(fd);
 fprintf(stderr,"Port closed\n");
 return 0; // test
 }
 return -1;
}

/* Max packet size is about 150 bytes
 sends a packet through the serial port frammed in slip protocol
 */
int SLIP_Send(unsigned char *buf, int len){
 unsigned char slipBuff[SLIP_TX_BUFF_SIZE];
 int idx=0;
 int i;
 /* send an initial END character to flush out any data that may
 * have accumulated in the receiver due to lin e noise
 */
 slipBuff[idx] = END;
 idx++;

 for(i =0; i<len ;i++){

 if(idx+2 > SLIP_TX_BUFF_SIZE){
 return -1; // buffer overflow
 }

67

 switch(buf[i]){
 // data equals END, then send ESC follo wed by END
 case END:
 slipBuff[idx] = ESC;
 idx++;
 slipBuff[idx] = ESC_END;
 idx++;
 break;
 case ESC:
 slipBuff[idx] = ESC;
 idx++;
 slipBuff[idx] = ESC_ESC;
 idx++;
 break;
 default:
 slipBuff[idx] = buf[i];
 idx++;

 }

 }
 slipBuff[idx] = END; // end of frame
 idx++;
 //printBuf(slipBuff,10); // debug
 if(idx == write(fd,slipBuff,idx)){
 fprintf(stderr,"write succ\n");
 return 0; // write success

 }else {
 return -1; // write failure
 }
}

int SLIP_Recv(unsigned char *buf,int *length){
 int i;
 if(rx_frame.isEmpty ==FALSE){
 for(i=0;i<rx_frame.length;i++){
 buf[i] = rx_frame.buffer[i];
 }
 *length = rx_frame.length;
 rx_frame.isEmpty = TRUE;

 }else{
 return -1; // no new frame
 }
 return 0;
}
/* Serial receive Queue management functions */

int rx_putByte(char c){
 if(rx_wrIdx+1 ==rx_rdIdx || (rx_wrIdx+1 == SLIP _RX_BUFF_SIZE &&
!rx_rdIdx)) {
 return -1; // Queue full
 }
 rx_buffer[rx_wrIdx] = c;
 rx_wrIdx++;
 if(rx_wrIdx ==SLIP_RX_BUFF_SIZE){

68

 rx_wrIdx =0;
 }
 return 0;
}

int rx_getByte(unsigned char *c){
 if(rx_rdIdx == SLIP_RX_BUFF_SIZE){
 rx_rdIdx = 0; // reset it
 }
 if(rx_rdIdx == rx_wrIdx){
 return -1; // Queue empty
 }
 rx_rdIdx++;
 *c = rx_buffer[rx_rdIdx -1];
 return 0;
}

// Should be called periodically to process the inp ut buffer
int SLIP_Process(){
 unsigned char buffer[50],ch;
 int rtn=0, i=0;
 int moredata = 1;

 rtn = read(fd, &buffer, 50);
 //printf("Slip read return %d ",rtn);
 //fprintf(stderr,"f-Slip read return ");
 if(rtn >0){
 for(i=0; i<rtn; i++){
 rx_putByte(buffer[i]);
 // TODO: need to take care of Queue ful l condition
 }
 }
 // check the current frame status, if empty, lo ad new frame

 if(rx_frame.isEmpty == TRUE){
 if(rx_frame.writeFlag == FALSE){ // beginni ng of a new frame
 rx_frame.length = 0;
 }
 while(moredata == TRUE){ // a getdata flag
 if(rx_getByte(&ch) ==0){ // if a byte i s received then
process it
 switch(ch){
 case END:
 if(rx_frame.writeFlag ==FAL SE){ //start of new
frame
 rx_frame.writeFlag = TR UE; // indicate the
write is in progress
 }else{ // End of frame rece ived.
 rx_frame.isEmpty = FALS E; // indicate a new
frame is stored.
 rx_frame.writeFlag = FA LSE;
 moredata = FALSE; // en d the while loop
 //fprintf(stderr,"slip got a frame\n");
 }

69

 break;
 case ESC:
 rx_lastByte = ESC; // keep a record of it

 break;

 case ESC_END:
 if(rx_lastByte == ESC){
 rx_frame.buffer[rx_fram e.length] = END;
 rx_frame.length++;
 rx_lastByte = 0;
 }else{ // TODO: handle erro r
 }
 break;
 case ESC_ESC:
 if(rx_lastByte == ESC){
 rx_frame.buffer[rx_fram e.length] = ESC;
 rx_frame.length++;
 rx_lastByte = 0;
 }else{ // TODO: handle erro r
 }
 break;
 default:
 rx_frame.buffer[rx_frame.le ngth] = ch;
 rx_frame.length++;
 }
 }else{ // no more data in Queue
 moredata = FALSE;
 }
 } // while
 }

 return 0;
}

/************** END ***************************** *******/

/** *******
* File Name: util.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file contains utility macros *
* and function prototypes *
* *
*** ******/
#ifndef UTIL_H
#define UTIL_H

#define LOWER_BYTE(x) ((unsigned char)(x & 0xFF))
#define UPPER_BYTE(x) ((unsigned char)((x & 0xFF00) >>8))

// x- MSB y-LSB
#define GET_INT(x,y) ((((unsigned char)x)<<8) |((u nsigned char)y))
void printBuf(unsigned char *buf, int len);
void clearBuf(unsigned char *buf, int len);

70

void printPacket(unsigned char *buf, int len);
#endif

/************** END ***************************** *******/

/* ** *******
* File Name: SLIP.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: This file utility functions *
* *
* *
*** ******/

#include "include.h"

/* Printf the contenets of buffer in Hex to stderr* /
void printBuf(unsigned char *buf, int len){
 int i;
 fprintf(stderr,"# ");
 for(i=0; i<len; i++){
 fprintf(stderr,"%02X ", buf[i]);
 }
 fprintf(stderr," ::");
}

void clearBuf(unsigned char *buf, int len){
 int i=0;
 for(i=0;i<len;i++){
 buf[i] = 0;
 }
}

void printPacket(unsigned char *buf, int len){
 unsigned int frameId;
 frameId = GET_INT(buf[1], buf[0]);
 switch(frameId){
 case MAC_SET_PAN_ID :
 break;
 case MAC_GET_PAN_ID:
 break;
 case MAC_SET_ADDR :
 break;

 case MAC_GET_ADDR:
 break;
 case MAC_SET_CHANNEL:
 break;
 case MAC_GET_CHANNEL:
 break;
 case MAC_SET_RECEIVER:
 break;
 case MAC_GET_RECEIVER:
 break;
 case MAC_XMIT_PACKET:
 break;

71

 case MAC_RECV_PACKET:
 fprintf(stderr,"\n Packet Received:\n") ;
 fprintf(stderr," Frame Id : MAC_RECV_PA CKET
%04X\n",frameId);
 fprintf(stderr," Frame Length: %u\n",bu f[2]);
 fprintf(stderr," Frame Seq num: %u\n",b uf[3]);
 fprintf(stderr," Frame SrcAddr:
%04X\n",GET_INT(buf[5],buf[4]));
 fprintf(stderr," Frame SrcPANId:
%04X\n",GET_INT(buf[7],buf[6]));
 fprintf(stderr," Frame ACK Request: %02 X\n", buf[8]);
 fprintf(stderr," Frame RSSI: %d\n", buf [9]);
 fprintf(stderr," Frame Pkt Length: %u\n ",buf[10]);
 printBuf(&buf[11],buf[10]);
 fprintf(stderr," End of Frame::\n");

 break;
 case MAC_SET_ACK:
 break;
 case MAC_GET_ACK:
 break;
 default:
 fprintf(stderr," Case fail in func \"pr intPacket\" \n");

 }
}

/************** END ***************************** *******/
/** *******
* File Name: include.h *
* Version: 0.1 *
* Author: Sandeep Sirpatil *
* License: GNU General Public License.............. ..*
* Purpose: A general include file for the whole *
* application *
* *
*** ******/
#ifndef INCLUDE_H
#define INCLUDE_H
// general definitions used in the stack
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <stdio.h>
#include <signal.h>

#include <unistd.h>
#include <stdlib.h>
#include <errno.h>

#include "util.h"
#include "SLIP.h"
#include "MAC.h"

72

#ifndef TRUE
#define TRUE 1
#endif

#ifndef FALSE
#define FALSE 0
#endif

#endif // INCLUDE_H

/************** END ***************************** *******/

