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CHAPTER I 

 

INTRODUCTION 

 

 Recently, Field Programmable Gate Array (FPGA) technology has become a viable target for the 

implementation of algorithms suited to video image processing applications.  The unique architecture of the 

FPGA has allowed the technology to be used in many such applications encompassing all aspects of video 

image processing [1,2].  The goal of this thesis is to develop FPGA realizations of three such algorithms on 

two FPGA architectures. 

 As image sizes and bit depths grow larger, software has become less useful in the video processing 

realm.  Real-time systems such as those that are the target of this project are required for the high speeds 

needed in processing video.  In addition, a common problem is dealing with the large amount of data 

captured using satellites and ground-based detection systems.  DSP systems are being employed to 

selectively reduce the amount of data to process, ensuring that only relevant data is passed on to a human 

analyst.  Eventually, it is expected that most video processing can and will take place in DSP systems, with 

little human interaction.  This is obviously advantageous, since human data analysts are expensive and 

perhaps not entirely accurate. 

 

Platforms Used for DSP Design 

 There are several different choices a designer has when implementing a DSP system of any sort.  

Hardware, of course, offers much greater speed than a software implementation, but one must consider the 

increase in development time inherent in creating a hardware design.  Most software designers are familiar 

with C, but in order to develop a hardware system, one must either learn a hardware design language such 

as VHDL or Verilog, or use a software-to-hardware conversion scheme, such as Streams-C [3], which 

converts C code to VHDL, or MATCH [4], which converts MATLAB code to VHDL.  While the goals of 

such conversion schemes are admirable, they are currently in development and surely not suited to high-

speed applications such as video processing.  Ptolemy [5] is a system that allows modeling, design, and 

simulation of embedded systems.  Ptolemy provides software synthesis from models.  While this type of 
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system may be a dominant design platform in the future, it is still under much development, meaning that it 

may not be a viable design choice for some time.  A discussion on the various viable options for DSP 

system design is found below. 

 

PC Digital Signal Processing Programs 

 Signal processing programs used on a PC allow for rapid development of algorithms, as well as 

equally rapid debug and test capabilities.  It is common for many hardware designers to use some sort of 

PC programming environment to implement a design to verify functionality prior to a lengthy hardware 

design. 

 MATLAB [6] is such an environment.  Although it was created for manipulating matrices in 

general, it is well suited to some image processing applications.  MATLAB treats an image as a matrix, 

allowing a designer to develop optimized matrix operations implementing an algorithm.  However, if the 

eventual goal is a hardware device, the algorithms are instead often written to operate similarly to the 

proposed hardware system, which results in an even slower algorithm.  

 Systems such as IDL [7] and its graphical component ENVI [8] are more specifically geared to 

image processing applications, and include many pre-written algorithms commonly used to process images.  

However, even specialized image processing programs running on PCs cannot adequately process large 

amounts of high-resolution streaming data, since PC processors are made to be for general use.  Further 

optimization must take place on a hardware device. 

 

Application Specific Integrated Circuits 

Application Specific Integrated Circuits (ASICs) represent a technology in which engineers create 

a fixed hardware design using a variety of tools.  Once a design has been programmed onto an ASIC, it 

cannot be changed.  Since these chips represent true, custom hardware, highly optimized, parallel 

algorithms are possible.  However, except in high-volume commercial applications, ASICs are often 

considered too costly for many designs.  In addition, if an error exists in the hardware design and is not 

discovered before product shipment, it cannot be corrected without a very costly product recall. 
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Dedicated Digital Signal Processors 

 Digital Signal Processors (DSPs) such as those available from Texas Instruments [9] are a class of 

hardware devices that fall somewhere between an ASIC and a PC in terms of performance and design 

complexity.  They can be programmed with either assembly code or the C programming language, which is 

one of the platform’s distinct advantages.  Hardware design knowledge is still required, but the learning 

curve is significantly lower than some other design choices, since many engineers have knowledge of C 

prior to exposure to DSP systems.  However, algorithms designed for a DSP cannot be highly parallel 

without using multiple DSPs.  Algorithm performance is certainly higher than on a PC, but in some cases, 

ASIC or FPGA systems are the only choice for a design.  Still, DSPs are a very common and efficient 

method of processing real-time data [10]. 

 One area where DSPs are particularly useful is the design of floating point systems.  On ASICs 

and FPGAs, floating-point operations are rather difficult to implement.  For the scope of this project, this is 

not an issue because all images consist of only integer data. 

Recent advances in DSP technology have resulted in very high-speed algorithm implementations 

[11].  While the advantages of ASICs and FPGAs are still applicable, this new generation of DSPs has 

made some engineers reconsider FPGA development.  Still, as new DSPs arrive to the market, so do new 

FPGAs, and it is expected that the two architectures will have similarly increasing performance for each 

new generation of processors. 

 

Field Programmable Gate Arrays 

 Field Programmable Gate Arrays (FPGAs) represent reconfigurable computing technology [12], 

which is in some ways ideally suited for video processing.  Reconfigurable computers are processors which 

can be programmed with a design, and then reprogrammed (or reconfigured) with virtually limitless 

designs as the designer’s needs change.  FPGAs generally consist of a system of logic blocks (usually look 

up tables and flip-flops) and some amount of Random Access Memory (RAM), all wired together using a 

vast array of interconnects.  All of the logic in an FPGA can be rewired, or reconfigured, with a different 

design as often as the designer likes.  This type of architecture allows a large variety of logic designs 
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dependent on the processor’s resources), which can be interchanged for a new design as soon as the device 

can be reprogrammed.   

 Today, FPGAs can be developed to implement parallel design methodology, which is not possible 

in dedicated DSP designs.  ASIC design methods can be used for FPGA design, allowing the designer to 

implement designs at gate level.  However, usually engineers use a hardware language such as VHDL or 

Verilog, which allows for a design methodology similar to software design.  This software view of 

hardware design allows for a lower overall support cost and design abstraction. 

The algorithms presented in this thesis were written for two FPGA architectures.  The advantages 

of these devices have proven themselves for this type of design.  In addition, the author has previous 

experience with FPGA development.  The goal of this thesis is for real-time (30 frames per second) 

processing of grayscale image data, a goal in which an FPGA system using parallel algorithms should have 

little difficultly achieving. 

 

FPGA Design Options 

 In order to create an FPGA design, a designer has several options for algorithm implementation.  

While gate-level design can result in optimized designs, the learning curve is considered prohibitory for 

most engineers, and the knowledge is not portable across FPGA architectures.  The following text discusses 

several high-level hardware design languages (HDLs) in which FPGA algorithms may be designed. 

 

Verilog HDL 

 Originally intended as a simulation language, Verilog HDL represents a formerly proprietary 

hardware design language.  Currently Verilog can be used for synthesis of hardware designs and is 

supported in a wide variety of software tools.  It is similar to the other HDLs, but its adoption rate is 

decreasing in favor of the more open standard of VHDL.  Still, many designers favor Verilog over VHDL 

for hardware design, and some design departments use only Verilog.  Therefore, as a hardware designer, it 

is important to at least be aware of Verilog. 
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Altera Hardware Design Language 

 Altera Hardware Design Language (AHDL) is proprietary, and is only supported in Altera-specific 

development tools.  This may be seen as a drawback, but since AHDL is proprietary, its use can also result 

in more efficient hardware design, when code portability is not an issue.   In typical design environments, 

different FPGA architectures are used for different designs, meaning that time spent learning AHDL may 

be wasted if a Xilinx FPGA is later chosen. 

 

VHSIC Hardware Design Language 

 In recent years, VHSIC (Very High Speed Integrated Circuit) Hardware Design Language 

(VHDL) has become a sort of industry standard for high-level hardware design.  Since it is an open IEEE 

standard, it is supported by a large variety of design tools and is quite interchangeable (when used 

generically) between different vendors’ tools.  It also supports inclusion of technology-specific modules for 

most efficient synthesis to FPGAs. 

 The first version of VHDL, IEEE 1076-87, appeared in 1987 and has since undergone an update in 

1993, appropriately titled IEEE 1076-93.  It is a high-level language similar to the computer programming 

language Ada, which is intended to support the design, verification, synthesis and testing of hardware 

designs.  

 

Design Approach 

Prior to any hardware design, the author chose to create software versions of the algorithms in 

MATLAB.  Using MATLAB procedural routines to operate on images represented as matrix data, these 

software algorithms were designed to resemble the hardware algorithms as closely as possible.  While a 

hardware system and a matrix-manipulating software program are fundamentally different, they can 

produce identical results, provided that care is taken in development.  This approach was taken because it 

speeds understanding of the algorithm design.  In addition, this approach facilitates comparison of the 

software and synthesized hardware algorithm outputs, allowing detailed error calculations.  

This project was targeted for FPGA systems for two reasons.  One, the author had some previous 

experience in FPGA implementations of video processing algorithms [13, 14].  Two, FPGAs represent a 
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new direction for DSP systems, and there is much original work to be done in terms of optimized 

algorithms for this type of system.   

One of the initial goals of this project was to implement designs for two different FPGA systems: 

the Altera FLEX 10K100 [15] and the Xilinx Virtex 300 [16].  The rationale behind this decision was that 

the Altera chip represents an older generation of FPGA technology, but it is also very commonly used.  The 

Altera chips have been used often in many design environments, and are well understood.  The Xilinx 

Virtex is a new technology, which has a larger gate count and higher possible clock speed than the Altera 

chip.  On the other hand, the Xilinx chip is not as well understood and supported, since it was only recently 

introduced to the market.  For example, more parameterized modules for high-speed mathematical 

operations are available for the Altera FLEX series than are available for the Xilinx Virtex series.  This can 

certainly affect a design’s success, so if specialized functions are needed, the designer must first determine 

whether or not they are available for the chosen device. 

VHDL was chosen as a target design language because of familiarity and its wide-ranging support, 

both in terms of software development tools and vendor support.  Today, more engineers are learning 

VHDL than Verilog, which is another compelling reason for its use in this project.   

The design flow for this project is represented in Figure 1.  This shows the interaction between the 

VHDL design environment and the FPGA-specific tools.  In the first state, a design is created in VHDL.  

Next, the code’s syntax is verified and the design is synthesized, or compiled, into a library.  The design is 

next simulated to check its functionality.  Stimulating the signals in the design and viewing the output 

waveforms in the VHDL simulator allows the designer to determine proper functionality of the design.  

Next, the design is processed with vendor-specific place-and-route tools and mapped onto a specific FPGA 

in software.  This allows the engineer to view a floorplan and hierarchical view of the design, which can 

help verifying a proper mapping procedure.  Next, the design is verified for proper functionality once again.  

This step is important because it assures that the design is correct in its translation from VHDL to gate-

level.  If this is found to be correct, the design can then be programmed onto the specified FPGA. 

For this project, the author had access to two FPGAs, each from a different company and each 

with different design tools: the Altera FLEX 10K100 and the Xilinx Virtex XCV300. 
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Figure 1: Hardware Design Flow 

 

Altera FLEX 10K100 

Due to architecture differences, the Altera FLEX 10K series is termed a Programmable Logic 

Device (PLD) and is not officially considered to be an FPGA.  However for the purpose of simplicity it is 

commonly referred to as an FPGA, and will be so named in this document. 

The FLEX 10K100 is a CMOS SRAM-based device, consisting of an embedded array for memory 

and certain logic functions and a logic array for general logic implementation.  The embedded array is 

constructed of Embedded Array Blocks (EABs).  The EABs can be used to implement limited memories 

such as First In First Out (FIFO) or RAM units.  The FLEX 10K100 has 12 EABs, each with 2048 bits for 

use in a design. 

The logic array in the FLEX 10K series is built from Logic Array Blocks (LABs).  Each LAB 

consists of 8 Logic Elements (LEs), each of which is constructed of a 4-input Look Up Table (LUT) and a 

flip-flop.  Each LAB can be considered to represent 96 logic gates.  The FLEX 10K100 has 624 LABs, 

accounting for most of its 100,000 gates (the rest are accounted for in memory).  Figure 2 shows the basic 

units in a FLEX 10K LE. 

Input/Output functionality on the FLEX 10K s eries is handled in the Input/Output Blocks (IOBs).  

Each IOB has one flip -flop to register either input or output data.  However for bi-directional signals, this is 

an inefficient design, since two flip -flops are needed and only one is available in the IO B.  The second flip-

flop must be implemented in the logic array, resulting in an overall slower design [15,17].  Figure 3 shows 

a floorplan view of the Altera FLEX 10K architecture, highlighting the elements discussed.  
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Figure 2: Altera FLEX 10K LE  
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Figure 3: Altera FLEX 10K Floorplan Showing Elements Discussed  

 

Xilinx Virtex XCV300  

The Virtex is the most recent family of FPGAs from Xilinx.  The previous generation, the Xilinx 

4K series, was one of the most commonly used FPGA families, and can be conside red comparable to the 

Altera 10K series in many ways.  The Virtex takes many of the features from the 4K series and combines 

them with several new features.  

Technically, the Xilinx FPGAs are SRAM devices.  This means that the chips must be configured 

after device power up. Configurable Logic Blocks (CLBs) are the primary logic elements in the Virtex 

FPGA.  Each CLB is comprised of two slices, each of which contains two Look Up Tables (LUTs) and two 

D flip-flops.  Each LUT can be used as one 32x1- or one 16x2-bit synchronous RAM.  The Virtex XCV300 
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has a 32x48 array of CLBs, resulting in a total of 6912 logic cells and 322,970 gates.  Figure 4, below, 

shows one slice of a Xilinx Virtex CLB.  

The Virtex series has a system of Block RAM, which allows the use of the chip for limited RAM 

operations such as FIFO implementations or basic RAM usage.  The XCV300 has 65,536 bits of Block 

RAM.  Connecting the CLBs is a vast web of interconnects.   

Input and output capabilities are handled by Input/Output Blocks (IOBs).  The Virtex XCV300 has 

316 IOBs.  Figure 5 shows a typical Virtex floorplan and the elements common to all Virtex parts [16,17].  
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Figure 4: Slice of a Xilinx Virtex CLB  
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Figure 5: Xilinx Virtex Floorplan Showing Elements Discussed  

 

Performance Compari son 

 The Xilinx Virtex FPGA is of a newer generation than the Altera FLEX 10K; therefore we expect 

higher performance.  However, since the two architectures have different technology, some designs may 

perform better on one chip than the other, and vice ver sa.  While the detailed analysis of this is not the 

focus of this paper, later chapters showing the project results compare the two FPGAs’ performance for the 

same algorithms.  This will yield a better understanding of the advantages of each FPGA, which wi ll be 

quite useful in later projects using the same devices.  
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CHAPTER II 

 

PROJECT ALGORITHMS 

 

This project was focused on developing hardware implementations of three popular image 

processing algorithms for use in an FPGA -based video processing system.  This chapter discusses these 

algorithms and their software implementations in MATLAB.  

 

Introduction to Windowing Operators 

 In image processing, several algorithms belong to a category called windowing operators.  

Windowing operators use a window, or neighborhood of pixels, to calculate their output.  For example, 

windowing operator may perform an operation like finding the average of all pixels in the neighborhood of 

a pixel.  The pixel around which the window is found is called the origin.  Figure 6, below, shows a 3 by 3 

pixel window and the corresponding origin.  

 

_ _ _

_

_

_ origin

_ _

_ _ _

_

_

_ origin

_ _
 

Figure 6: Pixel Window and Origin  

 

 The work for this project is based on the usage of image processing algorithms using these pixel 

windows to calculate their output.  Although a pixel window may be of any size and shape, a square 3x3 

size was chosen for this application because it is large enough to work properly and small enough to 

implement efficiently on hardware.   
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Rank Order Filter  

 The rank order filter is a particularly common algori thm in image processing systems.  It is a 

nonlinear filter, so while it is easy to develop, it is difficult to understand its properties.  It offers several 

useful effects, such as smoothing and noise removal.  The median filter, which is a rank order filt er, is 

especially useful in noise removal [18].  

   

Algorithm  

 This filter works by analyzing a neighborhood of pixels around an origin pixel, for every valid 

pixel in an image.  Often, a 3x3 area, or window, of pixels is used to calculate its output.  For every pixel in 

an image, the window of neighboring pixels is found.  Then the pixel values are sorted in ascending, or 

rank, order.  Next, the pixel in the output image corresponding to the origin pixel in the input image is 

replaced with the value specifi ed by the filter order.  The rank order filter can be represented by the 

following lines of pseudo-code: 

order = 5 (this can be any number from 1 -> # pixels in the window) 
for loop x –> number of rows 

for loop y –> number of columns 
 window_vector = vector consisting of current window pixels  
    sorted_list = sort(window_vector)  

output_image(x,y) = sorted_list(order)  
end 

end. 

Figure 7 shows an example of this algorithm for a median filter (order 5), a filter that is quite 

useful in salt -and-pepper noise fi ltering [19].  Since the rank order filter uses no arithmetic, a mathematical 

description is difficult to represent efficiently.  
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Figure 7: Graphic Depiction of Rank Order Filter Operation  

 

 As is evident in the above figure, it is possible to use any or der up to the number of pixels in the 

window.  Therefore a rank order filter using a 3x3 window has 9 possible orders and a rank order filter 

using a 5x5 window has 25 possible orders.  No matter what the window size used in a particular rank order 

filter,  using the middle value in the sorted list will always result in a median filter.  Similarly, using the 

maximum and minimum values in the sorted list always results in the flat dilation and erosion of the image, 

respectively.  These two operations are considered part of the morphological operations, and are discussed 

in the next sub -chapter. 

 

MATLAB Implementation  

 The PC software program MATLAB was used to develop an initial version of the rank order filter, 

so that its operation could be verified and its results could be compared to the hardware version.  While 

MATLAB offers features that speed up operations on matrices like images, custom operations were used so 

that the software would closely mimic the functionality of the proposed hardware implementatio n. 

 The MATLAB implementation of the rank order filter is called ro_filt.m and is found in Appendix 

A.  It works by using for loops to simulate a moving window of pixel neighborhoods.  For every movement 

of the window, the algorithm creates a list of the p ixel values in ascending order.  From this list, the 

algorithm picks a specific pixel.  The pixel that is chosen from the list is specified in the order input.  The 

output of the program is an image consisting of the output pixels of the algorithm.  Since a full 3x3 

neighborhood is used in this implementation, the window must have gotten to the second line of the input 
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image in order to create an output.  The result of this is that some ‘edge effects’ occur in the output image, 

meaning that there is always an invalid strip along the borders of the output image.  This is true for all 

algorithms using the windowing approach to image processing.  Figure 8 shows some example output 

images for a given input image using ro_filt.m.  From this figure it is easy to o bserve the effect that the 

rank order filter has on an image, given the various algorithm orders used.  
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Figure 8: Example Images Obtained Using ro_filt.m  

 

Morphological Operators 

The term morphological image processing refers to a class of algorithm that is interested in the 

geometric structure of an image.  Morphology can be used on binary and grayscale images, and is useful in 

many areas of image processing, such as skeletonization, edge detection, restoration, and texture analysis.  

A morphological operator uses a structuring element to process an image.  We usually think of a 

structuring element as a window passing over an image, which is similar to the pixel window used in the 

rank order filter.  Similarly, the structuring element can be of any size, bu t 3x3 and 5x5 sizes are common.  

When the structuring element passes over an element in the image, either the structuring element fits or 

does not fit.  At the places where the structuring element fits, we achieve a resultant image that represents 



 15 
 

the structure of the image [20].  Figure 9 demonstrates the concept of a structuring element fitting and not 

fitting inside an image object.  
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Does Not Fit

Structuring Element
Fits

Object in Image
Structuring Element
Does Not Fit

Structuring Element
Fits

Object in Image
 

Figure 9: Concept of Structuring Element Fitting and Not Fitting  

 

Algorithm  

 There are two fundamental operations in mor phology: erosion and dilation [20].  It is common to 

think of erosion as shrinking (eroding) an object in an image.  Dilation does the opposite; it grows the 

image object.  Both of these concepts depend on the structuring element and how it fits within the  object.  

For example, if a binary image is eroded, the resultant image is one where there is a foreground pixel for 

every origin pixel where its surrounding structuring element -sized fit within the object.  The output of a 

dilation operation is a foregrou nd pixel for every point in the structuring element at a point where the origin 

fits within an image object [20].  Figure 10 shows a simple binary image and its erosion and dilation, using 

a 3x3 sized structuring element consisting of all ones.  From [20],  Erosion and dilation can be represented 

mathematically by the following formulas:  

Erosion: A θ B = {x: B + x < A} and 

Dilation : A ⊕  B = ∪ {A + b: b ∈  B}, 

where A is the input image and B is the structuring element.   

 Grayscale morphology is more powerful and more difficult to understand.  The concepts are the 

same, but instead of the structuring element fitting inside a two -dimensional object, it is thought to either fit 

or not fit within a three -dimensional object.  Grayscale morphology also allows the us e of grayscale 

structuring elements.  Binary structuring elements are termed flat structuring elements in grayscale 
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morphology.  The combination of grayscale images and grayscale structuring elements can be quite 

powerful [20]. 

 One of the strongest features of morphological image processing extends from the fact that the 

basic operators, performed in different orders, can yield many different, useful results.  For example, if the 

output of an erosion operation is dilated, the resulting operation is called an opening.  The dual of opening, 

called closing, is a dilation followed by an erosion.  These two secondary morphological operations can be 

useful in image restoration, and their iterative use can yield further interesting results, such as 

skeletonization and granulometries of an input image.  Figure 11 shows an example of binary opening and 

closing on the same input image as was used in the erosion/dilation example, again using a structuring 

element of size 3x3 consisting of all ones.  

 Grayscale erosion and dilation can be achieved by using a rank order filter as well.  Erosion 

corresponds to a rank order filter of minimum order, and dilation corresponds to a rank order filter of 

maximum order.  The reason for this is that the result of a minimum order ran k order filter is the minimum 

value in the pixel neighborhood, which is exactly what an erosion operation is doing.  This also holds true 

for a maximum order rank order filter and a dilation operation.  However, the rank order filter only works 

as a morphological operation with a flat structuring element.  This is because the rank order filter window 

works as a sort of structuring element consisting of all ones.  Still, this is a powerful feature, since 

grayscale morphology using flat structuring elements a ccounts for the most common usage of morphology. 
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Figure 10: Binary Erosion and Dilation on a Simple Binary Image  
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Figure 11: Binary Opening and Closing on a Simple Binary Image  
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MATLAB Implementation  

In order to garner a full understanding of the morph ological operation, the algorithms were written 

using MATLAB prior to any hardware development.  Initially, only binary versions of the algorithms were 

written, because it was easier to understand the effect of morphology in the binary output images than i n 

grayscale images.  However, since a grayscale implementation on hardware was desired, the algorithms had 

to be re-written to facilitate grayscale morphology.  The MATLAB implementations of erosion and dilation 

are called aip_erode_gs.m and aip_dilate_gs. m, respectively.  The source code for these algorithms is 

shown in Appendix A.  Figures 12 and 13 show the output of an erosion, a dilation, an opening, and a 

closing as applied on a grayscale input image using a flat 3x3 structuring element.  
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Figure 12: Grayscale Erosion and Dilation on an Input Image  
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Figure 13: Grayscale Opening and Closing on an Input Image  

 

From the figures above, the effects of morphological operations are apparent.  In a grayscale 

image, erosion tends to grow darker areas, and dil ation tends to grow lighter areas.  Opening and closing 

each tend to emphasize certain features in the image, while de -emphasizing others.  Iteratively, the 

morphological operations can be used to pick out specific features in an image, such as horizontal or 

vertical lines [20].  

 

Convolution 

Convolution is another commonly used algorithm in DSP systems.  It is from a class of algorithms 

called spatial filters.  Spatial filters use a wide variety of masks, also known as kernels, to calculate 

different result s, depending on the function desired.  For example, certain masks yield smoothing, while 

others yield low pass filtering or edge detection.  
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Algorithm  

The convolution algorithm can be calculated in the following manner.  For each input pixel 

window, the values in that window are multiplied by the convolution mask.  Next, those results are added 

together and divided by the number of pixels in the window.  This value is the output for the origin pixel of 

the output image for that position.  Mathematically, this is represented using the following equation [21]:  

y(n1,n2) = ∑∑ ∞

− ∞=

∞

− ∞= −−
2 2211211

),(),(
kk

knknkkkA , 

where A is the input image and k is the convolution kernel.  

The input pixel window is always the same size as the convolution mask.  The output pixel is 

rounded to the nearest integer.  As an example, Figure 14 shows an input pixel window, the convolution 

mask, and the resulting output.  This convolution mask in this example is often used as a noise -cleaning 

filter [21]. 

The results for this algorithm carried over an entire input image will result in an output image with 

reduced salt-and-pepper noise.  An important aspect of the convolution algorithm is that it supports a 

virtually infinite variety of masks, each with its own feature.  This flexibility allows for many powerful 

uses. 
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Figure 14: Convolution Algorithm Example  

 

MATLAB Implementation  

 MATLAB was again used to produce a software version of the algorithm.  It is called conv_3x3.m 

and is found in Appendix A.  The MATLAB version of this algorithm performs con volution on an input 

image using a 3x3 -sized kernel, which can be modified as the user wishes.  Figure 16 shows some 
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examples of this algorithm on an input image, with the kernels K1, K2, and K3, as shown below in Figure 

15. 
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Figure 15: Kernels Used to Compute the Images in Figure 16  
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Figure 16: Grayscale Convolution  

  

 The figures above demonstrate the wide variety of feature enhancement possible with the 

convolution operation.  It is important to note that these images are not scaled.  Often an image t hat has 

been convolved will have a smaller pixel value variance than the input image.  For example, in Figure 16 it 

is obvious that the convolution operation using the K3 kernel results in a mostly black image.  Scaling 
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would bring the brightest points in the image (around 30,30) up to a value of 256, and scale the rest of the 

image likewise.  This results in an image that may have more discernable features.  
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CHAPTER III 

 

PERTINENT NON-ALGORITHM WORK 

 

Prior to a full hardware realization of the algorithms d iscussed in Chapter II, some initial non -

algorithm work was necessary.  This work included an overall VHDL hierarchy concept, the development 

of a moving window unit for real -time image data, a VHDL test bench for testing purposes, MATLAB 

interfaces for fi le input/output, and an analysis of the project data.   

 

VHDL Hierarchy 

Most hardware designers find it convenient to develop a hierarchy prior to any VHDL 

development.  This is done to facilitate code reusability and to develop a common hierarchy.  One of  the 

main concepts of this project has been the development of VHDL code that is largely device independent, 

meaning that most of the code can be compiled for any FPGA architecture with little difficultly.  The use of 

hardware-specific arithmetic and memor y units has been limited to achieve nearly seamless code 

interchangeability.  Essentially, a convolution algorithm written in VHDL with this approach should be 

easy to use on both Altera and Xilinx architectures.  

In fact, for these designs, the only hardwa re-specific VHDL code lies within the FIFO memory 

units found within the 3x3 window generator, which is discussed in the second part of this chapter.  Use of 

port maps in VHDL allow the designer to connect VHDL signals from the current level of hierarchy t o 

another, separate VHDL architecture.  This means that an algorithm can reference separate VHDL 

algorithms, thereby allowing code reuse.  Figure 17 shows an example of how this is done in VHDL.  
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entity AlgorithmA is
port (...);

end AlgorithmA;

architecture AlgorithmA_arch of AlgorithmA is

component SubAlgorithmA
port (...);
end component SubAlgorithmA;

component WindowGenerator
port (...);
end component WindowGenerator;

component RowColumnCounter
port (...);
end component RowColumnCounter;

begin

SubAlgorithmAMap: SubAlgorithmA
port map (...);

WindowGeneratorMap: WindowGenerator
port map (...);

RowColumnCounterMap: RowColumnCounter
port map (...);

-- algorithm process

end AlgorithmA_arch;

entity AlgorithmA is
port (...);

end AlgorithmA;

architecture AlgorithmA_arch of AlgorithmA is

component SubAlgorithmA
port (...);
end component SubAlgorithmA;

component WindowGenerator
port (...);
end component WindowGenerator;

component RowColumnCounter
port (...);
end component RowColumnCounter;

begin

SubAlgorithmAMap: SubAlgorithmA
port map (...);

WindowGeneratorMap: WindowGenerator
port map (...);

RowColumnCounterMap: RowColumnCounter
port map (...);

-- algorithm process

end AlgorithmA_arch;
 

Figure 17: VHDL Component Mapping  

 

3x3 Moving Window Archi tecture 

In order to implement a moving window system in VHDL, a design was devised that took 

advantage of certain features of FPGAs.  FPGAs generally handle flip -flops quite easily, but instantiation 

of memory on chip is more difficult.  Still, compared wi th the other option, off-chip memory, the choice 

using on-chip memory was clear.   

It was determined that the output of the architecture should be vectors for pixels in the window, 

along with a data -valid signal, which is used to inform an algorithm using the window generation unit as to 

when the data is ready for processing.   

Since it was deemed necessary to achieve maximum performance in a relatively small space, FIFO 

units specific to the target FPGA were used.  Importantly though, to the algorithms usi ng the window 

generation architecture, the output of the Altera and Xilinx window generation units is exactly the same.  

For example, for a given clock rate, the Altera unit’s data -valid signal will change to a logic value of 1 at 
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exactly the same time as the comparable Xilinx unit’s data -valid signal.  This useful feature allows 

algorithm interchangeability between the two architectures, which helped significantly cut down algorithm 

development time.  

A 3x3 window size was chosen because it was small enough  to be easily fit onto the target 

FPGAs, and is considered large enough to be effective for most commonly used image sizes.  With larger 

window sizes, more FIFOs and flip -flops must be used, which increases the FPGA resources used 

significantly.  Figure 18  shows a graphic representation of the FIFO and flip -flop architecture used for this 

design for a given output pixel window.  

Appendix B shows the VHDL source code for the window generation unit.  The Altera version is 

called window_3x3.vhd and the Xilinx v ersion is called window_3x3_x.vhd.  Not included are the codes 

for each FIFO entity, which were generated by the vendor tools. 
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Figure 18: Architecture of the Window Generator  

 

VHDL Test Bench Processes 

In order to examine the VHDL code for correct functionality, VHDL tools provide a feature called 

simulation.  Simulation takes the VHDL code and simulates how it would work in hardware.  In order to do 

this, the designer must provide to the simulator valid inputs to produce expected outputs.   

An efficient  and common method of simulating VHDL code is through the use of a special type of 

VHDL code called a test bench.  Test benches effectively surround the VHDL code the designer wishes to 

simulate and also provide stimulus to the tested entity.   
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A test bench for an algorithm is responsible in stimulating essential input signals to that algorithm.  

Since the designs used in this approach are all synchronous, a clock signal must be stimulated.  In addition, 

all of the algorithms designed provide a reset functi onality, which allows the algorithms to be cleared at 

any point.  In addition, since all the algorithms in this project take input images and produce some kind of 

output image, some method of data input and output must be provided for functional simulation . 

When one wishes to process images with a VHDL algorithm, they must first create a test bench 

that can read in the file containing this data.  If one wishes to view the processed image, another feature 

must be included into the test bench to allow file wr iting.  These features are key to the usability of the test 

benches used in the project, and are quite useful when paired with a program such as MATLAB, which 

provides efficient image representation and viewing capabilities.  This functionality is discusse d in the next 

section of this chapter.  An example test bench for the ro_filt_3x3.vhd file, appropriately named 

ro_filt_3x3_TB.vhd, is found in Appendix B.  

 

MATLAB – To – VHDL File IO Routines 

In order to process real image data in VHDL simulations, it is necessary to create a method of 

transferring images in a standard format, a bitmap for example, into a file that the VHDL file read routine 

can understand.  Since VHDL read/write routines operate easily with files consisting of a new word of data 

on each line, this method was chosen.  MATLAB was used to implement this functionality because it is 

quite efficient in manipulating matrix data, such as images.  

A MATLAB m-file called m2vhdl.m was created to take an input file in the bitmap format and 

convert it to a file with a new word of data on every line.  Data in this format could then be read into the 

VHDL test bench by using standard VHDL text input/output functions.  After this data has been run 

through the simulator (effectively, processed by the algorith m), the output data of the algorithm is written 

by the test bench into another file formatted in the same way.   

Next, another MATLAB m-file was composed to read that data and convert it back into a matrix 

in MATLAB.  This routine, called vhdl2m.m, allows analysis and comparison of VHDL -processed images 

with MATLAB-processed images.  This analysis is crucial in determining proper functionality of the 
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algorithms and is also useful in determining whether hardware design compromises produce invalid results.  

This aspect of the project is discussed in greater detail in the following chapter.  

 

Project Dataset 

The data used for this project consisted of 8 bit grayscale image data of size 128 by 128.  For any 

real-time image processing system, the data size used gr eatly affects the project’s performance on 

hardware, as well as the number of resources used on that hardware.  Fortunately, the VHDL code for this 

project is written in such a way that facilitates different data bit widths and resolution quite easily.  Th is can 

be done by replacing the FIFO elements in the window_3x3.vhd design and changing the vwidth generic in 

all of the VHDL designs.  Some code needs to be hand coded, so inclusion of different data sizes will 

require some thought and a small amount of r edesign. 
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CHAPTER IV 

 

VHDL ALGORITHMS 

 

 The focus of this project is the actual implementation of the proposed algorithms on target FPGA 

hardware.  As discussed in previous chapters, this was accomplished by composing the algorithms in the 

VHDL language and synthesizing the algorithms for the FPGAs.  This chapter discusses the hardware 

design specifics for each algorithm.  

 

Rank Order Filter  

 The rank order filter was the first algorithm to use the window_3x3 pixel window generator.  

Since its operation is f airly simple, it was an ideal choice.  As discussed above, the rank order filter must 

first sort the pixel values in a window in ascending (or rank) order.  The most efficient method 

accomplishing this is with a system of hardware compare/sort units, which  allow for sorting a window of 

nine pixels into an ordered list for use in the rank order filter.  

 The author implemented the structure found in Figure 19.  This system results in a sorted list after 

a latency of 14 clock cycles.  Since the design is pipel ined, after the initial latency the system produces a 

valid sorted list on every clock cycle.  The VHDL algorithm which implements this design, sort_3x3.vhd, 

is really just a series of registers and compares, as is shown if Figure 19.  Not all levels of th e sorting 

algorithm are shown to conserve space.  Sort_3x3.vhd is found in Appendix B.  

Every rxx box is a register and every cxx box is a compare unit, consisting of a simple decision.  

This design is accomplished quite simply in VHDL by using the followin g if/else statement:  

if wx1 < wx2 then 
cx1_L <= wx1; 
cx1_H <= wx2; 

else 
cx1_L <= wx2; 
cx1_H <= wx1; 

end if; 
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Figure 19: Hardware Design for Sorting Algorithm  

 

 After the sorted list is generated with the VHDL entity sort_3x3, the algorithm describing the rank 

order filter functionality, ro_filt_3x3.vhd, can operate on the list to produce its output.  As is discussed 

above, the rank order filter outputs a pixel value in the origin location as specified by the rank of the filter.   

 In order to do this properly, a counter must be used to tell the output data-valid signal when to 

change to its ‘on’ state.  Since it is desired that the output image be the same size as the input image, and 

use of the window generator effectively reduces the amount of valid output data, borders with zero value 

pixels must be place around the image.  In order to do this properly, the counters are used to tell the 

algorithm when the borders start.  A VHDL counter was written to count pixel movement as the data 

streams into the enti ty.  Since images are two-dimensional data, two counters were needed: one to count 

rows and one to count columns in the image.  The VHDL entity that implements this functionality is called 
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rc_counter.vhd and is found in Appendix B.  Since it is a separate VHDL entity, this counter was usable to 

later algorithms, where this functionality was also needed.  

 In order for the rank order filter to work properly, all three of these VHDL entities must be 

instantiated within the algorithm itself.  This is done with  standard VHDL component statements and port 

maps.  Figure 20 shows the VHDL design structure used for this algorithm.  

 

entity ro_filt_3x3 is
port (...);

end ro_filt_3x3;

architecture ro_filt_3x3_arch of ro_filt_3x3 is

component sort_3x3
port (...);
end component sort_3x3;

component window_3x3
port (...);
end component window_3x3;

component rc_counter
port (...);
end component rc_counter;

begin

sort_3x3x : sort_3x3
port map (...);

window_3x3x : window_3x3
port map (...);

rc_counterx : rc_counter
port map (...);

-- algorithm process

end ro_filt_3x3_arch;

entity ro_filt_3x3 is
port (...);

end ro_filt_3x3;

architecture ro_filt_3x3_arch of ro_filt_3x3 is

component sort_3x3
port (...);
end component sort_3x3;

component window_3x3
port (...);
end component window_3x3;

component rc_counter
port (...);
end component rc_counter;

begin

sort_3x3x : sort_3x3
port map (...);

window_3x3x : window_3x3
port map (...);

rc_counterx : rc_counter
port map (...);

-- algorithm process

end ro_filt_3x3_arch;
 

Figure 20: VHDL Algorithm Structure  

 

Ro_filt_3x3 interprets and controls signals from all three entities to achieve a cohesive design,  the 

result of which is a valid rank order filter.  Order is specified with a VHDL generic, and is presently only 

modifiable pre -synthesis.  
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Comparison of VHDL and MATLAB Algorithms  

 Usage of the vhdl2m.m file converter allows for analysis of the results  of the VHDL simulation of 

algorithms.  This is particularly useful because it allows for comparison between hardware (e.g. VHDL) 

algorithms and software (e.g. MATLAB) algorithms.  This is exciting because it allows the designer to a) 

verify a hardware alg orithm’s accuracy and b) decide whether or not to implement design tradeoffs based 

on output validity. 

 Figures 21 and 22 show comparisons of the VHDL and MATLAB algorithms for two orders.  

Also shown are error plots and mesh plots, which show a three -dimensional view of the error.  In these 

cases it is obvious that the two algorithms are identical.  

 

 

Figure 21: VHDL and MATLAB Comparison Plots for ro_filt_3x3 with Order = 4  
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Figure 22: VHDL and MATLAB Comparison Plots for ro_filt_3x3 with Order = 8  

 

Algorithm Synthesis  

 The VHDL rank order filter design has been synthesized for both the Altera and Xilinx 

architectures.  Since the Xilinx Virtex is a newer generation FPGA, it was expected that it would provide 

superior performance over the Altera FLEX 10K F PGA.  This surmise was true, and was a constant 

throughout the design.  Table 1 shows the synthesis results for the two architectures.  

 

Table 1: Performance and Resources Used for ro_filt_3x3 Synthesis  

FPGA % Memory Used % Logic Used Maximum Synthesized Pe rformance1 
Altera FLEX 

10k100 
8 32 33 MHz  / 2014 Frames Per Second 

Xilinx Virtex 
XCV300BG352 

12 19 47.134 MHz / 2876 Frames Per Second 

1: for project data size (128x128 8 bit grayscale) 
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Morphological Operators 

 Since the most commonly used morpholog ical operators are those with flat structuring elements of 

square shape, it was decided that the development time necessary to implement full grayscale structuring 

element morphological operators was unfounded.  The most common functionality of the morphol ogical 

operators is implemented in the rank order filter discussed above, so a separate version of the 

morphological operators was deemed unnecessary.   

 

Comparison of VHDL and MATLAB Algorithms  

 The ro_filt_3x3 simulation was again used to verify the algo rithm’s accuracy, this time against the 

MATLAB algorithm ro_filt.m using orders of 1 and 9, which yields the same results as aip_erode_gs and 

aip_dilate_gs using flat 3x3 structuring elements, respectively.  Figures 23 and 24 show the comparison 

plots for the two basic morphological operators.  Again, the figures show that there is no error in the VHDL 

algorithm.  

 

 

Figure 23: VHDL and MATLAB Comparison Plots for ro_filt_3x3 with Order = 1 (erosion)  
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Figure 24: VHDL and MATLAB Comparison Plots for ro_filt_ 3x3 with Order = 9 (dilation)  

 

Convolution 

 The design of the convolution algorithm in VHDL was a much more difficult problem than the 

rank order filter design.  This was due to its use of more complex mathematics.  For example, the rank 

order filter reall y just sorts the pixels in a window and outputs one of them, while the convolution 

algorithm uses adders, multipliers, and dividers to calculate its output.  On FPGAs, use of mathematics 

tends to slow down performance.  Many designers favor techniques that  reduce the algorithm’s dependency 

on complex mathematics.  Still, since the mathematics used in convolution are simple, implementation of a 

convolution algorithm was an achievable goal.   

Yet another obstacle in this algorithm’s design was implementing th e capability to handle negative 

numbers.  In a proper convolution algorithm, the mask can (and often does) consist of negative numbers.  

Effectively, the VHDL had to be written to handle these numbers by using signed data types.  Signed data 

simply means t hat a negative number is interpreted into the 2’s complement of its non -negative dual.  This 

means that all vectors within the design must use an extra bit as compared to unsigned numbers.  The extra 

bit always carries the sign of the number – 0 for a positive number, 1 for a negative number.  
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 Because of this, the output of the convolution algorithm is a number in 2’s complement.  In order 

for another unit to interface data from this algorithm, the unit must be able to understand or convert 2’s 

complement data.  Fortunately, this is a simple matter in the ACS system, which is discussed in the 

following chapter.  

 Addition and multiplication were instantiated using simple + and * signs in the VHDL code.  The 

VHDL synthesis tool provides mapping to efficient ha rdware mathematics designs for each of these, so 

device-specific parameterized modules were not necessary.  

 Since a proper convolution involves a division by the number of pixels in the window, some 

thought had to be put into this part of the algorithm’s h ardware implementation.  Hardware dividers on 

FPGAs are quite large and slow.  In addition they must be tied directly to the FPGA’s architecture, 

meaning that one divider would not work for both architectures pursued.  It was deemed necessary to 

instead use the bit shifting method of division.  Since this is only possible with powers of two, a divide by 8 

was implemented instead of a divide by 9, as was planned in the algorithm’s design.  The effect of this is 

discussed in the Algorithm Synthesis section of  this sub-chapter. 

 Figure 25 shows a graphic representation of the mathematics of the hardware convolution.  Note 

that a valid output for the convolution algorithm occurs six clock cycles after the first window is valid.  

Since this design is pipelined an d will run in the megahertz range, this kind of startup latency has very little 

effect on overall design speed. 
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Figure 25: Hardware Design of Convolution  

 

The VHDL implementation of the convolution, which is called conv_3x3.vhd, has a hierarchy that 

is similar to the ro_filt_3x3 hierarchy.  It contains an instantiation of window_3x3 to provide access to the 

moving pixel window functionality as well as rc_counter for counting capabilities.  The VHDL algorithm 

structure is shown in Figure 26.  The VHDL sou rce code is found in Appendix B.  

Optimization of the convolution algorithm can be easily achieved if one has limited kernel 

specifications.  For example, if all coefficients in the kernel are powers of two, the VHDL synthesizer is 

able to result in a desig n that uses fewer resources.  This is due, of course, to the way numbers are 

represented in digital systems, where a number that is a power of two is represented with only one bit.  

Further optimization is possible by reducing the bit widths of the kernel constants.  This is result in a 

smaller coefficient data range, but this compromise may be acceptable in certain cases.  
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entity conv_3x3 is
port (...);

end conv_3x3;

architecture conv3x3_arch of conv_3x3 is

component window_3x3
port (...);
end component window_3x3;

component rc_counter
port (...);
end component rc_counter;

begin

window_3x3x : window_3x3
port map (...);

rc_counterx : rc_counter
port map (...);

-- algorithm process

end conv_3x3_arch;

entity conv_3x3 is
port (...);

end conv_3x3;

architecture conv3x3_arch of conv_3x3 is

component window_3x3
port (...);
end component window_3x3;

component rc_counter
port (...);
end component rc_counter;

begin

window_3x3x : window_3x3
port map (...);

rc_counterx : rc_counter
port map (...);

-- algorithm process

end conv_3x3_arch;
 

Figure 26: VHDL Algorithm Structure  

 

Comparison of VHDL and MATLAB Algorithms  

 MATLAB again played an important part in the analysis o f the VHDL file outputs for an 

algorithm.  In the conv_3x3 design it was especially important because the divide by eight compromise 

discussed above changed the nature of the algorithm’s output.  Analysis of this was important to determine 

whether or not this compromise results in a reasonably valid output.  

 Figures 27 and 28 show comparisons of the VHDL- and MATLAB-convolved images using the 

K1 kernel described in Chapter 2.  Figure 29 shows the mesh error plot of the VHDL -processed image 

versus the MATLAB-processed image using a divide by 9.  From this plot it is evident that the compromise 

of using a shift divide does result in a different output, but this is fairly consistent over the entire image.  

Therefore, it is reasonable to assume that a divide by 8 convolution using a 3x3 window is an adequate 

approximation of a real divide by 9 convolution.  Figure 29 shows that the minimum pixel value difference 

is approximately 10 pixels and the maximum pixel value difference is approximately 53 pixels.   
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Figure 27: VHDL and MATLAB Comparison Plots for conv_3x3 with K1 Kernel  
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Figure 28: Comparison Plots for VHDL (Divide by 8) and MATLAB (Divide by 9), Showing Error  
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Figure 29: Mesh Plot of Error for VHDL (Divide by 8) and MATLAB (Divide by 9)  

 

 It is believed that reasonable normalization of the algorithm to compensate for the divide by 8 

errors should be possible by adding an average of the error shown above to the output of conv_3x3. 

 

Algorithm Synthesis  

 The hardware design for the 3x3 convolution algorith m was also synthesized for both Altera and 

Xilinx FPGA architectures.  Once again, the Xilinx FPGA provided a faster implementation, just as 

expected.  Table 2 shows the results for the synthesis of the conv_3x3 design.  

 

Table 2: Performance and Resources Used for conv_3x3 Synthesis  

FPGA % Memory Used % Logic Used Maximum Synthesized Performance 1 
Altera FLEX 

10k100 
82 
83 

242 

263 
28.49 MHz / 1738 FPS 2 
32.67 MHz / 1994 FPS 3 

Xilinx Virtex 
XCV300BG352 

122 
123 

192 

193 
 51.39 MHz / 3136 FPS 2 
48.952 MHz / 2987 FPS 3 

1: for project data size (128x128 8 bit grayscale) 
2: for kernel consisting of powers of 2 

3: for kernel consisting of all powers of 2 except for one element  
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CHAPTER V 

 

INTEGRATION OF ALGORITHMS INTO ISIS ACS TOOLS 

 

Integration of this system in to a real FPGA system is key to the algorithms’ success.  At the 

Institute for Software Integrated Systems (ISIS), a reconfigurable system consisting of Altera FPGAs is in 

use.  The Xilinx Virtex FPGAs are not currently a part of this system, but will be a t some point, which is 

the reason this target was pursued.  This system requires that FPGA algorithms must be integrated into a 

modeling environment, called ACS [22].  This modeling environment is useable by implementing the 

design in a modeling tool calle d GME (Graphical Model Editor).  This tool allows for VHDL files (or DSP 

files, among others) to be represented as a model or a set of models.  The ACS modeling environment 

interprets these models by synthesizing a hardware system that is represented in GM E.   

The ACS system has a library of algorithms for various applications.  The algorithms presented in 

this thesis will be integrated into that library for later use.  As mentioned previously, algorithms in ACS can 

be mapped for any number of platforms, in cluding DSPs and FPGAs.  Ideally, each algorithm has more 

than one implementation.  For example, to allow maximum flexibility in system synthesis, DSP 

implementations of the image processing algorithms presented in this thesis should be written.  This will  

allow the system designer to have a choice on which algorithm to use based on the system’s requirements.  

For example, if a high -speed system is desired, the fastest combination of FPGA and DSP algorithms can 

be synthesized.  If a low power system is preferred, a different combination of devices can be synthesized 

with this characteristic.  This flexibility is one of the key advantages of the ACS system, and is represented 

in Figure 30, which shows a system containing both FPGA and DSP versions of the same  algorithm.  It is 

important to note that the system in Figure 30 is not a parallel system.  Rather, it shows two options for the 

same algorithm.  

When a VHDL algorithm is written for an FPGA in the ACS system, it must be characterized in 

terms of its maxim um performance and resource usage.  This allows the system synthesis to be based on 

real algorithm properties.  An algorithm’s model contains attribute information where this data is 

represented.  Figure 31 shows the attributes for an ACS model.  
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Figure 30: Representation of an Algorithm in an ACS Model  

 

 

Figure 31: Attributes of an ACS Model  

 

 A wide variety of data types are supported in ACS, and are selectable in I/O port attributes.  The 

rank order filter design detailed in this thesis uses the unsign ed data type while the convolution filter design 
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uses the signed data type.  While several other data types are supported in the ACS modeling software, 

these two designs only work with their specified data types as of this writing.  This limitation can be 

overcome by implementing data type converters in a top -level design containing the algorithms.  Figure 32 

shows a screen capture of I/O port data type selection in GME. 

 

 

Figure 32: I/O Port Data Type Selection in an ACS Model in GME  

 

The VHDL files that are specified in the models must adhere to a specific format in order to work 

properly in the system.  Designers are given a choice between two formats: a valid/clear system or a 

standby/ready system.  In addition, the paradigm supports designer -defined formats.  Data width can be any 

number and the data format can be any one of a number of formats.  

The algorithms composed in this thesis were written to use the same type of data, which is a set of 

8-bit unsigned integers representing the pixels in an image.   However, the algorithms were written to work 

in a streaming -data fashion, where as soon as data first arrives into the entities, it is assumed that a new 

pixel of image data arrives on each clock pulse.  In order for these algorithms to work with the ACS  
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system, it was imperative to modify them slightly so that they would be able to accept data that does not 

necessarily arrive on each clock.  This involved adding another layer to the VHDL design, which provides 

the data valid/clear signals mentioned above .   These designs will be called ro_filt_3x3_top and 

conv_3x3_top and will be detailed in a later paper.  

An example of a morphological granulometry [20] in an ACS compound model is shown in Figure 

33.  This particular granulometry operation consists five m orphological openings (each of which consist of 

an erosion followed by a dilation) followed by addition and scaling operations.  Figure 34 shows how the 

erosion and dilation algorithms combine to form an opening operation in an ACE compound model.  Figure 

35 shows the erosion algorithm in an ACE primitive model, and how it is mapped to a particular FPGA.  

This example shows the power of the ACS environment for system synthesis.  

 

 

Figure 33: Morphological Granulometry Example  
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Figure 34: Morphological Open ing from Example  

 

 

Figure 35: Morphological Erosion from Example  

 

The modification for integration into the ACS system will result in a lower throughput.  This is 

due in part to additional synthesized logic and in part to the lower efficiency of the ACS d ata valid/clear 

system as compared to a traditional streaming data system.  Since data valid signals must be sent and 

acknowledged for incoming data, the algorithms cannot process the data on every clock pulse.  However, 

since the dataset is relatively sma ll and the algorithms are capable of rather high speeds, a resultant speed 

of around 20 MHz is expected by using this method.  While this is a performance hit, it still falls within the 

requirements imposed by the dataset and the design specifications.  Th is is a compromise, but with the 
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algorithms in the ACS modeling environment, assembly of systems can be much faster than in traditional 

DSP systems. 
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CHAPTER VI 

 

CONCLUSIONS 

 

 The development of FPGA image processing algorithms can at times be quite tediou s, but the 

results speak for themselves.  If high -speed, windowing algorithms are desired, this paper shows that FPGA 

technology is ideally suited to the task.  In fact, with the aid of the window generator, a whole series of 

image processing techniques is  available to the designer, many of which can be synthesized for high -speed 

applications.  

 One of the drawbacks of the techniques presented in the paper is the large size of the algorithms, 

as shown in the Algorithm Synthesis section of Chapter IV.  This i s largely due to the FIFO units being 

used in the design.  If off -chip RAM is used for FIFO operations, the designs’ synthesized size can be 

greatly reduced. 

 Also, the stack filter [23] method of image processing can greatly reduce the size of algorithms 

using a window generator.  Still, this method achieves a more serial method of processing, which is not 

entirely efficient with FPGA systems.  The design presented here is quite capable, and it tries to take 

advantage of the parallelism possible with FPGA devices. 

 A great deal of knowledge was gained from the completion of this project.  While FPGAs are 

excellent for some uses, such as a large number of image processing applications, difficulties in using more 

complex mathematics speak volumes towards the argument of using dedicated DSP chips for some 

applications.  Indeed, it is expected that a designer who desires the best combination of speed and 

flexibility should look toward a system consisting of both FPGAs and DSPs.  Such a system can take 

advantage of the positive aspects of each architecture, and can allow the designer to create an algorithm on 

a system that is best suited for it.  That said, it should also be noted that this project’s algorithms were 

excellent choices for FPGA implementation.  This  is because they don’t use floating-point mathematics and 

they include no complex mathematics.  

 VHDL simulation and FPGA synthesis tools are getting consistently better.  Simulation of large 

and complex VHDL is now simple and fast, and generic VHDL can eas ily be synthesized into efficient 
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hardware-specific designs.  It is expected that as the FPGA hardware continues to improve, so will the 

tools.  In the future, the longer development time that is inherent in FPGA design may disappear, and 

FPGA design will be more comparable to DSP design. 

 

Future Work 

The interchangeable nature of the VHDL components of this design allow for its components to be 

used in different designs quite easily.  For example, the window_3x3 architecture allows it to be used in 

any algorithm that uses a pixel window to compute its output.  Since VHDL components can easily be 

instantiated in any design, using the pixel window generator is as simple as dropping component and port 

map statements into another VHDL design.   

Because of this, the applications for the code created for this project can be used in many different 

image processing algorithms.  With the window generator and row/column counter code complete, about 

fifty percent of the work is done and the designer simply has to use t heir outputs to generate a desired 

result.  It could be said that the real result of this project is not simply a few algorithms, but instead a 

system of VHDL code which allows for efficient implementations of many algorithms.  Still, these VHDL 

designs should be made to operate more generically, so that modification of hard -coded values is not 

necessary. 

A large part of the improvement possible in this design lies in the algorithms themselves.  For the 

rank order filter, changing the order to be an input v ector would allow on-the-fly switching of algorithm 

properties.  While this does increase the synthesized size of the design, it also maximizes its on -chip 

capability.  Similarly, if the kernel for the convolution design were to be changed to inputs instea d of 

constants in a package, the convolution algorithm would also have increased functionality, this time with 

no added logic to synthesize. 

Another extension to this work could be creation of larger -sized window generators.  With larger 

image sizes, small  window sizes such as 3x3 are not as useful.  Windows of size 5x5 or 7x7 are rather 

easily attainable.  Still, memory limitations will relegate such designs to larger FPGAs such as the Xilinx 

Virtex XCV300.  In addition, the sorting algorithm sort_3x3 cann ot be used with larger window sizes.  
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Indeed, a sorting algorithm for larger window sizes is an incredibly daunting task.  Instead, a different 

method of calculating rank order would have to be considered.  

Despite these possible improvements, this thesis i s considered to be a success.  The knowledge 

and experience gained from completing this project will certainly be helpful in future designs.  
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APPENDIX A 

 

MATLAB M-FILES 

 

ro_filt.m 

function output_image = ro_filt(image_file,order);  
% 
% filename: ro_filt.m 
% author:  Tony Nelson 
% date:  1/11/00 
% detail:  performs basic 3x3 rank order filtering  
% 
 
input_image = LoadImage(image_file);    % loads image into input_image 
[ylength,xlength] = size(input_image);   % determines size of input image 
output_image(1:ylength,1:xlength) = zeros; %inits output_image 
 
% loops to simulate SE window passing over image  
for y=1:ylength-2  
 for x=1:xlength-2  
     window = [input_image(y:(y+2),x:(x+2))];  
  window_v = [[window(1,1:3)] [window(2,1:3)] [window(3,1:3)]];  
     sorted_list = sort(window_v); 
       output_image(y+1,x+1) = sorted_list(order);  
     sorted_list(order); 
 end 
end 
 
%plots ro filtered image 
figure; 
image(output_image) 
colormap(gray(256)); 
title('Rank Order Filter Output'); 
 

aip_erode_gs.m 

function output_image = aip_erode_gs(image_file,se_file); 
% 
% filename: aip_erode.m 
% author:  Tony Nelson 
% date:  12/7/99 
% detail:  performs grayscale erosion on image_file using specified se_file  
% 
 
[Bx,By,Ox,Oy,SE_data] = LoadSE_gs(se_file);  % loads SE parameters and data 
input_image = LoadImage(image_file);   % loads image into input_image 
[ylength,xlength] = size(input_image);   % determines size of input image 
output_image(1:ylength,1:xlength) = zeros;  %inits output_image 
 
% loops to simulate SE window passing over image  
for y=1:ylength-By  
   for x=1:xlength-Bx  
      im_se = input_image(y:(y+By-1),x:(x+Bx-1)) - SE_data; 
      output_image(y+Oy,x+Ox) = min(min(im_se));  
   end 
end 
 
%plots eroded image 
figure; 
imagesc(output_image) 
colormap(gray); 
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title([image_file, ' eroded by ', se_file]); 
 

aip_dilate_gs.m  

function output_image = aip_dilate_gs(image_file,se_file);  
% 
% filename: aip_dilate_gs.m 
% author:  Tony Nelson 
% date:  12/7/99 
% detail:  performs grayscale dilation on image_file using specified se_file  
% 
 
[Bx,By,Ox,Oy,SE_data] = LoadSE_gs(se_file); % loads SE parameters and data 
input_image = LoadImage(image_file);   % loads image into input_image 
[ylength,xlength] = size(input_image);   % determines size of input image 
output_image = input_image; %inits output_image 
 
SE_data = -(SE_data); % finds negative of SE_data for dilation  
 
% loops to simulate SE window passing over image  
for y=1:ylength-By  
   for x=1:xlength-Bx  
   % dilation is the dual of erosion....  
      im_se = input_image(y:(y+By-1),x:(x+Bx-1)) - SE_data;  
      output_image(y+Oy,x+Ox) = max(max(im_se));  
   end 
end 
 
%plots dilated image 
figure; 
imagesc(output_image) 
colormap(gray); 
title([image_file, ' dilated by ', se_file]);  
imwrite(output_image,gray(256),'dilated_image.bmp','bmp');  
 

conv_3x3.m 

function [output_image,output_image_8] = conv_3x3(image_file);  
% 
% filename: conv_3x3.m 
% author:  Tony Nelson 
% date:  1/20/00 
% detail:  performs 3x3 convolution with specified kernel  
% 
 
K = [1 2 1;... 
     2 4 2;... 
     1 2 1]; 
 
input_image = LoadImage(image_file) ;   % loads image into input_image 
[ylength,xlength] = size(input_image);   % determines size of input image 
output_image(1:ylength,1:xlength) = zeros;  %inits output_image 
output_image_8(1:ylength,1:xlength) = zeros;  %inits output_image_8 
 
% loops to simulate SE window passing over image 
for y=1:ylength-2 
 for x=1:xlength-2  
      window = [input_image(y:(y+2),x:(x+2))];  
      mult = window.*K; 
      mult_v = [[mult(1,1:3)] [mult(2,1:3)] [mult(3,1:3)]];  
      add = sum(mult_v); 
      output_image(y+1,x+1) = add/9; 
      output_image_8(y+1,x+1) = add/8;  
 end 
end 
 
%plots convolved image 



 51 
 

figure; 
imagesc(output_image) 
colormap(gray(256)); 
title(['Convolution Operation Output']);  
 
%plots convolved image 
figure; 
imagesc(output_image_8) 
colormap(gray(256)); 
title(['Convolution Operation Output with shift divide']);  

 

m2vhdl.m  

function m2vhdl(input_bmp,output_bin);  
% filename: m2vhdl.m 
% author:  Tony Nelson 
% date:  1/21/00 
% detail:  a program to output a specified image to a stream of  
%    integers for VHDL file input 
%      
% parameters: input_bmp - file to convert to bin format 
%    output_bin - file ready for vhdl file input 
 
I = LoadImage(input_bmp); 
J = int16(I); 
K = double(J); 
K = K'; 
M = reshape(K,128*128,1); 
 
fid = fopen(output_bin,'wb'); 
fprintf(fid,'%d\n',M); 
fclose(fid); 
 

vhdl2m.m  

function I = vhdl2m(input_bin); 
% filename: vhdl2m.m 
% author:  Tony Nelson 
% date:  1/21/00 
% detail:  a program to read in the VHDL output file  
% 
% paramter: input_bin - vhdl output bin file 
% 
 
close all; 
fid = fopen(input_bin); 
[I,cnt] = fscanf(fid,'%d',inf); 
fclose(fid); 
I = reshape(I,128,128); 
I = I'; 
 
originalI = LoadImage('d:/usr/nelson/courses/aip/elaine_128x128.bmp');  
J = int16(originalI); 
originalI = double(J); 
 
figure; 
imagesc(I); 
title(input_bin); 
Cmap = gray(256); 
Colormap(Cmap); 
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APPENDIX B 

 

VHDL SOURCE FILES 

 

window_3x3.vhd 

--------------------------------------------------------------------------  
-- filename: window_3x3.vhd 
-- author:  Tony Nelson 
-- date:  12/13/99 
-- 
-- detail:  3x3 window generator 
-- 
-- limits:  none 
---------------------------------------------------------------------------  
 
library IEEE; 
use IEEE.std_logic_1164.all;   
 
entity window_3x3 is 
 generic ( 
  vwidth: integer:=8 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  D : in std_logic_vector(vwidth-1 downto 0); 
  w11 : out std_logic_vector(vwidth-1 downto 0);  
  w12 : out std_logic_vector(vwidth-1 downto 0); 
  w13 : out std_logic_vector(vwidth-1 downto 0); 
  w21 : out std_logic_vector(vwidth-1 downto 0); 
  w22 : out std_logic_vector(vwidth-1 downto 0); 
  w23 : out std_logic_vector(vwidth-1 downto 0); 
  w31 : out std_logic_vector(vwidth-1 downto 0); 
  w32 : out std_logic_vector(vwidth-1 downto 0); 
  w33 : out std_logic_vector(vwidth-1 downto 0); 
  DV : out std_logic:='0' 
 ); 
end window_3x3; 
 
architecture window_3x3 of window_3x3 is  
  
 component fifo_128x8u 
 PORT 
 ( 
  data  : IN STD_LOGIC_VECTOR (7 DOWNTO 0);  
  wrreq  : IN STD_LOGIC ; 
  rdreq  : IN STD_LOGIC ; 
  clock  : IN STD_LOGIC ; 
  aclr  : IN STD_LOGIC ; 
  q  : OUT STD_LOGIC_VECTOR (7 DOWNTO 0); 
  full  : OUT STD_LOGIC ; 
  empty  : OUT STD_LOGIC ; 
  usedw  : OUT STD_LOGIC_VECTOR (6 DOWNTO 0)  
 ); 
 END component fifo_128x8u;    
       
 signal a11 : std_logic_vector(vwidth-1 downto 0);  
 signal a12 : std_logic_vector(vwidth-1 downto 0); 
 signal a13 : std_logic_vector(vwidth-1 downto 0); 
 signal a21 : std_logic_vector(vwidth-1 downto 0); 
 signal a22 : std_logic_vector(vwidth-1 downto 0); 
 signal a23 : std_logic_vector(vwidth-1 downto 0); 
 signal a31 : std_logic_vector(vwidth-1 downto 0); 
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 signal a32 : std_logic_vector(vwidth-1 downto 0); 
 signal a33 : std_logic_vector(vwidth-1 downto 0);   
   
   --fifoa signals 
 signal clear : std_logic; 
 signal wrreqa : std_logic:='1'; 
 signal rdreqa : std_logic:='0'; 
 signal ofulla : std_logic; 
 signal oemptya : std_logic; 
 signal ofifoa : std_logic_vector(vwidth-1 downto 0); 
 signal ousedwa : std_logic_vector(vwidth-2 downto 0); 
 --fifob signals 
 signal wrreqb : std_logic:='0'; 
 signal rdreqb : std_logic:='0'; 
 signal ofullb : std_logic; 
 signal oemptyb : std_logic; 
 signal ofifob : std_logic_vector(vwidth-1 downto 0); 
 signal ousedwb : std_logic_vector(vwidth-2 downto 0); 
  
 signal dwrreqb: std_logic:='0';   
  
 -- signals for DV coordination 
 signal dddddddddDV: std_logic:='0';  
 signal ddddddddDV: std_logic; 
 signal dddddddDV: std_logic; 
 signal ddddddDV: std_logic; 
 signal dddddDV: std_logic; 
 signal ddddDV: std_logic; 
 signal dddDV: std_logic; 
 signal ddDV: std_logic; 
 signal dDV: std_logic; 
  
begin     
 
 fifoa: fifo_128x8u   
  port map ( 
   data => a13, 
   wrreq => wrreqa, 
   rdreq => rdreqa,  
   clock => Clk,  
   aclr => clear,  
   q  => ofifoa, 
   full => ofulla, 
   empty => oemptya, 
   usedw  => ousedwa 
  ); 
 
 fifob: fifo_128x8u   
  port map ( 
   data => a23, 
   wrreq => wrreqb, 
   rdreq => rdreqb,  
   clock => Clk,  
   aclr => clear,  
   q  => ofifob, 
   full => ofullb, 
   empty => oemptyb, 
   usedw  => ousedwb 
  ); 
 
 clear <= not(RSTn); 
  
 clock: process(Clk,RSTn) 
 begin 
  if RSTn = '0' then  
   a11 <= (others=>'0'); 
   a12 <= (others=>'0'); 
   a13 <= (others=>'0'); 
   a21 <= (others=>'0'); 
   a22 <= (others=>'0'); 
   a23 <= (others=>'0'); 
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   a31 <= (others=>'0'); 
   a32 <= (others=>'0'); 
   a33 <= (others=>'0'); 
    
    w11 <= (others=>'0'); 
   w12 <= (others=>'0'); 
   w13 <= (others=>'0'); 
   w21 <= (others=>'0'); 
   w22 <= (others=>'0'); 
   w23 <= (others=>'0'); 
   w31 <= (others=>'0'); 
   w32 <= (others=>'0'); 
   w33 <= (others=>'0');   
    
   wrreqa <= '0'; 
   wrreqb <= '0';     
    
   ddddddddDV <= '0'; 
   dddddddDV <= '0'; 
   ddddddDV <= '0'; 
   dddddDV <= '0'; 
   ddddDV <= '0'; 
   dddDV <= '0'; 
   ddDV <= '0'; 
   dDV <= '0'; 
   DV <= '0'; 
  elsif rising_edge(Clk) then 
   a11 <= D; 
   a12 <= a11; 
   a13 <= a12; 
   a21 <= ofifoa; 
   a22 <= a21; 
   a23 <= a22; 
   a31 <= ofifob; 
   a32 <= a31; 
   a33 <= a32; 
 
   w11 <= a11; 
   w12 <= a12; 
   w13 <= a13; 
   w21 <= a21; 
   w22 <= a22; 
   w23 <= a23; 
   w31 <= a31; 
   w32 <= a32; 
   w33 <= a33; 
 
   wrreqa <= '1'; 
   wrreqb <= dwrreqb; 
    
   ddddddddDV <= dddddddddDV; 
   dddddddDV <= ddddddddDV; 
   ddddddDV <= dddddddDV; 
   dddddDV <= ddddddDV; 
   ddddDV <= dddddDV; 
   dddDV <= ddddDV; 
   ddDV <= dddDV; 
   dDV <= ddDV; 
   DV <= dDV; 
   end if; 
 end process; 
         
 req: process(Clk) 
 begin      
 if rising_edge(Clk) then 
  if ousedwa = "1111011" then 
   rdreqa <= '1'; 
   dwrreqb <= '1'; 
  end if; 
  if ousedwb = "1111011" then 
   rdreqb <= '1'; 



 55 
 

  elsif ousedwb = "1111100" then 
   dddddddddDV <= '1'; 
  end if; 
 end if; 
 end process; 
         
end window_3x3; 
 

window_3x3_x.vhd 

--------------------------------------------------------------------------  
-- filename: window_3x3_x.vhd 
-- author:  Tony Nelson 
-- date:  1/13/99 
-- 
-- detail:  3x3 window generator for Xilinx 
-- 
-- limits:  none 
--------------------------------------------------------- ------------------ 
 
Library XilinxCoreLib; 
use xilinxcorelib.ul_utils.all; 
library IEEE; 
use IEEE.std_logic_1164.all;   
use IEEE.std_logic_arith.all; 
 
entity window_3x3 is 
 generic ( 
  vwidth: integer:=8 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  D : in std_logic_vector(vwidth-1 downto 0); 
  w11 : out std_logic_vector(vwidth-1 downto 0);  
  w12 : out std_logic_vector(vwidth-1 downto 0); 
  w13 : out std_logic_vector(vwidth-1 downto 0); 
  w21 : out std_logic_vector(vwidth-1 downto 0); 
  w22 : out std_logic_vector(vwidth-1 downto 0); 
  w23 : out std_logic_vector(vwidth-1 downto 0); 
  w31 : out std_logic_vector(vwidth-1 downto 0); 
  w32 : out std_logic_vector(vwidth-1 downto 0); 
  w33 : out std_logic_vector(vwidth-1 downto 0); 
  DV : out std_logic:='0' 
 ); 
end window_3x3; 
 
architecture window_3x3 of window_3x3 is  
 
component fifo_128x8x 
 port ( 
 din : IN std_logic_VECTOR(7 downto 0); 
 wr_en : IN std_logic; 
 wr_clk : IN std_logic; 
 rd_en : IN std_logic; 
 rd_clk : IN std_logic; 
 ainit : IN std_logic; 
 dout : OUT std_logic_VECTOR(7 downto 0);  
 full : OUT std_logic; 
 empty : OUT std_logic; 
 wr_count: OUT std_logic_VECTOR(6 downto 0));  
end component; 
 
 for all : fifo_128x8x use entity XilinxCoreLib.async_fifo_v1_0(behavioral)  
  generic map( 
   c_wr_err_low => 0, 
   c_has_rd_count => 0, 
   c_has_rd_ack => 0, 
   c_wr_ack_low => 0, 
   c_has_wr_count => 1, 
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   c_has_wr_ack => 0, 
   c_has_almost_full => 0, 
   c_has_almost_empty => 0, 
   c_wr_count_width => 7, 
   c_rd_count_width => 2, 
   c_has_rd_err => 0, 
   c_data_width => 8, 
   c_has_wr_err => 0, 
   c_rd_ack_low => 0, 
   c_rd_err_low => 0, 
   c_fifo_depth => 127, 
   c_enable_rlocs => 0, 
   c_use_blockmem => 1); 
 
 signal a11 : std_logic_vector(vwidth-1 downto 0);  
 signal a12 : std_logic_vector(vwidth-1 downto 0); 
 signal a13 : std_logic_vector(vwidth-1 downto 0); 
 signal a21 : std_logic_vector(vwidth-1 downto 0); 
 signal a22 : std_logic_vector(vwidth-1 downto 0); 
 signal a23 : std_logic_vector(vwidth-1 downto 0); 
 signal a31 : std_logic_vector(vwidth-1 downto 0); 
 signal a32 : std_logic_vector(vwidth-1 downto 0); 
 signal a33 : std_logic_vector(vwidth-1 downto 0);   
   
   --fifoa signals 
 signal clear : std_logic; 
 signal wrreqa : std_logic:='1'; 
 signal rdreqa : std_logic:='0'; 
 signal ofulla : std_logic; 
 signal oemptya : std_logic; 
 signal ofifoa : std_logic_vector(vwidth-1 downto 0); 
 signal ousedwa : std_logic_vector(6 downto 0); 
 --fifob signals 
 signal wrreqb : std_logic:='0'; 
 signal rdreqb : std_logic:='0'; 
 signal ofullb : std_logic; 
 signal oemptyb : std_logic; 
 signal ofifob : std_logic_vector(vwidth-1 downto 0); 
 signal ousedwb : std_logic_vector(6 downto 0); 
  
 signal dwrreqb: std_logic:='0';   
  
 -- signals for DV coordination 
 signal ddddddddDV: std_logic:='0'; 
 signal dddddddDV: std_logic; 
 signal ddddddDV: std_logic; 
 signal dddddDV: std_logic; 
 signal ddddDV: std_logic; 
 signal dddDV: std_logic; 
 signal ddDV: std_logic; 
 signal dDV: std_logic; 
  
 signal ousedwa_temp: integer:=0; 
 signal ousedwb_temp: integer:=0; 
  
begin     
 
 fifoa: fifo_128x8x 
  port map ( 
   din  => a13, 
   wr_en  => wrreqa, 
   wr_clk  => Clk, 
   rd_en  => rdreqa, 
   rd_clk  => Clk, 
   ainit  => clear, 
   dout  => ofifoa, 
   full  => ofulla, 
   empty  => oemptya, 
   wr_count => ousedwa 
  ); 
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 fifob: fifo_128x8x 
  port map ( 
   din  => a23, 
   wr_en  => wrreqb, 
   wr_clk  => Clk, 
   rd_en  => rdreqb, 
   rd_clk  => Clk, 
   ainit  => clear, 
   dout  => ofifob, 
   full  => ofullb, 
   empty  => oemptyb, 
   wr_count => ousedwb 
  ); 
   
 clear <= not(RSTn); 
  
 clock: process(Clk,RSTn) 
 begin 
  if RSTn = '0' then  
   a11 <= (others=>'0'); 
   a12 <= (others=>'0'); 
   a13 <= (others=>'0'); 
   a21 <= (others=>'0'); 
   a22 <= (others=>'0'); 
   a23 <= (others=>'0'); 
   a31 <= (others=>'0'); 
   a32 <= (others=>'0'); 
   a33 <= (others=>'0'); 
    
    w11 <= (others=>'0'); 
   w12 <= (others=>'0'); 
   w13 <= (others=>'0'); 
   w21 <= (others=>'0'); 
   w22 <= (others=>'0'); 
   w23 <= (others=>'0'); 
   w31 <= (others=>'0'); 
   w32 <= (others=>'0'); 
   w33 <= (others=>'0');   
    
   wrreqa <= '0'; 
   wrreqb <= '0';     
    
   dddddddDV <= '0'; 
   ddddddDV <= '0'; 
   dddddDV <= '0'; 
   ddddDV <= '0'; 
   dddDV <= '0'; 
   ddDV <= '0'; 
   dDV <= '0'; 
   DV <= '0'; 
  elsif rising_edge(Clk) then 
   a11 <= D; 
   a12 <= a11; 
   a13 <= a12; 
   a21 <= ofifoa; 
   a22 <= a21; 
   a23 <= a22; 
   a31 <= ofifob; 
   a32 <= a31; 
   a33 <= a32; 
 
   w11 <= a11; 
   w12 <= a12; 
   w13 <= a13; 
   w21 <= a21; 
   w22 <= a22; 
   w23 <= a23; 
   w31 <= a31; 
   w32 <= a32; 
   w33 <= a33; 
 



 58 
 

   wrreqa <= '1'; 
   wrreqb <= dwrreqb; 
    
   dddddddDV <= ddddddddDV; 
   ddddddDV <= dddddddDV; 
   dddddDV <= ddddddDV; 
   ddddDV <= dddddDV; 
   dddDV <= ddddDV; 
   ddDV <= dddDV; 
   dDV <= ddDV; 
   DV <= dDV; 
   end if; 
 end process; 
         
 req: process(Clk) 
 begin      
 if rising_edge(Clk) then 
  if ousedwa = "1111011" then 
   rdreqa <= '1'; 
   dwrreqb <= '1'; 
  end if; 
  if ousedwb = "1111011" then 
   rdreqb <= '1';    
   ddddddddDV <= '1'; 
  end if; 
 end if; 
 end process;   
end window_3x3; 
 

ro_filt_3x3_TB.vhd 

--------------------------------------------------------------------------  
-- filename: ro_filt_3x3_TB.vhd 
-- author:  Tony Nelson 
-- date:  1/24/00 
-- 
-- detail:  TestBench for ro_filt_3x3 
--   reads image data from specified file and writes processed  
--   data to vhdl_output.bin 
--   To use this functionality, use the following method for  
--   determining simulation length: 
--    
--   t_valid = time when output data first becomes valid  
--   t_delay = t_valid - 5 ns 
--   t_sim_stop = 163835 ns + t_delay + 10 ns  
--   this is 165305ns for this entity 
-- 
-- limits:  none 
---------------------------------------------------------------------------  
 
library ieee; 
use ieee.std_logic_1164.all;  
use ieee.std_logic_arith.all;    
use std.textio.all; 
 
entity ro_filt_3x3_tb is 
 generic( 
  vwidth  : INTEGER := 8; 
  order  : INTEGER := 4; 
  num_cols : INTEGER := 128; 
  num_rows : INTEGER := 128 ); 
end ro_filt_3x3_tb; 
 
architecture TB_ARCHITECTURE of ro_filt_3x3_tb is  
 component ro_filt_3x3 
 generic( 
  vwidth  : INTEGER := 8; 
  order  : INTEGER := 4; 
  num_cols : INTEGER := 128; 
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  num_rows : INTEGER := 128 ); 
 port( 
  Clk  : in std_logic; 
  RSTn  : in std_logic; 
  D  : in std_logic_vector((vwidth-1) downto 0); 
  Dout  : out std_logic_vector((vwidth-1) downto 0); 
  DV : out std_logic ); 

end component; 
 
 signal Clk  : std_logic; 
 signal RSTn  : std_logic; 
 signal D  : std_logic_vector((vwidth-1) downto 0); 
 
 signal Dout  : std_logic_vector((vwidth-1) downto 0); 
 signal DV  : std_logic; 
 
begin 
 
 UUT : ro_filt_3x3 
  port map 
   (Clk  => Clk, 
   RSTn  => RSTn, 
   D  => D, 
   Dout  => Dout, 
   DV  => DV ); 
 
 read_from_file: process(Clk) 
  variable indata_line: line; 
  variable indata: integer; 
  file input_data_file: text open read_mode is "elaine_128x128.bin";  
 begin    
  if rising_edge(Clk) then 
   readline(input_data_file,indata_line);  
   read(indata_line,indata);     
   D <= conv_std_logic_vector(indata,8);  
   if endfile(input_data_file) then 
    report "end of file -- looping back to start of file"; 
    file_close(input_data_file); 
    file_open(input_data_file,"elaine_128x128.bin");  
   end if; 
  end if;          
   
 end process;     
  
 write_to_file: process(Clk) 
  variable outdata_line: line; 
  variable outdata: integer:=0;   
  file output_data_file: text open write_mode is "vhdl_output.bin";  
 begin 
  if rising_edge(Clk) then     
   outdata := CONV_INTEGER(unsigned(Dout));  
   if DV = '1' then 
    write(outdata_line,outdata); 
    writeline(output_data_file,outdata_line);  
   end if; 
  end if; 
 end process; 
 
 clock_gen: process 
 begin    
  Clk <= '0'; 
  wait for 5 ns; 
  Clk <= '1'; 
  wait for 5 ns; 
 end process;    
  
 reset_gen: process 
 begin 
  RSTn <= '0'; 
  wait for 10 ns; 
  RSTn <= '1'; 
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  wait; 
 end process; 
 
end TB_ARCHITECTURE; 
 
configuration TESTBENCH_FOR_ro_filt_3x3 of ro_filt_3x3_tb is  
 for TB_ARCHITECTURE 
  for UUT : ro_filt_3x3 
   use entity work.ro_filt_3x3(ro_filt_3x3);  
  end for; 
 end for; 
end TESTBENCH_FOR_ro_filt_3x3; 
 

sort_3x3.vhd 

--------------------------------------------------------------------------  
-- filename: sort_3x3.vhd 
-- author:  Tony Nelson 
-- date:  12/15/99 
-- 
-- detail:  3x3 sorting algorithm.  sorts input 3x3 window to output  
--   vectors from lowest to highest.  s1 <= L, s5 <= M, S <= H.  
-- 
-- limits:  none 
-------------------------------------------------------------- ------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all;   
 
entity sort_3x3 is 
 generic ( 
  vwidth: integer:=8 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  w11  : in std_logic_vector((vwidth-1) downto 0); 
  w12  : in std_logic_vector((vwidth-1) downto 0); 
  w13  : in std_logic_vector((vwidth-1) downto 0); 
  w21  : in std_logic_vector((vwidth-1) downto 0); 
  w22  : in std_logic_vector((vwidth-1) downto 0); 
  w23  : in std_logic_vector((vwidth-1) downto 0); 
  w31  : in std_logic_vector((vwidth-1) downto 0); 
  w32  : in std_logic_vector((vwidth-1) downto 0); 
  w33  : in std_logic_vector((vwidth-1) downto 0); 
  DVw   : in std_logic;   
  DVs : out std_logic; 
  s1 : out std_logic_vector(vwidth-1 downto 0);   
  s2 : out std_logic_vector(vwidth-1 downto 0); 
  s3 : out std_logic_vector(vwidth-1 downto 0); 
  s4 : out std_logic_vector(vwidth-1 downto 0); 
  s5 : out std_logic_vector(vwidth-1 downto 0);  
  s6 : out std_logic_vector(vwidth-1 downto 0); 
  s7 : out std_logic_vector(vwidth-1 downto 0); 
  s8 : out std_logic_vector(vwidth-1 downto 0); 
  s9 : out std_logic_vector(vwidth-1 downto 0)   
 ); 
end sort_3x3; 
 
architecture sort_3x3 of sort_3x3 is  
          
 -- compare signals 
 signal c11_L: std_logic_vector((vwidth -1) downto 0); 
 signal c11_H: std_logic_vector((vwidth-1) downto 0); 
 signal c12_L: std_logic_vector((vwidth -1) downto 0); 
 signal c12_H: std_logic_vector((vwidth -1) downto 0); 
 signal c13_L: std_logic_vector((vwidth -1) downto 0); 
 signal c13_H: std_logic_vector((vwidth -1) downto 0); 
 signal c14_L: std_logic_vector((vwidth -1) downto 0); 
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 signal c14_H: std_logic_vector((vwidth -1) downto 0); 
 signal c21_L: std_logic_vector((vwidth -1) downto 0); 
 signal c21_H: std_logic_vector((vwidth -1) downto 0); 
 signal c22_L: std_logic_vector((vwidth -1) downto 0); 
 signal c22_H: std_logic_vector((vwidth -1) downto 0); 
 signal c23_L: std_logic_vector((vwidth -1) downto 0); 
 signal c23_H: std_logic_vector((vwidth -1) downto 0); 
 signal c24_L: std_logic_vector((vwidth -1) downto 0); 
 signal c24_H: std_logic_vector((vwidth-1) downto 0); 
 signal c31_L: std_logic_vector((vwidth -1) downto 0); 
 signal c31_H: std_logic_vector((vwidth -1) downto 0); 
 signal c32_L: std_logic_vector((vwidth -1) downto 0); 
 signal c32_H: std_logic_vector((vwidth -1) downto 0); 
 signal c33_L: std_logic_vector((vwidth-1) downto 0); 
 signal c33_H: std_logic_vector((vwidth -1) downto 0); 
 signal c34_L: std_logic_vector((vwidth -1) downto 0); 
 signal c34_H: std_logic_vector((vwidth -1) downto 0); 
 signal c41_L: std_logic_vector((vwidth -1) downto 0); 
 signal c41_H: std_logic_vector((vwidth -1) downto 0); 
 signal c42_L: std_logic_vector((vwidth -1) downto 0); 
 signal c42_H: std_logic_vector((vwidth -1) downto 0); 
 signal c43_L: std_logic_vector((vwidth -1) downto 0); 
 signal c43_H: std_logic_vector((vwidth -1) downto 0); 
 signal c4a1_L: std_logic_vector((vwidth -1) downto 0);  
 signal c4a1_H: std_logic_vector((vwidth -1) downto 0); 
 signal c4a2_L: std_logic_vector((vwidth -1) downto 0); 
 signal c4a2_H: std_logic_vector((vwidth -1) downto 0); 
 signal c4b0_L: std_logic_vector((vwidth-1) downto 0); 
 signal c4b0_H: std_logic_vector((vwidth -1) downto 0); 
 signal c4b1_L: std_logic_vector((vwidth -1) downto 0); 
 signal c4b1_H: std_logic_vector((vwidth -1) downto 0); 
 signal c4b2_L: std_logic_vector((vwidth -1) downto 0); 
 signal c4b2_H: std_logic_vector((vwidth -1) downto 0); 
 signal c51_L: std_logic_vector((vwidth -1) downto 0); 
 signal c51_H: std_logic_vector((vwidth -1) downto 0); 
 signal c61_L: std_logic_vector((vwidth -1) downto 0); 
 signal c61_H: std_logic_vector((vwidth -1) downto 0); 
 signal c71_L: std_logic_vector((vwidth -1) downto 0); 
 signal c71_H: std_logic_vector((vwidth -1) downto 0); 
 signal c81_L: std_logic_vector((vwidth -1) downto 0); 
 signal c81_H: std_logic_vector((vwidth -1) downto 0); 
 signal c91_L: std_logic_vector((vwidth-1) downto 0); 
 signal c91_H: std_logic_vector((vwidth -1) downto 0); 
 signal c101_L: std_logic_vector((vwidth -1) downto 0); 
 signal c101_H: std_logic_vector((vwidth -1) downto 0); 
 signal c111_L: std_logic_vector((vwidth -1) downto 0); 
 signal c111_H: std_logic_vector((vwidth-1) downto 0); 
        
 -- register signals 
 signal r11: std_logic_vector((vwidth -1) downto 0); 
 signal r21: std_logic_vector((vwidth -1) downto 0); 
 signal r31: std_logic_vector((vwidth -1) downto 0); 
 signal r41: std_logic_vector((vwidth-1) downto 0); 
 signal r42: std_logic_vector((vwidth -1) downto 0); 
 signal r43: std_logic_vector((vwidth -1) downto 0);     
 signal r4a1: std_logic_vector((vwidth -1) downto 0); 
 signal r4a2: std_logic_vector((vwidth -1) downto 0);     
 signal r4a3: std_logic_vector((vwidth-1) downto 0);     
 signal r4a4: std_logic_vector((vwidth -1) downto 0);     
 signal r4a5: std_logic_vector((vwidth -1) downto 0);     
 signal r4b1: std_logic_vector((vwidth -1) downto 0);     
 signal r4b4: std_logic_vector((vwidth -1) downto 0);     
 signal r4b5: std_logic_vector((vwidth -1) downto 0);     
 signal r51: std_logic_vector((vwidth -1) downto 0); 
 signal r52: std_logic_vector((vwidth -1) downto 0); 
 signal r53: std_logic_vector((vwidth -1) downto 0); 
 signal r54: std_logic_vector((vwidth-1) downto 0); 
 signal r55: std_logic_vector((vwidth -1) downto 0); 
 signal r56: std_logic_vector((vwidth -1) downto 0); 
 signal r57: std_logic_vector((vwidth -1) downto 0); 
 signal r61: std_logic_vector((vwidth -1) downto 0); 
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 signal r62: std_logic_vector((vwidth-1) downto 0); 
 signal r63: std_logic_vector((vwidth -1) downto 0); 
 signal r64: std_logic_vector((vwidth -1) downto 0); 
 signal r65: std_logic_vector((vwidth -1) downto 0); 
 signal r66: std_logic_vector((vwidth -1) downto 0); 
 signal r67: std_logic_vector((vwidth-1) downto 0); 
 signal r71: std_logic_vector((vwidth -1) downto 0); 
 signal r72: std_logic_vector((vwidth -1) downto 0); 
 signal r73: std_logic_vector((vwidth -1) downto 0); 
 signal r74: std_logic_vector((vwidth -1) downto 0); 
 signal r75: std_logic_vector((vwidth-1) downto 0); 
 signal r76: std_logic_vector((vwidth -1) downto 0); 
 signal r77: std_logic_vector((vwidth -1) downto 0); 
 signal r81: std_logic_vector((vwidth -1) downto 0); 
 signal r82: std_logic_vector((vwidth -1) downto 0); 
 signal r83: std_logic_vector((vwidth-1) downto 0); 
 signal r84: std_logic_vector((vwidth -1) downto 0); 
 signal r85: std_logic_vector((vwidth -1) downto 0); 
 signal r86: std_logic_vector((vwidth -1) downto 0); 
 signal r87: std_logic_vector((vwidth -1) downto 0); 
 signal r91: std_logic_vector((vwidth-1) downto 0); 
 signal r92: std_logic_vector((vwidth -1) downto 0); 
 signal r93: std_logic_vector((vwidth -1) downto 0); 
 signal r94: std_logic_vector((vwidth -1) downto 0); 
 signal r95: std_logic_vector((vwidth -1) downto 0); 
 signal r96: std_logic_vector((vwidth -1) downto 0); 
 signal r97: std_logic_vector((vwidth -1) downto 0); 
 signal r101: std_logic_vector((vwidth -1) downto 0); 
 signal r102: std_logic_vector((vwidth -1) downto 0); 
 signal r103: std_logic_vector((vwidth -1) downto 0); 
 signal r104: std_logic_vector((vwidth -1) downto 0); 
 signal r105: std_logic_vector((vwidth -1) downto 0); 
 signal r106: std_logic_vector((vwidth -1) downto 0); 
 signal r107: std_logic_vector((vwidth -1) downto 0); 
 signal r111: std_logic_vector((vwidth -1) downto 0); 
 signal r112: std_logic_vector((vwidth -1) downto 0); 
 signal r113: std_logic_vector((vwidth -1) downto 0); 
 signal r114: std_logic_vector((vwidth -1) downto 0); 
 signal r115: std_logic_vector((vwidth -1) downto 0); 
 signal r116: std_logic_vector((vwidth-1) downto 0); 
 signal r117: std_logic_vector((vwidth -1) downto 0);     
  
 -- signals for DV coordination 
 signal dddddddddddddDV: std_logic:='0';  
 signal ddddddddddddDV: std_logic; 
 signal dddddddddddDV: std_logic; 
 signal ddddddddddDV: std_logic; 
 signal dddddddddDV: std_logic; 
 signal ddddddddDV: std_logic; 
 signal dddddddDV: std_logic; 
 signal ddddddDV: std_logic; 
 signal dddddDV: std_logic; 
 signal ddddDV: std_logic; 
 signal dddDV: std_logic; 
 signal ddDV: std_logic; 
 signal dDV: std_logic; 
 
begin     
   
 process(Clk,RSTn) 
 begin    
  if RSTn = '0' then 
   c11_L <= (others=>'0'); 
   c11_H <= (others=>'0'); 
   c12_L <= (others=>'0'); 
   c12_H <= (others=>'0'); 
   c13_L <= (others=>'0'); 
   c13_H <= (others=>'0'); 
   c14_L <= (others=>'0'); 
   c14_H <= (others=>'0'); 
   c21_L <= (others=>'0'); 
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   c21_H <= (others=>'0'); 
   c22_L <= (others=>'0'); 
   c22_H <= (others=>'0'); 
   c23_L <= (others=>'0'); 
   c23_H <= (others=>'0'); 
   c24_L <= (others=>'0'); 
   c24_H <= (others=>'0'); 
   c31_L <= (others=>'0'); 
   c31_H <= (others=>'0'); 
   c32_L <= (others=>'0'); 
   c32_H <= (others=>'0'); 
   c33_L <= (others=>'0'); 
   c33_H <= (others=>'0'); 
   c34_L <= (others=>'0'); 
   c34_H <= (others=>'0'); 
   c41_L <= (others=>'0'); 
   c41_H <= (others=>'0'); 
   c42_L <= (others=>'0'); 
   c42_H <= (others=>'0'); 
   c43_L <= (others=>'0'); 
   c43_H <= (others=>'0'); 
   c4a1_L <= (others=>'0'); 
   c4a1_H <= (others=>'0'); 
   c4a2_L <= (others=>'0'); 
   c4a2_H <= (others=>'0'); 
   c4b0_L <= (others=>'0'); 
   c4b0_H <= (others=>'0'); 
   c4b1_L <= (others=>'0'); 
   c4b1_H <= (others=>'0'); 
   c4b2_L <= (others=>'0'); 
   c4b2_H <= (others=>'0'); 
   c51_L <= (others=>'0'); 
   c51_H <= (others=>'0'); 
   c61_L <= (others=>'0'); 
   c61_H <= (others=>'0'); 
   c71_L <= (others=>'0'); 
   c71_H <= (others=>'0'); 
   c81_L <= (others=>'0'); 
   c81_H <= (others=>'0'); 
   c91_L <= (others=>'0'); 
   c91_H <= (others=>'0'); 
   c101_L <= (others=>'0'); 
   c101_H <= (others=>'0'); 
   c111_L <= (others=>'0'); 
   c111_H <= (others=>'0'); 
   r11 <= (others=>'0'); 
   r21 <= (others=>'0'); 
   r31 <= (others=>'0'); 
   r41 <= (others=>'0'); 
   r42 <= (others=>'0'); 
   r43 <= (others=>'0'); 
   r4a1 <= (others=>'0'); 
   r4a2 <= (others=>'0'); 
   r4a3 <= (others=>'0'); 
   r4a4 <= (others=>'0'); 
   r4a5 <= (others=>'0'); 
   r4b1 <= (others=>'0'); 
   r4b4 <= (others=>'0'); 
   r4b5 <= (others=>'0');  
   r51 <= (others=>'0'); 
   r52 <= (others=>'0'); 
   r53 <= (others=>'0'); 
   r54 <= (others=>'0'); 
   r55 <= (others=>'0'); 
   r56 <= (others=>'0'); 
   r57 <= (others=>'0'); 
   r61 <= (others=>'0'); 
   r62 <= (others=>'0'); 
   r63 <= (others=>'0'); 
   r64 <= (others=>'0'); 
   r65 <= (others=>'0'); 
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   r66 <= (others=>'0'); 
   r67 <= (others=>'0'); 
   r71 <= (others=>'0'); 
   r72 <= (others=>'0'); 
   r73 <= (others=>'0'); 
   r74 <= (others=>'0'); 
   r75 <= (others=>'0'); 
   r76 <= (others=>'0'); 
   r77 <= (others=>'0'); 
   r81 <= (others=>'0'); 
   r82 <= (others=>'0'); 
   r83 <= (others=>'0'); 
   r84 <= (others=>'0'); 
   r85 <= (others=>'0'); 
   r86 <= (others=>'0'); 
   r87 <= (others=>'0'); 
   r91 <= (others=>'0'); 
   r92 <= (others=>'0'); 
   r93 <= (others=>'0'); 
   r94 <= (others=>'0'); 
   r95 <= (others=>'0'); 
   r96 <= (others=>'0'); 
   r97 <= (others=>'0'); 
   r101 <= (others=>'0'); 
   r102 <= (others=>'0'); 
   r103 <= (others=>'0'); 
   r104 <= (others=>'0'); 
   r105 <= (others=>'0'); 
   r106 <= (others=>'0'); 
   r107 <= (others=>'0'); 
   r111 <= (others=>'0'); 
   r112 <= (others=>'0'); 
   r113 <= (others=>'0'); 
   r114 <= (others=>'0'); 
   r115 <= (others=>'0'); 
   r116 <= (others=>'0'); 
   r117 <= (others=>'0');    
   s1 <= (others=>'0');  
   s2 <= (others=>'0'); 
   s3 <= (others=>'0'); 
   s4 <= (others=>'0'); 
   s5 <= (others=>'0'); 
   s6 <= (others=>'0'); 
   s7 <= (others=>'0'); 
   s8 <= (others=>'0'); 
   s9 <= (others=>'0');   
   ddddddddddddDV <= '0'; 
   dddddddddddDV <= '0'; 
   ddddddddddDV <= '0'; 
   dddddddddDV <= '0'; 
   ddddddddDV <= '0'; 
   dddddddDV <= '0'; 
   ddddddDV <= '0'; 
   dddddDV <= '0'; 
   ddddDV <= '0'; 
   dddDV <= '0'; 
   ddDV <= '0'; 
   dDV <= '0'; 
   DVs <= '0'; 
  elsif rising_edge(Clk) then 
   if DVw = '1' then 
    -- level 1 
    if w11 < w12 then 
     c11_L <= w11; 
     c11_H <= w12; 
    else 
     c11_L <= w12; 
     c11_H <= w11; 
    end if; 
    if w13 < w21 then 
     c12_L <= w13; 
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     c12_H <= w21; 
    else   
     c12_L <= w21; 
     c12_H <= w13; 
    end if; 
    if w22 < w23 then 
     c13_L <= w22; 
     c13_H <= w23; 
    else   
     c13_L <= w23; 
     c13_H <= w22; 
    end if; 
    if w31 < w32 then 
     c14_L <= w31; 
     c14_H <= w32; 
    else   
     c14_L <= w32; 
     c14_H <= w31; 
    end if;    
    r11 <= w33; 
    -- level 2 
    if c11_L < c12_L then 
     c21_L <= c11_L; 
     c21_H <= c12_L; 
    else 
     c21_L <= c12_L; 
     c21_H <= c11_L; 
    end if; 
    if c11_H < c12_H then 
     c22_L <= c11_H; 
     c22_H <= c12_H; 
    else 
     c22_L <= c12_H; 
     c22_H <= c11_H; 
    end if; 
    if c13_L < c14_L then 
     c23_L <= c13_L; 
     c23_H <= c14_L; 
    else 
     c23_L <= c14_L; 
     c23_H <= c13_L; 
    end if; 
    if c13_H < c14_H then 
     c24_L <= c13_H; 
     c24_H <= c14_H; 
    else 
     c24_L <= c14_H; 
     c24_H <= c13_H; 
    end if;    
    r21 <= r11; 
    -- level 3 
    if c21_L < c23_L then 
     c31_L <= c21_L; 
     c31_H <= c23_L; 
    else 
     c31_L <= c23_L; 
     c31_H <= c21_L; 
    end if; 
    if c21_H < c23_H then 
     c32_L <= c21_H; 
     c32_H <= c23_H; 
    else 
     c32_L <= c23_H; 
     c32_H <= c21_H; 
    end if; 
    if c22_L < c24_L then 
     c33_L <= c22_L; 
     c33_H <= c24_L; 
    else 
     c33_L <= c24_L; 
     c33_H <= c22_L; 
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    end if; 
    if c22_H < c24_H then 
     c34_L <= c22_H; 
     c34_H <= c24_H; 
    else 
     c34_L <= c24_H; 
     c34_H <= c22_H; 
    end if;     
    r31 <= r21; 
    -- level 4 
    r41 <= c31_L; 
    if c31_H < c32_L then 
     c41_L <= c31_H; 
     c41_H <= c32_L; 
    else 
     c41_L <= c32_L; 
     c41_H <= c31_H; 
    end if; 
    if c32_H < c33_L then 
     c42_L <= c32_H; 
     c42_H <= c33_L; 
    else 
     c42_L <= c33_L; 
     c42_H <= c32_H; 
    end if; 
    if c33_H < c34_L then 
     c43_L <= c33_H; 
     c43_H <= c34_L;  
    else 
     c43_L <= c34_L; 
     c43_H <= c33_H; 
    end if; 
    r42 <= c34_H; 
    r43 <= r31; 
    -- level 4a 
    r4a1 <= r41;     
    if c41_L < c42_H then 
     c4a1_L <= c41_L; 
     c4a1_H <= c42_H; 
    else       
     c4a1_L <= c42_H; 
     c4a1_H <= c41_L; 
    end if;     
    if c41_H < c42_L then 
     c4a2_L <= c41_H; 
     c4a2_H <= c42_L; 
    else       
     c4a2_L <= c42_L; 
     c4a2_H <= c41_H; 
    end if;      
    r4a2 <= c43_L; 
    r4a3 <= c43_H; 
    r4a4 <= r42; 
    r4a5 <= r43; 
    -- level 4b 
    r4b1 <= r4a1; 
    if c4a1_L < c4a2_L then 
     c4b0_L <= c4a1_L; 
     c4b0_H <= c4a2_L; 
    else 
     c4b0_L <= c4a2_L; 
     c4b0_H <= c4a1_L; 
    end if;     
    if c4a2_H < r4a2 then 
     c4b1_L <= c4a2_H; 
     c4b1_H <= r4a2; 
    else      
     c4b1_L <= r4a2; 
     c4b1_H <= c4a2_H; 
    end if;      
    if c4a1_H < r4a3 then 
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     c4b2_L <= c4a1_H; 
     c4b2_H <= r4a3; 
    else      
     c4b2_L <= r4a3; 
     c4b2_H <= c4a1_H; 
    end if;       
    r4b4 <= r4a4; 
    r4b5 <= r4a5; 
    -- level 5 
    if r4b1 < r4b5 then 
     c51_L <= r4b1; 
     c51_H <= r4b5; 
    else 
     c51_L <= r4b5; 
     c51_H <= r4b1; 
    end if;    
    r51 <= c4b0_L; 
    r52 <= c4b0_H; 
    r53 <= c4b1_L; 
    r54 <= c4b1_H; 
    r55 <= c4b2_L; 
    r56 <= c4b2_H; 
    r57 <= r4b4; 
    -- level 6 
    if r51 < c51_H then 
     c61_L <= r51; 
     c61_H <= c51_H; 
    else 
     c61_L <= c51_H; 
     c61_H <= r51; 
    end if; 
    r61 <= c51_L;  -- L 
    r62 <= r52; 
    r63 <= r53; 
    r64 <= r54; 
    r65 <= r55; 
    r66 <= r56; 
    r67 <= r57; 
    -- level 7 
    if r62 < c61_H then 
     c71_L <= r62; 
     c71_H <= c61_H; 
    else 
     c71_L <= c61_H; 
     c71_H <= r62; 
    end if;    
    r71 <= r61;  -- L 
    r72 <= c61_L;  -- 2L 
    r73 <= r63;  
    r74 <= r64; 
    r75 <= r65; 
    r76 <= r66; 
    r77 <= r67; 
    -- level 8 
    if r73 < c71_H then 
     c81_L <= r73; 
     c81_H <= c71_H;  
    else 
     c81_L <= c71_H; 
     c81_H <= r73; 
    end if;    
    r81 <= r71;  -- L 
    r82 <= r72;  -- 2L 
    r83 <= c71_L;  -- 3L  
    r84 <= r74; 
    r85 <= r75; 
    r86 <= r76; 
    r87 <= r77; 
    -- level 9 
    if r84 < c81_H then 
     c91_L <= r84; 
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     c91_H <= c81_H;  
    else 
     c91_L <= c81_H; 
     c91_H <= r84; 
    end if;    
    r91 <= r81;  -- L 
    r92 <= r82;  -- 2L 
    r93 <= r83;  -- 3L  
    r94 <= c81_L;  -- 4L 
    r95 <= r85; 
    r96 <= r86; 
    r97 <= r87; 
    -- level 10 
    if r95 < c91_H then 
     c101_L <= r95; 
     c101_H <= c91_H;  
    else 
     c101_L <= c91_H; 
     c101_H <= r95; 
    end if;    
    r101 <= r91;  -- L 
    r102 <= r92;  -- 2L 
    r103 <= r93;  -- 3L  
    r104 <= r94;  -- 4L 
    r105 <= c91_L;  -- M 
    r106 <= r96; 
    r107 <= r97; 
    -- level 11 
    if r106 < c101_H then 
     c111_L <= r106; 
     c111_H <= c101_H;  
    else 
     c111_L <= c101_H; 
     c111_H <= r106; 
    end if;    
    r111 <= r101;  -- L 
    r112 <= r102;  -- 2L 
    r113 <= r103;  -- 3L  
    r114 <= r104;  -- 4L 
    r115 <= r105;  -- M 
    r116 <= c101_L; -- 4L 
    r117 <= r107; 
    -- level 12 
    if r117 < c111_H then 
     s8 <= r117; -- 2H 
     s9 <= c111_H;  -- H 
    else 
     s8 <= c111_H; -- 2H 
     s9 <= r117; -- H 
    end if;    
    s1 <= r111;  -- L 
    s2 <= r112;  -- 2L 
    s3 <= r113;  -- 3L  
    s4 <= r114;  -- 4L 
    s5 <= r115;  -- M 
    s6 <= r116;  -- 4H 
    s7 <= c111_L;  -- 3H   
           
    ddddddddddddDV <= dddddddddddddDV; 
    dddddddddddDV <= ddddddddddddDV; 
    ddddddddddDV <= dddddddddddDV; 
    dddddddddDV <= ddddddddddDV; 
    ddddddddDV <= dddddddddDV; 
    dddddddDV <= ddddddddDV; 
    ddddddDV <= dddddddDV; 
    dddddDV <= ddddddDV; 
    ddddDV <= dddddDV; 
    dddDV <= ddddDV; 
    ddDV <= dddDV; 
    dDV <= ddDV; 
    DVs <= dDV; 
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   end if; 
   if DVw = '1' then 
    dddddddddddddDV <= '1'; 
   end if; 
  end if; 
 end process; 
         
end sort_3x3; 
 

rc_counter.vhd 

--------------------------------------------------------------------------  
-- filename: rc_counter.vhd 
-- author:  Tony Nelson 
-- date:  12/22/99 
-- 
-- detail:  row/column counter 
-- 
-- limits:  none 
------------------------------------------- -------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all;     
 
entity rc_counter is 
 generic ( 
  num_cols: integer:=128; 
  num_rows: integer:=128 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  En : in std_logic; 
  ColPos : out integer; 
  RowPos : out integer 
 ); 
end rc_counter; 
 
architecture rc_counter of rc_counter is  
 
begin     
 
 process(RSTn,Clk,En) 
  variable ColPos_var: integer:=0; 
  variable RowPos_var: integer:=0; 
 begin    
  if RSTn = '0' then 
   ColPos_var := -1; 
   ColPos <= 0;    
   RowPos_var := 0; 
   RowPos <= 0; 
  elsif rising_edge(Clk) then 
   if En = '1' then 
    ColPos_var := ColPos_var +1; 
    if ColPos_var = num_cols then 
     RowPos_var := RowPos_var +1; 
     ColPos_var := 0;  
     if RowPos_var = num_rows then 
      RowPos_var := 0; 
     end if; 
    end if; 
    ColPos <= ColPos_var; 
    RowPos <= RowPos_var; 
   end if;  
  end if; 
 end process; 
         
end rc_counter; 
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ro_filt_3x3.vhd  

-------------------------------------------------------------- ------------ 
-- filename: ro_filt_3x3.vhd 
-- author:  Tony Nelson 
-- date:  12/21/99 
-- 
-- detail:  3x3 Rank Order Filter.  Generic order sets filter order.  
--   order: integer:= 5 is a Median Filter.  
-- 
-- limits:  none 
----------------------------------- ----------------------------------------  
 
library IEEE; 
use IEEE.std_logic_1164.all;   
 
entity ro_filt_3x3 is 
 generic ( 
  vwidth: integer:=8; 
  order: integer:=4; 
  num_cols: integer:=128; 
  num_rows: integer:=128 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  D : in std_logic_vector(vwidth-1 downto 0); 
  Dout  : out std_logic_vector(vwidth-1 downto 0); 
  DV : out std_logic 
 ); 
end ro_filt_3x3; 
 
architecture ro_filt_3x3 of ro_filt_3x3 is  
          
 component sort_3x3 
 generic ( 
  vwidth: integer:=8 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  w11  : in std_logic_vector((vwidth-1) downto 0); 
  w12  : in std_logic_vector((vwidth-1) downto 0); 
  w13  : in std_logic_vector((vwidth-1) downto 0); 
  w21  : in std_logic_vector((vwidth-1) downto 0); 
  w22  : in std_logic_vector((vwidth-1) downto 0); 
  w23  : in std_logic_vector((vwidth-1) downto 0); 
  w31  : in std_logic_vector((vwidth-1) downto 0); 
  w32  : in std_logic_vector((vwidth-1) downto 0); 
  w33  : in std_logic_vector((vwidth-1) downto 0); 
  DVw   : in std_logic;   
  DVs : out std_logic;  
  s1 : out std_logic_vector(vwidth-1 downto 0);   
  s2 : out std_logic_vector(vwidth-1 downto 0); 
  s3 : out std_logic_vector(vwidth-1 downto 0); 
  s4 : out std_logic_vector(vwidth-1 downto 0); 
  s5 : out std_logic_vector(vwidth-1 downto 0); 
  s6 : out std_logic_vector(vwidth-1 downto 0); 
  s7 : out std_logic_vector(vwidth-1 downto 0); 
  s8 : out std_logic_vector(vwidth-1 downto 0); 
  s9 : out std_logic_vector(vwidth-1 downto 0)    

); 
 end component sort_3x3;   
 
 signal w11: std_logic_vector((vwidth -1) downto 0); 
 signal w12: std_logic_vector((vwidth -1) downto 0); 
 signal w13: std_logic_vector((vwidth -1) downto 0); 
 signal w21: std_logic_vector((vwidth -1) downto 0); 
 signal w22: std_logic_vector((vwidth-1) downto 0); 
 signal w23: std_logic_vector((vwidth -1) downto 0); 
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 signal w31: std_logic_vector((vwidth -1) downto 0); 
 signal w32: std_logic_vector((vwidth -1) downto 0); 
 signal w33: std_logic_vector((vwidth -1) downto 0); 
 signal DVw: std_logic;   
 signal DVs: std_logic; 
 signal s1: std_logic_vector(vwidth-1 downto 0); 
 signal s2: std_logic_vector(vwidth-1 downto 0); 
 signal s3: std_logic_vector(vwidth-1 downto 0); 
 signal s4: std_logic_vector(vwidth-1 downto 0); 
 signal s5: std_logic_vector(vwidth-1 downto 0); 
 signal s6: std_logic_vector(vwidth-1 downto 0); 
 signal s7: std_logic_vector(vwidth-1 downto 0); 
 signal s8: std_logic_vector(vwidth-1 downto 0); 
 signal s9: std_logic_vector(vwidth-1 downto 0);     
  
  component window_3x3 
 generic ( 
  vwidth: integer:=8 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  D : in std_logic_vector(vwidth-1 downto 0); 
  w11 : out std_logic_vector(vwidth-1 downto 0);  
  w12 : out std_logic_vector(vwidth-1 downto 0); 
  w13 : out std_logic_vector(vwidth-1 downto 0); 
  w21 : out std_logic_vector(vwidth-1 downto 0); 
  w22 : out std_logic_vector(vwidth-1 downto 0); 
  w23 : out std_logic_vector(vwidth-1 downto 0); 
  w31 : out std_logic_vector(vwidth-1 downto 0); 
  w32 : out std_logic_vector(vwidth-1 downto 0); 
  w33 : out std_logic_vector(vwidth-1 downto 0); 
  DV : out std_logic:='0' 
 ); 
 end component window_3x3; 
 
 component rc_counter 
 generic ( 
  num_cols: integer:=128; 
  num_rows: integer:=128 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  En : in std_logic; 
  ColPos : out integer; 
  RowPos : out integer 
 );        
 end component rc_counter; 
  
 signal ColPos: integer:=0; 
 signal RowPos: integer:=0;  
 signal ColPos_c: integer:=0; -- corrected positions 
 signal RowPos_c: integer:=0;       
 signal rt1: integer:=0; 
 signal rt2: integer:=0; 
 signal rt3: integer:=0; 
 signal rt4: integer:=0; 
 signal rt5: integer:=0; 
 signal rt6: integer:=0; 
 signal rt7: integer:=0; 
 signal rt8: integer:=0; 
 signal rt9: integer:=0; 
 signal rt10: integer:=0; 
 signal rt11: integer:=0; 
 signal rt12: integer:=0; 
 signal rt13: integer:=0; 
 signal rt14: integer:=0; 
 signal rt15: integer:=0; 
 signal rt16: integer:=0; 
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 signal flag: std_logic:='0'; 
            
      
begin     
 
 sort_3x3x: sort_3x3 
  generic map ( 
   vwidth => 8 
  ) 
  port map (          
   Clk => Clk, 
   RSTn => RSTn, 
   w11  => w11, 
   w12  => w12, 
   w13  => w13, 
   w21  => w21, 
   w22  => w22, 
   w23  => w23, 
   w31  => w31, 
   w32  => w32, 
   w33  => w33, 
   DVw   => DVw, 
   DVs => DVs, 
   s1 => s1, 
   s2 => s2, 
   s3 => s3, 
   s4 => s4, 
   s5 => s5, 
   s6 => s6, 
   s7 => s7, 
   s8 => s8, 
   s9 => s9 
  );     
 
 window_3x3x: window_3x3 
  generic map ( 
   vwidth => 8 
  ) 
  port map (          
   Clk => Clk, 
   RSTn => RSTn, 
   D => D, 
   w11 => w11, 
   w12 => w12, 
   w13 => w13, 
   w21 => w21, 
   w22 =>  w22, 
   w23 => w23, 
   w31 => w31, 
   w32 => w32, 
   w33 => w33, 
   DV => DVw 
  );   
 
 rc_counterx: rc_counter 
  generic map ( 
  num_cols => 128, 
  num_rows => 128 
  ) 
 port map (          
  Clk  => Clk, 
  RSTn  => RSTn, 
  En  => RSTn, 
  ColPos  => ColPos, 
  RowPos  => RowPos 
 ); 
  
 ro_filt_proc: process(RSTn,Clk) 
 begin    
  if RSTn = '0' then  
   ColPos_c <= 0; 
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   rt1 <= 0; 
   rt2 <= 0; 
   rt3 <= 0; 
   rt4 <= 0; 
   rt5 <= 0; 
   rt6 <= 0; 
   rt7 <= 0; 
   rt8 <= 0; 
   rt9 <= 0; 
   rt10 <= 0; 
   rt11 <= 0; 
   rt12 <= 0; 
   rt13 <= 0; 
   rt14 <= 0; 
   rt15 <= 0; 
   rt16 <= 0; 
   RowPos_c <= 0; 
   Dout <= (others=>'0');   
   DV <= '0';      
   flag <= '0'; 
  elsif rising_edge(Clk) then 
   -- counter correction 
   ColPos_c <= ((ColPos-16) mod 128); 
   rt1 <= ((RowPos-1) mod 128); 
   rt2 <= rt1; 
   rt3 <= rt2; 
   rt4 <= rt3; 
   rt5 <= rt4; 
   rt6 <= rt5; 
   rt7 <= rt6; 
   rt8 <= rt7; 
   rt9 <= rt8; 
   rt10 <= rt9; 
   rt11 <= rt10;  
   rt12 <= rt11; 
   rt13 <= rt12; 
   rt14 <= rt13; 
   rt15 <= rt14;  
   rt16 <= rt15; 
   RowPos_c <= rt16;   
   -- screen edge detection 

if (ColPos_c = num_cols-1) or (RowPos_c = num_rows-1) or (ColPos_c 
= num_cols-2) or (RowPos_c = 0) then 

    Dout <= (others=>'0');  
   else     
    if order = 1 then 
     Dout <= s1; 
    elsif order = 2 then 
     Dout <= s2; 
    elsif order = 3 then 
     Dout <= s3; 
    elsif order = 4 then    
     Dout <= s4; 
    elsif order = 5 then 
     Dout <= s5; 
    elsif order = 6 then 
     Dout <= s6; 
    elsif order = 7 then    
     Dout <= s7; 
    elsif order = 8 then 
     Dout <= s8;    
    elsif order = 9 then 
     Dout <= s9;    
    end if;        
    
   end if;  
   if ColPos >= 16 and RowPos >= 1 then  
    DV <= '1';       
   
    flag <= '1'; 
   elsif flag = '1' then 
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    DV <= '1'; 
   else 
    DV <= '0'; 
   end if;         
          
  end if; 
 end process; 
         
end ro_filt_3x3; 
 

conv_3x3.vhd 

--------------------------------------------------------------------------  
-- filename: conv3x3.vhd 
-- author:  Tony Nelson 
-- date:  12/25/99 
-- 
-- detail:  2D convolution operator with 3x3 size kernel, selectable in  
--   conv_3x3_pkg in the K constant. 
-- 
-- limits:  none 
--------------------------------------------------------------- ------------ 
 
library IEEE; 
use IEEE.std_logic_1164.all;   
use IEEE.numeric_std.all; 
 
package conv_3x3_pkg is 
 -- the constants kx defines the kernel to be used in the convolution operation  
 -- the kx value may be in the range -128<kx<128 
 constant k0 : std_logic_vector(7 downto 0):=std_logic_vector(to_signed(1,8));  
 constant k1 : std_logic_vector(7 downto 0):=std_logic_vector(to_signed(2,8));  
 constant k2 : std_logic_vector(7 downto 0):=std_logic_vector(to_signed(1,8));  
 constant k3 : std_logic_vector(7 do wnto 0):=std_logic_vector(to_signed(2,8));  
 constant k4 : std_logic_vector(7 downto 0):=std_logic_vector(to_signed(9,8));  
 constant k5 : std_logic_vector(7 downto 0):=std_logic_vector(to_signed(2,8));  
 constant k6 : std_logic_vector(7 downto 0):=std_logic_ vector(to_signed(1,8)); 
 constant k7 : std_logic_vector(7 downto 0):=std_logic_vector(to_signed(2,8));  
 constant k8 : std_logic_vector(7 downto 0):=std_logic_vector(to_signed(1,8));  
   
 constant vwidth : integer := 8; 
 constant order  : integer := 1; 
 constant num_cols : integer := 128; 
 constant num_rows : integer := 128; 
end conv_3x3_pkg; 
 
library IEEE; 
use IEEE.std_logic_1164.all;  
use IEEE.std_logic_arith.all; 
use work.conv_3x3_pkg.all;   
 
entity conv_3x3 is 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  D : in std_logic_vector(vwidth-1 downto 0); 
  Dout  : out std_logic_vector((vwidth*2)+1 downto 0);  
  DV : out std_logic 
 ); 
end conv_3x3; 
 
architecture conv_3x3 of conv_3x3 is  
 
 signal w11: std_logic_vector((vwidth -1) downto 0); 
 signal w12: std_logic_vector((vwidth-1) downto 0); 
 signal w13: std_logic_vector((vwidth -1) downto 0); 
 signal w21: std_logic_vector((vwidth -1) downto 0); 
 signal w22: std_logic_vector((vwidth -1) downto 0); 
 signal w23: std_logic_vector((vwidth -1) downto 0); 
 signal w31: std_logic_vector((vwidth -1) downto 0); 
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 signal w32: std_logic_vector((vwidth -1) downto 0); 
 signal w33: std_logic_vector((vwidth -1) downto 0); 
 signal DVw: std_logic;   
 
 component window_3x3 
 generic ( 
  vwidth: integer:=8 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  D : in std_logic_vector(vwidth-1 downto 0); 
  w11 : out std_logic_vector(vwidth-1 downto 0);  
  w12 : out std_logic_vector(vwidth-1 downto 0); 
  w13 : out std_logic_vector(vwidth-1 downto 0); 
  w21 : out std_logic_vector(vwidth-1 downto 0); 
  w22 : out std_logic_vector(vwidth-1 downto 0); 
  w23 : out std_logic_vector(vwidth-1 downto 0); 
  w31 : out std_logic_vector(vwidth-1 downto 0); 
  w32 : out std_logic_vector(vwidth-1 downto 0); 
  w33 : out std_logic_vector(vwidth-1 downto 0); 
  DV : out std_logic:='0' 
 ); 
 end component window_3x3; 
  

-- 16 bits for 8x8 plus 1 bit for sign  
 signal m0: signed((vwidth*2) downto 0):=(others=>'0');  
 signal m1: signed((vwidth*2) downto 0):=(others=>'0');  
 signal m2: signed((vwidth*2) downto 0):=(others=>'0'); 
 signal m3: signed((vwidth*2) downto 0):=(others=>'0');  
 signal m4: signed((vwidth*2) downto 0):=(others=>'0');  
 signal m5: signed((vwidth*2) downto 0):=(others=>'0');  
 signal m6: signed((vwidth*2) downto 0):=(others=>'0') ; 
 signal m7: signed((vwidth*2) downto 0):=(others=>'0');  
 signal m8: signed((vwidth*2) downto 0):=(others=>'0');  
 signal a10: signed((vwidth*2)+1 downto 0):=(others=>'0');  
 signal a11: signed((vwidth*2)+1 downto 0):=(others=>'0');  
 signal a12: signed((vwidth*2)+1 downto 0):=(others=>'0'); 
 signal a13: signed((vwidth*2)+1 downto 0):=(others=>'0');  
 signal a14: signed((vwidth*2)+1 downto 0):=(others=>'0');  
 signal a20: signed((vwidth*2)+2 downto 0):=(others=>'0');  
 signal a21: signed((vwidth*2)+2 downto 0):= (others=>'0'); 
 signal a22: signed((vwidth*2)+2 downto 0):=(others=>'0');  
 signal a30: signed((vwidth*2)+3 downto 0):=(others=>'0');  
 signal a31: signed((vwidth*2)+3 downto 0):=(others=>'0');  
 signal a40: signed((vwidth*2)+4 downto 0):=(others=>'0');     
 signal d0: signed((vwidth*2)+1 downto 0):=(others=>'0');     
 
 component rc_counter 
 generic ( 
  num_cols: integer:=128; 
  num_rows: integer:=128 
  ); 
 port (          
  Clk : in std_logic; 
  RSTn : in std_logic;   
  En : in std_logic; 
  ColPos : out integer; 
  RowPos : out integer 
 );        
 end component rc_counter; 
  
 signal ColPos: integer:=0; 
 signal RowPos: integer:=0;  
 signal ColPos_c: integer:=0; -- corrected positions 
 signal RowPos_c: integer:=0;       
 signal rt1: integer:=0; 
 signal rt2: integer:=0; 
 signal rt3: integer:=0; 
 signal rt4: integer:=0; 
 signal rt5: integer:=0; 
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 signal rt6: integer:=0; 
 signal rt7: integer:=0; 
 signal rt8: integer:=0; 
 signal flag: std_logic:='0'; 
            
  
begin     
 
 window_3x3x: window_3x3 
  generic map ( 
   vwidth => 8 
  ) 
  port map (          
   Clk => Clk, 
   RSTn => RSTn, 
   D => D, 
   w11 => w11, 
   w12 => w12, 
   w13 => w13, 
   w21 => w21, 
   w22 =>  w22, 
   w23 => w23, 
   w31 => w31, 
   w32 => w32, 
   w33 => w33, 
   DV => DVw 
  );   
 
 rc_counterx: rc_counter 
  generic map ( 
  num_cols => 128, 
  num_rows => 128 
  ) 
 port map (          
  Clk  => Clk, 
  RSTn  => RSTn, 
  En  => RSTn, 
  ColPos  => ColPos, 
  RowPos  => RowPos 
 ); 
 
 convproc: process(Clk,RSTn) 
 begin    
  if RSTn = '0' then    
   m0 <= (others=>'0'); 
   m1 <= (others=>'0'); 
   m2 <= (others=>'0'); 
   m3 <= (others=>'0'); 
   m4 <= (others=>'0'); 
   m5 <= (others=>'0'); 
   m6 <= (others=>'0'); 
   m7 <= (others=>'0'); 
   m8 <= (others=>'0'); 
   a10 <= (others=>'0'); 
   a11 <= (others=>'0'); 
   a12 <= (others=>'0'); 
   a13 <= (others=>'0'); 
   a14 <= (others=>'0'); 
   a20 <= (others=>'0'); 
   a21 <= (others=>'0'); 
   a22 <= (others=>'0'); 
   a30 <= (others=>'0'); 
   a31 <= (others=>'0'); 
   a40 <= (others=>'0'); 
   d0 <=  (others=>'0'); 
   Dout <= (others=>'0'); 
   DV <= '0';   
   ColPos_c <= 0; 
   rt1 <= 0; 
   rt2 <= 0; 
   rt3 <= 0; 
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   rt4 <= 0; 
   rt5 <= 0; 
   rt6 <= 0; 
   rt7 <= 0; 
   rt8 <= 0; 
   RowPos_c <= 0; 
   flag <= '0';     
  elsif rising_edge(Clk) then 
   -- counter correction 
   ColPos_c <= ((ColPos-8) mod 128); 
   rt1 <= ((RowPos-1) mod 128);   
   rt2 <= rt1; 
   rt3 <= rt2; 
   rt4 <= rt3; 
   rt5 <= rt4; 
   rt6 <= rt5; 
   rt7 <= rt6; 
   rt8 <= rt7; 
   RowPos_c <= rt8;   
   -- screen edge detection 

if (ColPos_c = num_cols-1) or (RowPos_c = num_rows-1) or (ColPos_c 
= num_cols-2) or (RowPos_c = 0) then 

    Dout <= (others=>'0'); 
   end if;        
   if DVw = '1' then    
   -- window*kernel multipliers 
   -- this could be optimized by using hardware -specified multipliers 
    m0 <= signed('0'&w11)*signed(k0); 
    m1 <= signed('0'&w12)*signed(k1); 
    m2 <= signed('0'&w13)*signed(k2); 
    m3 <= signed('0'&w21)*signed(k3); 
    m4 <= signed('0'&w22)*signed(k4); 
    m5 <= signed('0'&w23)*signed(k5); 
    m6 <= signed('0'&w31)*signed(k6); 
    m7 <= signed('0'&w32)*signed(k7); 
    m8 <= signed('0'&w33)*signed(k8); 
    a10 <= (m0(16)&m0)+m1; 
    a11 <= (m2(16)&m2)+m3; 
    a12 <= (m4(16)&m4)+m5; 
    a13 <= (m6(16)&m6)+m7; 
    a14 <= m8(16)&m8; 
    a20 <= (a10(17)&a10)+a11; 
    a21 <= (a12(17)&a12)+a13; 
    a22 <= a14(17)&a14; 
    a30 <= (a20(18)&a20)+a21; 
    a31 <= a22(18)&a22; 
    a40 <= (a30(19)&a30)+a31;   
    d0 <=  a40(20 downto 3);    

if (ColPos_c = num_cols-1) or (RowPos_c = num_rows-1) or 
(ColPos_c = num_cols-2) or (RowPos_c = 0) then 

     Dout <= (others=>'0'); 
    else 
     Dout <= std_logic_vector(d0); 
    end if;        
   end if;  
   if ColPos >= 8 and RowPos >= 1 then  
    DV <= '1';       
   
    flag <= '1'; 
   elsif flag = '1' then 
    DV <= '1'; 
   else 
    DV <= '0'; 
   end if;         
  
  end if; 
 end process; 
 
end conv_3x3;  
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