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CHAPTERI

INTRODUCTION

Recently, Field Programmable Gate Array (FPGA) technology has become a viable target for the
implementation of algorithms suited to video image processing applications. The unique architecture of the
FPGA has allowed the technology to be used in many such applications encompassing all aspects of video
image processing [1,2]. The goal of thisthesisisto develop FPGA realizations of three such algorithms on
two FPGA architectures.

Asimage sizes and bit depths grow larger, software has become less useful in the video processing
realm. Real-time systems such as those that are the target of this project are required for the high speeds
needed in processing video. In addition, a common problem is dealing with the large amount of data
captured using satellites and ground-based detection systems. DSP systems are being employed to
selectively reduce the amount of data to process, ensuring that only relevant data is passed on to a human
analyst. Eventually, it is expected that most video processing can and will take place in DSP systems, with
little human interaction. This is obviously advantageous, since human data analysts are expensive and

perhaps not entirely accurate.

Platforms Used for DSP Design

There are several different choices a designer has when implementing a DSP system of any sort.
Hardware, of course, offers much greater speed than a software implementation, but one must consider the
increase in development time inherent in creating a hardware design. Most software designers are familiar
with C, but in order to develop a hardware system, one must either learn a hardware design language such
as VHDL or Verilog, or use a software-to-hardware conversion scheme, such as Streams-C [3], which
converts C code to VHDL, or MATCH [4], which converts MATLAB code to VHDL. While the goals of
such conversion schemes are admirable, they are currently in development and surely not suited to high-
speed applications such as video processing. Ptolemy [5] is a system that allows modeling, design, and

simulation of embedded systems. Ptolemy provides software synthesis from models. While this type of



system may be adominant design platformin the future, it is still under much development, meaning that it
may not be a viable design choice for some time. A discussion on the various viable options for DSP

system design is found below.

PC Digital Signal Processing Programs

Signal processing programs used on a PC allow for rapid development of algorithms, as well as
equally rapid debug and test capahilities. It is common for many hardware designers to use some sort of
PC programming environment to implement a design to verify functionality prior to a lengthy hardware
design.

MATLAB [6] is such an environment. Although it was created for manipulating matrices in
general, it is well suited to some image processing applications. MATLAB treats an image as a matrix,
allowing a designer to develop optimized matrix operations implementing an algorithm. However, if the
eventual goal is a hardware device, the algorithms are instead often written to operate similarly to the
proposed hardware system, which results in an even slower algorithm.

Systems such as IDL [7] and its graphical component ENVI [8] are more specifically geared to
image processing applications, and include many pre-written algorithms commonly used to processimages.
However, even specialized image processing programs running on PCs cannot adequately process large
amounts of high-resolution streaming data, since PC processors are made to be for general use. Further

optimization must take place on a hardware device.

Application Specific Integrated Circuits
Application Specific Integrated Circuits (ASICs) represent atechnology in which engineers create
a fixed hardware design using a variety of tools. Once a design has been programmed onto an ASIC, it
cannot be changed. Since these chips represent true, custom hardware, highly optimized, parallel
algorithms are possible. However, except in high-volume commercial applications, ASICs are often
considered too costly for many designs. In addition, if an error exists in the hardware design and is not

discovered before product shipment, it cannot be corrected without a very costly product recall.



Dedicated Digital Signal Processors

Digital Signal Processors (DSPs) such as those available from Texas Instruments [9] are a class of
hardware devices that fall somewhere between an ASIC and a PC in terms of performance and design
complexity. They can be programmed with either assembly code or the C programming language, which is
one of the platform’s distinct advantages. Hardware design knowledge is still required, but the learning
curve is significantly lower than some other design choices, since many engineers have knowledge of C
prior to exposure to DSP systems. However, agorithms designed for a DSP cannot be highly parallel
without using multiple DSPs. Algorithm performance is certainly higher than on a PC, but in some cases,
ASIC or FPGA systems are the only choice for a design. Still, DSPs are a very common and efficient
method of processing real-time data [10].

One area where DSPs are particularly useful is the design of floating point systems. On ASICs
and FPGAs, floating-point operations are rather difficult to implement. For the scope of this project, thisis
not an issue because all images consist of only integer data.

Recent advances in DSP technology have resulted in very high-speed algorithm implementations
[11]. While the advantages of ASICs and FPGAs are still applicable, this new generation of DSPs has
made some engineers reconsider FPGA development. Still, as new DSPs arrive to the market, so do new
FPGAS, and it is expected that the two architectures will have similarly increasing performance for each

new generation of processors.

Field Programmable Gate Arrays
Field Programmable Gate Arrays (FPGAS) represent reconfigurable computing technology [12],
which isin some ways ideally suited for video processing. Reconfigurable computers are processors which
can be programmed with a design, and then reprogrammed (or reconfigured) with virtually limitless
designs as the designer’ s needs change. FPGAs generally consist of a system of logic blocks (usually look
up tables and flip-flops) and some amount of Random Access Memory (RAM), al wired together using a
vast array of interconnects. All of the logic in an FPGA can be rewired, or reconfigured, with a different

design as often as the designer likes. This type of architecture allows a large variety of logic designs



dependent on the processor’ s resources), which can be interchanged for a new design as soon as the device
can be reprogrammed.

Today, FPGAs can be developed to implement parallel design methodology, which is not possible
in dedicated DSP designs. ASIC design methods can be used for FPGA design, alowing the designer to
implement designs at gate level. However, usually engineers use a hardware language such as VHDL or
Verilog, which allows for a design methodology similar to software design. This software view of
hardware design allows for alower overall support cost and design abstraction.

The algorithms presented in this thesis were written for two FPGA architectures. The advantages
of these devices have proven themselves for this type of design. In addition, the author has previous
experience with FPGA development. The goa of this thesis is for real-time (30 frames per second)
processing of grayscale image data, agoal in which an FPGA system using parallel algorithms should have

little difficultly achieving.

FPGA Design Options

In order to create an FPGA design, a designer has several options for algorithm implementation.
While gate-level design can result in optimized designs, the learning curve is considered prohibitory for
most engineers, and the knowledge is not portable across FPGA architectures. The following text discusses

several high-level hardware design languages (HDLs) in which FPGA algorithms may be designed.

Verilog HDL
Originally intended as a simulation language, Verilog HDL represents a formerly proprietary
hardware design language. Currently Verilog can be used for synthesis of hardware designs and is
supported in a wide variety of software tools. It is similar to the other HDLs, but its adoption rate is
decreasing in favor of the more open standard of VHDL. Still, many designers favor Verilog over VHDL
for hardware design, and some design departments use only Verilog. Therefore, as a hardware designer, it

isimportant to at least be aware of Verilog.



Altera Hardware Design Language
AlteraHardware Design Language (AHDL) is proprietary, and is only supported in Altera-specific
development tools. This may be seen as a drawback, but since AHDL is proprietary, its use can also result
in more efficient hardware design, when code portability is not anissue. In typical design environments,
different FPGA architectures are used for different designs, meaning that time spent learning AHDL may

be wasted if a Xilinx FPGA is later chosen.

VHSIC Hardware Design Language

In recent years, VHSIC (Very High Speed Integrated Circuit) Hardware Design Language
(VHDL) has become a sort of industry standard for high-level hardware design. Since it is an open |EEE
standard, it is supported by a large variety of design tools and is quite interchangeable (when used
generically) between different vendors' tools. It also supports inclusion of technology-specific modules for
most efficient synthesis to FPGAS.

Thefirst version of VHDL, |EEE 1076-87, appeared in 1987 and has since undergone an update in
1993, appropriately titled IEEE 1076-93. 1t is a high-level language similar to the computer programming
language Ada, which is intended to support the design, verification, synthesis and testing of hardware

designs.

Design Approach

Prior to any hardware design, the author chose to create software versions of the algorithms in
MATLAB. Using MATLAB procedural routines to operate on images represented as matrix data, these
software algorithms were designed to resemble the hardware algorithms as closely as possible. While a
hardware system and a matrix-manipulating software program are fundamentally different, they can
produce identical results, provided that care is taken in development. This approach was taken because it
speeds understanding of the algorithm design. In addition, this approach facilitates comparison of the
software and synthesized hardware algorithm outputs, allowing detailed error calculations.

This project was targeted for FPGA systems for two reasons. One, the author had some previous

experience in FPGA implementations of video processing algorithms [13, 14]. Two, FPGAS represent a



new direction for DSP systems, and there is much original work to be done in terms of optimized
algorithms for thistype of system.

One of the initial goals of this project was to implement designs for two different FPGA systems:
the Altera FLEX 10K 100 [15] and the Xilinx Virtex 300 [16]. The rationale behind this decision was that
the Altera chip represents an older generation of FPGA technology, but it is also very commonly used. The
Altera chips have been used often in many design environments, and are well understood. The Xilinx
Virtex is a new technology, which has a larger gate count and higher possible clock speed than the Altera
chip. On the other hand, the Xilinx chip is not as well understood and supported, since it was only recently
introduced to the market. For example, more parameterized modules for high-speed mathematical
operations are available for the Altera FLEX series than are available for the Xilinx Virtex series. Thiscan
certainly affect a design’s success, so if specialized functions are needed, the designer must first determine
whether or not they are available for the chosen device.

VHDL was chosen as atarget design language because of familiarity and its wide-ranging support,
both in terms of software development tools and vendor support. Today, more engineers are learning
VHDL than Verilog, which is another compelling reason for its use in this project.

The design flow for this project is represented in Figure 1. This shows the interaction between the
VHDL design environment and the FPGA-specific tools. In the first state, a design is created in VHDL.
Next, the code' s syntax is verified and the design is synthesized, or compiled, into alibrary. The designis
next simulated to check its functionality. Stimulating the signals in the design and viewing the output
waveforms in the VHDL simulator alows the designer to determine proper functionality of the design.
Next, the design is processed with vendor-specific place-and-route tools and mapped onto a specific FPGA
in software. This allows the engineer to view a floorplan and hierarchical view of the design, which can
help verifying a proper mapping procedure. Next, the design is verified for proper functionality once again.
This step is important because it assures that the design is correct in its translation from VHDL to gate-
level. If thisisfound to be correct, the design can then be programmed onto the specified FPGA.

For this project, the author had access to two FPGAS, each from a different company and each

with different design tools: the Altera FLEX 10K 100 and the Xilinx Virtex XCV 300.
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Figure 1: Hardware Design Flow

Altera FLEX 10K100

Due to architecture differences, the Altera FLEX 10K series is termed a Programmable Logic
Device (PLD) and is not officially considered to be an FPGA. However for the purpose of simplicity it is
commonly referred to as an FPGA, and will be so named in this document.

The FLEX 10K100 isa CMOS SRAM-based device, consisting of an embedded array for memory
and certain logic functions and a logic array for general logic implementation. The embedded array is
constructed of Embedded Array Blocks (EABSs). The EABs can be used to implement limited memories
such as First In First Out (FIFO) or RAM units. The FLEX 10K 100 has 12 EABs, each with 2048 bits for
use in adesign.

The logic array in the FLEX 10K series is built from Logic Array Blocks (LABs). Each LAB
consists of 8 Logic Elements (LES), each of which is constructed of a 4-input Look Up Table (LUT) and a
flip-flop. Each LAB can be considered to represent 96 logic gates. The FLEX 10K100 has 624 LABS,
accounting for most of its 100,000 gates (the rest are accounted for in memory). Figure 2 shows the basic
unitsina FLEX 10K LE.

Input/Output functionality on the FLEX 10K seriesis handled in the Input/Output Blocks (10Bs).
Each OB has one flip-flop to register either input or output data. However for bi-directional signals, thisis
an inefficient design, since two flip -flops are needed and only one is available in the IO B. The second flip-
flop must be implemented in the logic array, resulting in an overall lower design [15,17]. Figure 3 shows

afloorplan view of the Altera FLEX 10K architecture, highlighting the elements discussed.
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Figure 3: Altera FLEX 10K Floorplan Showing Elements Discussed

Xilinx Virtex XCV 300

The Virtex is the most recent family of FPGAs from Xilinx. The previous generation, the Xilinx
4K series, was one of the most commonly used FPGA families, and can be conside red comparable to the
Altera 10K seriesin many ways. The Virtex takes many of the features from the 4K series and combines
them with several new features.

Technically, the Xilinx FPGAs are SRAM devices. This meansthat the chips must be configured
after device power up. Configurable Logic Blocks (CLBs) are the primary logic elements in the Virtex
FPGA. Each CLB is comprised of two dlices, each of which contains two Look Up Tables (LUTs) and two

D flip-flops. Each LUT can be used as one 32x1- or one 16x2-bit synchronous RAM. The Virtex XCV300



has a 32x48 array of CLBs, resulting in a total of 6912 logic cells and 322,970 gates. Figure 4, below,
shows one diice of a Xilinx Virtex CLB.

The Virtex series has a system of Block RAM, which alows the use of the chip for limited RAM
operations such as FIFO implementations or basic RAM usage. The XCV300 has 65,536 hits of Block
RAM. Connecting the CLBsis avast web of interconnects.

Input and output capabilities are handled by Input/Output Blocks (IOBs). TheVirtex XCV 300 has

316 10Bs. Figure 5 shows atypical Virtex floorplan and the elements common to all Virtex parts[16,17].
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Figure 5: Xilinx Virtex Floorplan Showing Elements Discussed

Performance Compari son
The Xilinx Virtex FPGA is of a newer generation than the Altera FLEX 10K; therefore we expect
higher performance. However, since the two architectures have different technology, some designs may
perform better on one chip than the other, and vice ver sa. While the detailed analysis of this is not the
focus of this paper, later chapters showing the project results compare the two FPGAS' performance for the
same algorithms. This will yield a better understanding of the advantages of each FPGA, which wi |l be

quite useful in later projects using the same devices.
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CHAPTERII

PROJECT ALGORITHMS

This project was focused on developing hardware implementations of three popular image

processing algorithms for use in an FPGA -based video processing system. This chapter discusses these

algorithms and their software implementationsin MATLAB.

Introduction to Windowing Operators

In image processing, several algorithms belong to a category called windowing operators.
Windowing operators use a window, or neighborhood of pixels, to calculate their output. For example,
windowing operator may perform an operation like finding the average of all pixelsin the neighborhood of
apixel. The pixel around which the window is found is called the origin. Figure 6, below, showsa 3 by 3

pixel window and the corresponding origin.

origin

Figure 6: Pixel Window and Origin

The work for this project is based on the usage of image processing algorithms using these pixel
windows to calculate their output. Although a pixel window may be of any size and shape, a square 3x3
size was chosen for this application because it is large enough to work properly and small enough to

implement efficiently on hardware.

11



Rank Order Filter

The rank order filter is a particularly common agori thm in image processing systems. It is a
nonlinear filter, so while it is easy to develop, it is difficult to understand its properties. It offers several
useful effects, such as smoothing and noise removal. The median filter, which is a rank order filt er, is

especially useful in noise removal [18].

Algorithm
This filter works by analyzing a neighborhood of pixels around an origin pixel, for every valid
pixel in animage. Often, a3x3 area, or window, of pixelsisused to calculateits output. For every pixel in
an image, the window of neighboring pixels is found. Then the pixel values are sorted in ascending, or
rank, order. Next, the pixel in the output image corresponding to the origin pixel in the input image is
replaced with the value specifi ed by the filter order. The rank order filter can be represented by the
following lines of pseudo-code:
order =5 (this can be any nunber from1l -> # pixels in the w ndow)
for loop x —> nunber of rows
for loop y —> nunber of colums
wi ndow_vector = vector consisting of current w ndow pixels
sorted_list = sort(w ndow vector)
out put _i mage(x,y) = sorted_list(order)
end
end.
Figure 7 shows an example of this algorithm for a median filter (order 5), afilter that is quite

useful in salt -and-pepper noise filtering [19]. Since the rank order filter uses no arithmetic, a mathematical

description is difficult to represent efficiently.

12
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Figure 7: Graphic Depiction of Rank Order Filter Operation

As s evident in the above figure, it is possible to use any or der up to the number of pixelsin the
window. Therefore a rank order filter using a 3x3 window has 9 possible orders and a rank order filter
using a 5x5 window has 25 possible orders. No matter what the window size used in a particular rank order
filter, using the middle value in the sorted list will aways result in a median filter. Similarly, using the
maximum and minimum values in the sorted list always resultsin the flat dilation and erosion of the image,
respectively. These two operations are consdered part of the morphological operations, and are discussed

in the next sub-chapter.

MATLAB Implementation

The PC software program MATLAB was used to develop an initial version of the rank order filter,
so that its operation could be verified and its results could be compared to the hardware version. While
MATLAB offersfeatures that speed up operations on matrices like images, custom operations were used so
that the software would closely mimic the functionality of the proposed hardware implementatio n.

The MATLAB implementation of the rank order filter is called ro_filt.m and isfound in Appendix
A. It works by using for loops to simulate a moving window of pixel neighborhoods. For every movement
of the window, the algorithm creates a list of the pixel values in ascending order. From this list, the
algorithm picks a specific pixel. The pixel that is chosen from the list is specified in the order input. The
output of the program is an image consisting of the output pixels of the algorithm. Since a full 3x3

neighborhood is used in this implementation, the window must have gotten to the second line of the input

13



image in order to create an output. The result of thisisthat some ‘edge effects’ occur in the output image,
meaning that there is dways an invalid strip along the borders of the output image. This is true for all
algorithms using the windowing approach to image processing. Figure 8 shows some example output
images for a given input image using ro_filt.m. From this figure it is easy to 0 bserve the effect that the

rank order filter has on an image, given the various algorithm orders used.

I nput | mage Filtered I mage, Order = 2
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Figure 8: Example Images Obtained Using ro_filt.m

Morphological Operators

The term morphological image processing refers to a class of agorithm that is interested in the
geometric structure of an image. Morphology can be used on binary and grayscale images, and is useful in
many areas of image processing, such as skeletonization, edge detection, restoration, and texture analysis.

A morphological operator uses a structuring element to process an image. We usually think of a
structuring element as a window passing over an image, which is similar to the pixel window used in the
rank order filter. Similarly, the structuring element can be of any size, bu t 3x3 and 5x5 sizes are common.
When the structuring element passes over an element in the image, either the structuring element fits or

does not fit. At the places where the structuring element fits, we achieve a resultant image that represents

14



the structure of the image [20]. Figure 9 demonstrates the concept of a structuring element fitting and not

fitting inside an image object.

Structuring Element
Fits

Structuring Element
Object in Image Does Not Fit

Figure 9: Concept of Structuring Element Fitting and Not Fitting

Algorithm
There are two fundamental operations in mor phology: erosion and dilation [20]. It iscommon to
think of erosion as shrinking (eroding) an object in an image. Dilation does the opposite; it grows the
image object. Both of these concepts depend on the structuring element and how it fits within the object.
For example, if a binary image is eroded, the resultant image is one where there is a foreground pixel for
every origin pixel where its surrounding structuring element -sized fit within the object. The output of a
dilation operationisaforeground pixel for every point in the structuring element at a point where the origin
fits within an image object [20]. Figure 10 shows a simple binary image and its erosion and dilation, using
a 3x3 sized structuring element consisting of al ones. From [20], Erosion and dilation can be represented
mathematically by the following formulas:
Eroson: AgB = {x: B+ x< A} and
Dilation: AAB=E{A+ b: bl B},
where A isthe input image and B is the structuring element.
Grayscale morphology is more powerful and more difficult to understand. The concepts are the
same, but instead of the structuring element fitting inside atwo -dimensional object, it isthought to either fit
or not fit within a three-dimensiona object. Grayscale morphology aso allows the use of grayscae

structuring elements.  Binary structuring elements are termed flat structuring elements in grayscale
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morphology. The combination of grayscale images and grayscale structuring elements can be quite
powerful [20].

One of the strongest features of morphological image processing extends from the fact that the
basic operators, performed in different orders, can yield many different, useful results. For example, if the
output of an erosion operation is dilated, the resulting operation is called an opening. The dual of opening,
called closing, is a dilation followed by an erosion. These two secondary morphological operations can be
useful in image restoration, and their iterative use can yield further interesting results, such as
skeletonization and granulometries of an input image. Figure 11 shows an example of binary opening and
closing on the same input image as was used in the erosior/dilation example, again using a structuring
element of size 3x3 consisting of all ones.

Grayscale erosion and dilation can be achieved by using a rank order filter as well. Erosion
corresponds to a rank order filter of minimum order, and dilation corresponds to a rank order filter of
maximum order. The reason for thisisthat the result of aminimum order ran k order filter isthe minimum
value in the pixel neighborhood, which is exactly what an erosion operation is doing. This also holds true
for a maximum order rank order filter and a dilation operation. However, the rank order filter only works
as amorphological operation with aflat structuring element. This is because the rank order filter window
works as a sort of structuring element consisting of all ones. $till, this is a powerful feature, since

grayscale morphology using flat structuring elements a ccounts for the most common usage of morphology.
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Figure 10: Binary Erosion and Dilation on a Simple Binary Image
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Figure 11: Binary Opening and Closing on a Simple Binary Image
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MATLAB Implementation

In order to garner afull understanding of the morph ological operation, the algorithms were written
using MATLAB prior to any hardware development. Initially, only binary versions of the algorithms were
written, because it was easier to understand the effect of morphology in the binary output images thani n
grayscale images. However, since a grayscale implementation on hardware was desired, the algorithms had
to be re-written to facilitate grayscale morphology. The MATLAB implementations of erosion and dilation
are called aip_erode_gs.m and aip_dilate_gs. m, respectively. The source code for these agorithms is
shown in Appendix A. Figures 12 and 13 show the output of an erosion, a dilation, an opening, and a

closing as applied on a grayscale input image using a flat 3x3 structuring element.
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Figure 12: Grayscale Erosion and Dilation on an Input Image
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Figure 13: Grayscale Opening and Closing on an Input Image

From the figures above, the effects of morphological operations are apparent. In a grayscale
image, erosion tends to grow darker areas, and dil ation tends to grow lighter areas. Opening and closing
each tend to emphasize certain features in the image, while de -emphasizing others. lteratively, the
morphological operations can be used to pick out specific features in an image, such as horizontal or

vertical lines[20].

Convolution
Convolution is another commonly used algorithm in DSP systems. It isfrom aclass of agorithms
caled spatia filters. Spatial filters use a wide variety of masks, also known as kernels, to caculate
different results, depending on the function desired. For example, certain masks yield smoothing, while

othersyield low pass filtering or edge detection.
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Algorithm
The convolution algorithm can be calculated in the following manner. For each input pixel
window, the values in that window are multiplied by the convolution mask. Next, those results are added
together and divided by the number of pixelsin the window. Thisvalueisthe output for the origin pixel of

the output image for that position. Mathematically, thisis represented using the following equation [21]:

o ¥ o

Yo = Ay, A,y Alk koK, - K, - k),
where A isthe input image and k is the convolution kernel.

The input pixel window is always the same size as the convolution mask. The output pixel is
rounded to the nearest integer. As an example, Figure 14 shows an input pixel window, the convolution
mask, and the resulting output. This convolution mask in this example is often used as a nhoise -cleaning
filter [21].

Theresultsfor this algorithm carried over an entire input image will result in an output image with
reduced salt-and-pepper noise. An important aspect of the convolution algorithm is that it supports a

virtually infinite variety of masks, each with its own feature. This flexibility alows for many  powerful

uses.
Input Window: Convolution M ask: Output Pixd:
50 10 20 1 1 1 _ _ _
30 70 90 1 2 1 > _ 58| _
40 60 80 1 1 1 _ _ —

Convolution Output = (50*1 + 10*1 +20*1 + 30*1 + 70*2 + 90*1 + 40*1 + 60* 1 + 80* 1)/9 = 57.7778 => 58

Figure 14: Convolution Algorithm Example

MATLAB Implementation
MATLAB was again used to produce a software version of the algorithm. It is called conv_3x3.m
and is found in Appendix A. The MATLAB version of this algorithm performs con volution on an input

image using a 3x3-sized kernel, which can be modified as the user wishes. Figure 16 shows some
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examples of this algorithm on an input image, with the kernels K1, K2, and K3, as shown below in Figure

15.

1 2 1 1 1 1 -1 -1 -1

2 4 2 1 -7 1 -1 9 -1

1 2 1 1 1 1 -1 -1 -1
K1 K2 K3

Figure 15: Kernels Used to Compute the Images in Figure 16
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Figure 16: Grayscale Convolution

The figures above demonstrate the wide variety of feature enhancement possible with the
convolution operation. It is important to note that these images are not scaled. Often an image t hat has
been convolved will have a smaller pixel value variance than the input image. For example, in Figure 16 it

is obvious that the convolution operation using the K3 kernel results in a mostly black image. Scaling
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would bring the brightest pointsin the image (around 30,30) up to a value of 256, and scale the rest of the

image likewise. Thisresultsin an image that may have more discernable features.
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CHAPTER Il

PERTINENT NON-ALGORITHM WORK

Prior to a full hardware realization of the algorithms d iscussed in Chapter 11, some initial non -
algorithm work was necessary. Thiswork included an overall VHDL hierarchy concept, the development
of a moving window unit for real -time image data, a VHDL test bench for testing purposes, MATLAB

interfaces for file input/output, and an analysis of the project data.

VHDL Hierarchy

Most hardware designers find it convenient to develop a hierarchy prior to any VHDL
development. This is done to facilitate code reusability and to develop a common hierarchy. One of the
main concepts of this project has been the development of VHDL code that is largely device independent,
meaning that most of the code can be compiled for any FPGA architecture with little difficultly. The use of
hardware-specific arithmetic and memor y units has been limited to achieve nearly seamless code
interchangeability. Essentialy, a convolution algorithm written in VHDL with this approach should be
easy to use on both Altera and Xilinx architectures.

In fact, for these designs, the only hardware-specific VHDL code lies within the FIFO memory
units found within the 3x3 window generator, which is discussed in the second part of this chapter. Use of
port maps in VHDL allow the designer to connect VHDL signals from the current level of hierarchy t o
another, separate VHDL architecture. This means that an algorithm can reference separate VHDL

algorithms, thereby allowing code reuse. Figure 17 shows an example of how thisis donein VHDL.
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entity Algorithm is
port (...);
end Al gorithm;

architecture A gorithmA_arch of AlgorithmA is
conmponent SubAl gori t hmA
port (...);
end conponent SubAl gorit hmA;
conmponent W ndowCener at or
port (...);
end conponent W ndowGener at or ;
conmponent RowCol umCount er
port (...);
end conponent RowCol ummCount er ;
begi n

SubAl gorit hmAMap: SubAl gorit hmA
port map (...);

W ndowGener at or Map: W ndowGener at or
port map (...);

RowCol utmCount er Map: RowCol utmCount er
port map (...);

-- algorithm process

end Al gorithmA_arch;

Figure 17: VHDL Component Mapping

3x3 Moving Window Archi tecture

In order to implement a moving window system in VHDL, a design was devised that took
advantage of certain features of FPGAs. FPGAs generally handle flip -flops quite easily, but instantiation
of memory on chip is more difficult. Still, compared wi th the other option, off-chip memory, the choice
using on-chip memory was clear.

It was determined that the output of the architecture should be vectors for pixels in the window,
along with adata-valid signal, which is used to inform an algorithm using  the window generation unit asto
when the data is ready for processing.

Since it was deemed necessary to achieve maximum performance in arelatively small space, FIFO
units specific to the target FPGA were used. Importantly though, to the agorithms usi ng the window
generation architecture, the output of the Altera and Xilinx window generation units is exactly the same.

For example, for a given clock rate, the Altera unit’s data -valid signal will change to alogic value of 1 at
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exactly the same time as the comparable Xilinx unit’s data -valid signal. This useful feature allows
algorithm interchangeability between the two architectures, which helped significantly cut down algorithm
development time.

A 3x3 window size was chosen because it was small enough to be easly fit onto the target
FPGAS, and is considered large enough to be effective for most commonly used image sizes. With larger
window sizes, more FIFOs and flip-flops must be used, which increases the FPGA resources used
significantly. Figure 18 shows a graphic representation of the FIFO and flip -flop architecture used for this
design for a given output pixel window.

Appendix B shows the VHDL source code for the window generation unit. The Altera version is
called window_3x3.vhd and the Xilinx v ersion is called window_3x3_x.vhd. Not included are the codes

for each FIFO entity, which were generated by the vendor tools.

Output 33 Window | Wt | Wiz | wi3
w21 [ w22 | w23
w31 [ w32 | w33
Dataln - — — —
r1 l 2 l 13 l FIFOA l r4 l 5 l FIFOB
will wil2 w13 w21 w22 w23 w3l w32 w33

Figure 18: Architecture of the Window Generator

VHDL Test Bench Processes

In order to examine the VHDL code for correct functionality, VHDL tools provide a feature called
simulation. Simulation takes the VHDL code and simulates how it would work in hardware. In order to do
this, the designer must provide to the simulator valid inputs to produce expected outputs.

An efficient and common method of simulating VHDL code is through the use of a special type of
VHDL code called atest bench. Test benches effectively surround the VHDL code the designer wishes to

simulate and also provide stimulus to the tested entity.
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A test bench for an algorithmis responsible in stimulating essential input signalsto that algorithm.
Since the designs used in this approach are all synchronous, a clock signal must be stimulated. In addition,
all of the algorithms designed provide a reset functi onality, which alows the agorithms to be cleared at
any point. In addition, since all the algorithms in this project take input images and produce some kind of
output image, some method of data input and output must be provided for functional simulation .

When one wishes to process images with a VHDL agorithm, they must first create a test bench
that can read in the file containing this data. If one wishes to view the processed image, another feature
must be included into the test bench to allow file wr iting. These features are key to the usability of the test
benches used in the project, and are quite useful when paired with a program such as MATLAB, which
provides efficient image representation and viewing capabilities. This functionality isdiscusse d in the next
section of this chapter. An example test bench for the ro_filt_3x3.vhd file, appropriately named

ro_filt_3x3_TB.vhd, isfound in Appendix B.

MATLAB —To-— VHDL File IO Routines

In order to process real image data in VHDL simulations, it is necessary to create a method of
transferring images in a standard format, a bitmap for example, into a file that the VHDL file read routine
can understand. Since VHDL read/write routines operate easily with files consisting of a new word of data
on each line, this method was chosen. MATLAB was used to implement this functionality because it is
quite efficient in manipulating matrix data, such asimages.

A MATLAB m-file called m2vhdl.m was created to take an input file in the bitmap format and
convert it to afile with a new word of data on every line. Data in this format could then be read into the
VHDL test bench by using standard VHDL text input/output functions. After this data has been run
through the simulator (effectively, processed by the algorith m), the output data of the algorithm is written
by the test bench into another file formatted in the same way.

Next, another MATLAB m-file was composed to read that data and convert it back into a matrix
in MATLAB. Thisroutine, called vhdizm.m, allows analysis and comparison of VHDL -processed images

with MATLAB-processed images. This analysis is crucial in determining proper functionality of the
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algorithms and is also useful in determining whether hardware design compromises produce invalid results.

This aspect of the project is discussed in greater detail in the following chapter.

Project Dataset

The data used for this project consisted of 8 hit grayscale image data of size 128 by 128. For any
real-time image processing system, the data size used gr eatly affects the project’s performance on
hardware, as well as the number of resources used on that hardware. Fortunately, the VHDL code for this
project iswritten in such away that facilitates different data bit widths and resolution quite easily. Th iscan
be done by replacing the FIFO elements in the window_3x3.vhd design and changing the wwidth generic in
al of the VHDL designs. Some code needs to be hand coded, so inclusion of different data sizes will

reguire some thought and a small amount of r edesign.
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CHAPTER IV

VHDL ALGORITHMS

The focus of this project is the actual implementation of the proposed algorithms on target FPGA

hardware. As discussed in previous chapters, this was accomplished by composing the algorithms in the

VHDL language and synthesizing the algorithms for the FPGAs. This chapter discusses the hardware

design specifics for each algorithm.

Rank Order Filter

The rank order filter was the first algorithm to use the window_3x3 pixel window generator.
Since its operation is f airly simple, it was an ideal choice. As discussed above, the rank order filter must
first sort the pixel values in a window in ascending (or rank) order. The most efficient method
accomplishing this is with a system of hardware compare/sort units, which allow for sorting a window of
nine pixelsinto an ordered list for use in the rank order filter.

The author implemented the structure found in Figure 19. This system results in a sorted list after
a latency of 14 clock cycles. Since the design is pipel ined, after the initial latency the system produces a
valid sorted list on every clock cycle. The VHDL agorithm which implements this design, sort_3x3.vhd,
is really just a series of registers and compares, as is shown if Figure 19. Not al levels of th e sorting
algorithm are shown to conserve space. Sort_3x3.vhd is found in Appendix B.

Every rxx box is aregister and every cxx box is a compare unit, consisting of a smple decision.
This design is accomplished quite simply in VHDL by using the followin g if/else statement:
if wxl < wx2 then

cxl L <= wx1;

cxl H <= wx2;
el se

cxl L <= wx2;

cx1l H <= wx1;
end if;
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Figure 19: Hardware Design for Sorting Algorithm

After the sorted list is generated with the VHDL entity sort_3x3, the algorithm describing the rank
order filter functionality, ro_filt_3x3.vhd, can operate on the list to produce its output. As is discussed
above, the rank order filter outputs a pixel value in the origin location as specified by the rank of the filter.

In order to do this properly, a counter must be used to tell the output data-valid signal when to
changeto its‘on’ state. Sinceit is desired that the output image be the same size as the input image, and
use of the window generator effectively reduces the amount of valid output data, borders with zero value
pixels must be place around the image. In order to do this properly, the counters are used to tell the
algorithm when the borders start. A VHDL counter was written to count pixel movement as the data
streams into the entity. Since images are two-dimensional data, two counters were needed: one to count

rows and one to count columnsin the image. The VHDL entity that implements this functionality is called
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rc_counter.vhd and is found in Appendix B. Sinceit isaseparate VHDL entity, this counter was usable to

later algorithms, where this functionality was also needed.

In order for the rank order filter to work properly, all three of these VHDL entities must be

instantiated within the algorithm itself. Thisis donewith standard VHDL component statements and port

maps. Figure 20 shows the VHDL design structure used for this algorithm.

entity ro_filt_3x3 is
port (...);
end ro_filt_3x3;
architecture ro_filt_3x3_arch of ro_filt_3x3 is
conponent sort_3x3
port (...);
end conponent sort_3x3;
conponent w ndow_3x3
port (...);
end conponent wi ndow_3x3;
conmponent rc_counter
port (...);
end conponent rc_counter;
begi n

sort_3x3x : sort_3x3
port map (...);

wi ndow_3x3x : w ndow_3x3
port map (...);

rc_counterx : rc_counter
port map (...);

-- algorithm process

end ro_filt_3x3_arch;

Ro_filt_3x3 interprets and controls signals from all three entities to achieve a cohesive design,

Figure 20: VHDL Algorithm Structure

the

result of which is avalid rank order filter. Order is specified with a VHDL generic, and is presently only

modifiable pre-synthesis.
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Comparison of VHDL and MATLAB Algorithms

Usage of the vhdl2m.m file converter alows for analysis of the results of the VHDL simulation of

agorithms. This is particularly useful because it alows for comparison between hardware (e.g. VHDL)

agorithms and software (e.g. MATLAB) agorithms. This is exciting because it allows the designer to a)

verify a hardware alg orithm’s accuracy and b) decide whether or not to implement design tradeoffs based

on output validity.

Figures 21 and 22 show comparisons of the VHDL and MATLAB agorithms for two orders.

Also shown are error plots and mesh plots, which show a three -dimensional view of the error. In these

cases it is obvious that the two algorithms are identical.
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Figure 21: VHDL and MATLAB Comparison Plots for ro_filt_3x3 with Order = 4
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Figure 22: VHDL and MATLAB Comparison Plots for ro_filt_3x3 with Order = 8

Algorithm Synthesis

The VHDL rank order filter design has been synthesized for both the Altera and Xilinx

architectures. Since the Xilinx Virtex is a newer generation FPGA, it was expected that it would provide

superior performance over the Altera FLEX 10K FPGA. This surmise was true, and was a constant

throughout the design. Table 1 shows the synthesis results for the two architectures.

Table 1: Performance and Resources Used for ro_filt_3x3 Synthesis

FPGA % Memory Used % Logic Used Maximum Synthesized Pe rformance’
Altera FLEX 8 32 33 MHz /2014 Frames Per Second
10k100
Xilinx Virtex 12 19 47.134 MHz / 2876 Frames Per Second
XCV300BG352

1: for project data size (128x128 8 hit grayscale)
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Morphological Operators

Since the most commonly used morphological operators are those with flat structuring elements of
square shape, it was decided that the development time necessary to implement full grayscale structuring
element morphological operators was unfounded. The most common functionality of the morphol ogical
operators is implemented in the rank order filter discussed above, so a separate version of the

morphological operators was deemed unnecessary.

Comparison of VHDL and MATLAB Algorithms
Thero_filt_3x3 simulation was again used to verify the algo rithm’s accuracy, thistime against the
MATLAB agorithm ro_filt.m using orders of 1 and 9, which yields the same results as aip_erode_gs and
aip_dilate_gs using flat 3x3 structuring elements, respectively. Figures 23 and 24 show the comparison
plots for the two basic morphological operators. Again, the figures show that thereisno error inthe VHDL

algorithm.

VHDL-FProceszsed Inage Matlab-FProces=ed Inage

100
120

20 4d 80 &0 lﬁD 120 20 40 &0 80 100 120

Error Plot Error Mesh Flot

20
410
60
a0

100 200

20 40 &0 80 100

Figure 23: VHDL and MATLAB Comparison Plots for ro_filt_3x3 with Order = 1 (erosion)
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Figure 24: VHDL and MATLAB Comparison Plots for ro_filt_ 3x3 with Order = 9 (dilation)

Convolution

The design of the convolution agorithm in VHDL was a much more difficult problem than the
rank order filter design. This was due to its use of more complex mathematics. For example, the rank
order filter realy just sorts the pixels in a window and outputs one of them, while the convolution
algorithm uses adders, multipliers, and dividers to calculate its output. On FPGAS, use of mathematics
tendsto dow down performance. Many designers favor techniquesthat reduce the algorithm’s dependency
on complex mathematics. Still, since the mathematics used in convolution are simple, implementation of a
convolution algorithm was an achievable goal.

Y et another obstacle in this algorithm’ s design was implementing th e capability to handle negative
numbers. In a proper convolution algorithm, the mask can (and often does) consist of negative numbers.
Effectively, the VHDL had to be written to handle these numbers by using signed data types. Signed data
simply meanst hat a negative number is interpreted into the 2's complement of its non -negative dual. This
means that all vectors within the design must use an extra bit as compared to unsigned numbers. The extra

bit always carries the sign of the number — O for a positive number, 1 for a negative number.
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Because of this, the output of the convolution algorithm is a number in 2's complement. In order
for another unit to interface data from this algorithm, the unit must be able to understand or convert 2's
complement data. Fortunately, this is a simple matter in the ACS system, which is discussed in the
following chapter.

Addition and multiplication were instantiated using smple + and * signsinthe VHDL code. The
VHDL synthesis tool provides mapping to efficient hardware mathematics designs for each of these, so
device-specific parameterized modules were not necessary.

Since a proper convolution involves a division by the number of pixels in the window, some
thought had to be put into this part of the algorithm’s h ardware implementation. Hardware dividers on
FPGAs are quite large and slow. In addition they must be tied directly to the FPGA’s architecture,
meaning that one divider would not work for both architectures pursued. It was deemed necessary to
instead use the bit shifting method of division. Since thisis only possible with powers of two, a divide by 8
was implemented instead of a divide by 9, as was planned in the algorithm’s design. The effect of thisis
discussed in the Algorithm Synthesis section of  this sub-chapter.

Figure 25 shows a graphic representation of the mathematics of the hardware convolution. Note
that a valid output for the convolution algorithm occurs six clock cycles after the first window is valid.
Since this design is pipelined an d will run in the megahertz range, this kind of startup latency hasvery little

effect on overall design speed.
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Figure 25: Hardware Design of Convolution

The VHDL implementation of the convolution, which is called conv_3x3.vhd, has a hierarchy that
is similar to thero_filt_3x3 hierarchy. It contains an instantiation of window_3x3 to provide access to the
moving pixel window functionality as well as rc_counter for counting capabilities. The VHDL agorithm
structure is shown in Figure 26. The VHDL source code is found in Appendix B.

Optimization of the convolution algorithm can be easily achieved if one has limited kernel
specifications. For example, if all coefficients in the kernel are powers of two, the VHDL synthesizer is
able to result in a design that uses fewer resources. This is due, of course, to the way numbers are
represented in digital systems, where a number that is a power of two is represented with only one bit.
Further optimization is possible by reducing the bit widths of the kernel constants. This is result in a

smaller coefficient data range, but this compromise may be acceptable in certain cases.
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entity conv_3x3 is
port (...);
end conv_3x3;
architecture conv3x3_arch of conv_3x3 is
conponent w ndow_3x3
port (...);
end conponent w ndow_3x3;
conmponent rc_counter
port (...);
end conponent rc_counter;
begi n

wi ndow_3x3x : wi ndow_3x3
port map (...);

rc_counterx : rc_counter
port map (...);

-- algorithm process

end conv_3x3_arch;

Figure 26: VHDL Algorithm Structure

Comparison of VHDL and MATLAB Algorithms

MATLAB again played an important part in the analysis o f the VHDL file outputs for an
algorithm. In the conv_3x3 design it was especially important because the divide by eight compromise
discussed above changed the nature of the algorithm’s output. Analysis of this was important to determine
whether or not this compromise results in a reasonably valid output.

Figures 27 and 28 show comparisons of the VHDL - and MATLAB-convolved images using the
K1 kernel described in Chapter 2. Figure 29 shows the mesh error plot of the VHDL -processed image
versus the MATLAB-processed image using adivide by 9. From this plot it is evident that the compromise
of using a shift divide does result in a different output, but this is fairly consistent over the entire image.
Therefore, it is reasonable to assume that a divide by 8 convolution using a 3x3 window is an adequate
approximation of areal divide by 9 convolution. Figure 29 shows that the minimum pixel value difference

is approximately 10 pixels and the maximum pixel value difference is approximately 53 pixels.
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Figure 27: VHDL and MATLAB Comparison Plots for conv_3x3 with K1 Kernel
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Figure 28: Comparison Plots for VHDL (Divide by 8) and MATLAB (Divide by 9), Showing Error
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Figure 29: Mesh Plot of Error for VHDL (Divide by 8) and MATLAB (Divide by 9)

It is believed that reasonable normalization of the algorithm to compensate for the divide by 8

errors should be possible by adding an average of the error shown above to the output of conv_3x3.

Algorithm Synthesis
The hardware design for the 3x3 convolution algorith m was also synthesized for both Altera and
Xilinx FPGA architectures. Once again, the Xilinx FPGA provided a faster implementation, just as

expected. Table 2 shows the results for the synthesis of the conv_3x3 design.

Table 2: Performance and Resources Used for conv_3x3 Synthesis

FPGA % Memory Used % Logic Used Maximum Synthesized Performance *
Altera FLEX 8 247 28.49 MHz / 1738 FPS*?
10k100 8 26° 32.67 MHz / 1994 FPS 3
Xilinx Virtex 12° 19° 51.39 MHz / 3136 FPS*?
XCV300BG352 128 193 48.952 MHz / 2987 FPS 3

1: for project data size (128x128 8 hit grayscale)
2: for kernel consisting of powers of 2
3: for kernel consisting of al powers of 2 except for one element
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CHAPTER V

INTEGRATION OF ALGORITHMSINTO ISISACSTOOLS

Integration of this system into a real FPGA system is key to the algorithms success. At the
Ingtitute for Software Integrated Systems (1S1S), a reconfigurable system consisting of Altera FPGAsisin
use. The Xilinx Virtex FPGASs are not currently a part of this system, but will be a t some point, which is
the reason this target was pursued. This system requires that FPGA agorithms must be integrated into a
modeling environment, called ACS [22]. This modeling environment is useable by implementing the
design in a modeling tool calle d GME (Graphical Model Editor). Thistool alowsfor VHDL files (or DSP
files, among others) to be represented as a model or a set of models. The ACS modeling environment
interprets these models by synthesizing a hardware system that is represented in GM E.

The ACS system has alibrary of algorithms for various applications. The algorithms presented in
thisthesiswill be integrated into that library for later use. As mentioned previously, algorithmsin ACS can
be mapped for any number of platforms, in cluding DSPs and FPGAs. Ideally, each algorithm has more
than one implementation. For example, to alow maximum flexibility in system synthesis, DSP
implementations of the image processing algorithms presented in this thesis should be written. This will
allow the system designer to have a choice on which agorithm to use based on the system’ s requirements.
For example, if a high -speed system is desired, the fastest combination of FPGA and DSP algorithms can
be synthesized. If alow power system is preferred, a different combination of devices can be synthesized
with this characteristic. This flexibility is one of the key advantages of the ACS system, and is represented
in Figure 30, which shows a system containing both FPGA and DSP versions of the same agorithm. It is
important to note that the system in Figure 30 is not a parallel system. Rather, it showstwo options for the
same agorithm.

When a VHDL agorithm is written for an FPGA in the ACS system, it must be characterized in
terms of its maximum performance and resource usage. This alows the system synthesis to be based on
real algorithm properties. An algorithm's model contains attribute information where this data is

represented. Figure 31 showsthe attributes for an ACS model.
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Figure 30: Representation of an Algorithm in an ACS Model
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Figure 31: Attributes of an ACS Model

A wide variety of data types are supported in ACS, and are selectable in 1/O port attributes. The

rank order filter design detailed in thisthesis uses the unsign ed data type while the convolution filter design
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uses the signed data type. While severa other data types are supported in the ACS modeling software,
these two designs only work with their specified data types as of this writing. This limitation can be
overcome by implementing data type convertersin atop -level design containing the algorithms. Figure 32

shows a screen capture of 1/O port data type selection in GME.
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Data Format: 2's Complement j
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Datapath width: 5% Ui ek
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Flows Contral: IEEE szingle precision
IEEE double precizion

Tl float
Ok | Other...

Figure 32: 1/0 Port Data Type Selection in an ACS Model in GME

The VHDL files that are specified in the models must adhere to a specific format in order to work
properly in the system. Designers are given a choice between two formats: a valid/clear system or a
standby/ready system. In addition, the paradigm supports designer -defined formats. Datawidth can be any
number and the data format can be any one of a number of formats.

The algorithms composed in this thesis were written to use the same type of data, which is a set of
8-bit unsigned integers representing the pixelsin animage. However, the algorithms were written to work
in a streaming -data fashion, where as soon as data first arrives into the entities, it is assumed that a new

pixel of image data arrives on each clock pulse. In order for these agorithms to work with the ACS
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system, it was imperative to modify them dightly so that they would be able to accept data that does not
necessarily arrive on each clock. Thisinvolved adding another layer to the VHDL design, which provides
the data valid/clear signals mentioned above.  These designs will be called ro_filt_3x3 top and
conv_3x3_top and will be detailed in alater paper.

An example of amorphological granulometry [20] in an ACS compound model is shown in Figure
33. This particular granulometry operation consists five m orphological openings (each of which consist of
an erosion followed by a dilation) followed by addition and scaling operations. Figure 34 shows how the
erosion and dilation algorithms combine to form an opening operation in an ACE compound model. Figure

35 shows the erosion algorithm in an ACE primitive model, and how it is mapped to a particular FPGA.

This example shows the power of the ACS environment for system synthesis.
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Figure 33: Morphological Granulometry Example
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Figure 34: Morphological Opening from Example
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Figure 35: Morphologica Erosion from Example

The modification for integration into the ACS system will result in a lower throughput. This is
due in part to additional synthesized logic and in part to the lower efficiency of the ACS d ata valid/clear
system as compared to a traditional streaming data system. Since data valid signals must be sent and
acknowledged for incoming data, the algorithms cannot process the data on every clock pulse. However,
since the dataset is relatively small and the algorithms are capable of rather high speeds, a resultant speed
of around 20 MHz is expected by using this method. While thisis a performance hit, it still falls within the

requirements imposed by the dataset and the design specifications. Th is is a compromise, but with the



algorithms in the ACS modeling environment, assembly of systems can be much faster than in traditional

DSP systems.
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CHAPTER VI

CONCLUSIONS

The development of FPGA image processing algorithms can at times be quite tediou s, but the
results speak for themselves. If high -speed, windowing algorithms are desired, this paper showsthat FPGA
technology is ideally suited to the task. In fact, with the aid of the window generator, a whole series of
image processing techniques is available to the designer, many of which can be synthesized for high -speed
applications.

One of the drawbacks of the techniques presented in the paper is the large size of the algorithms,
as shown in the Algorithm Synthesis section of Chapter 1VV. Thisi s largely due to the FIFO units being
used in the design. If off-chip RAM is used for FIFO operations, the designs synthesized size can be
greatly reduced.

Also, the stack filter [23] method of image processing can greatly reduce the size of algorithms
using a window generator. Still, this method achieves a more serial method of processing, which is not
entirely efficient with FPGA systems. The design presented here is quite capable, and it tries to take
advantage of the parallelism possible with FPGA  devices.

A great deal of knowledge was gained from the completion of this project. While FPGAs are
excellent for some uses, such as alarge number of image processing applications, difficultiesin using more
complex mathematics speak volumes towards the argument of using dedicated DSP chips for some
applications. Indeed, it is expected that a designer who desires the best combination of speed and
flexibility should look toward a system consisting of both FPGAs and DSPs. Such a system can take
advantage of the positive aspects of each architecture, and can allow the designer to create an algorithm on
a system that is best suited for it. That said, it should also be noted that this project’s algorithms were
excellent choices for FPGA implementation. This is because they don’t use floating-point mathematics and
they include no complex mathematics.

VHDL simulation and FPGA synthesis tools are getting consistently better. Simulation of large

and complex VHDL is now simple and fast, and generic VHDL can eas ily be synthesized into efficient
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hardware-specific designs. It is expected that as the FPGA hardware continues to improve, so will the
tools. In the future, the longer development time that is inherent in FPGA design may disappear, and

FPGA design will be more comparable to DSP design.

Future Work

The interchangeable nature of the VHDL components of this design allow for its componentsto be
used in different designs quite easily. For example, the window_3x3 architecture allows it to be used in
any algorithm that uses a pixel window to compute its output. Since VHDL components can easily be
instantiated in any design, using the pixel window generator is as simple as dropping component and port
map statementsinto another VHDL design.

Because of this, the applications for the code created for this project can be used in many different
image processing algorithms. With the window generator and row/column counter code complete, about
fifty percent of the work is done and the designer simply has to use t heir outputs to generate a desired
result. It could be said that the real result of this project is not smply a few agorithms, but instead a
system of VHDL code which allows for efficient implementations of many algorithms. Still, these VHDL
designs should be made to operate more generically, so that modification of hard -coded values is not
necessary.

A large part of the improvement possible in this design lies in the algorithms themselves. For the
rank order filter, changing the order to be an input v ector would allow on-the-fly switching of algorithm
properties. While this does increase the synthesized size of the design, it also maximizes its on -chip
capability. Similarly, if the kernel for the convolution design were to be changed to inputs instea d of
constants in a package, the convolution algorithm would also have increased functionality, this time with
no added logic to synthesize.

Another extension to this work could be creation of larger -sized window generators. With larger
image sizes, small window sizes such as 3x3 are not as useful. Windows of size 5x5 or 7x7 are rather
easily attainable. Still, memory limitations will relegate such designs to larger FPGAS such as the Xilinx

Virtex XCV300. In addition, the sorting algorithm sort_3x3 cann ot be used with larger window sizes.
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Indeed, a sorting algorithm for larger window sizes is an incredibly daunting task. Instead, a different
method of calculating rank order would have to be considered.
Despite these possible improvements, this thesis i s considered to be a success. The knowledge

and experience gained from completing this project will certainly be helpful in future designs.
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APPENDIX A

MATLAB M-FILES

ro_filt.m

function output_image = ro_filt(imge_file,order);
%
% filename: ro_filt.m

% aut hor: Tony Nel son

% date: 1/ 11/ 00

% detail: perforns basic 3x3 rank order filtering

%

i nput _i nage = Loadl mage(i nage_file); % | oads inmage into input_imge
[yl engt h, xl engt h] = size(input_i mage); % det ermi nes size of input image
out put _i mage(1l:ylength, 1: xl ength) = zeros; % nits output_i mage

% | oops to sinulate SE wi ndow passing over inage
for y=1:ylength-2
for x=1:xl ength-2
wi ndow = [input _image(y: (y+2), x: (x+2))];
wi ndow v = [[wi ndow(1,1:3)] [window(2,1:3)] [w ndow(3,1:3)]];
sorted_list = sort(w ndow v);
out put _i mage(y+1, x+1) = sorted_list(order);
sorted_list(order);
end
end

Y%lots ro filtered image

figure;

i mage( out put _i mage)

col or map(gray(256));

title(' Rank Order Filter Qutput');

aip_erode_gsm

function output_imge = aip_erode_gs(inage_file,se_file);
%
% filename: aip_erode.m

% aut hor: Tony Nel son
% date: 12/ 7/ 99
% detail: perforns grayscale erosion on image_file using specified se_file

%

[ Bx, By, Ox, Oy, SE_data] = LoadSE gs(se_file); %l oads SE paraneters and data

i nput _i nage = Loadl mage(i nage_file); % | oads image into input_imge
[yl engt h, xl engt h] = si ze(i nput_i mage); % det ermi nes size of input image
out put _i mage(1:yl ength, 1: xl ength) = zeros; % nits output_i mage

% | oops to sinulate SE wi ndow passing over inage
for y=1:yl ength-By
for x=1:xl engt h- Bx
imse = input_inmage(y: (y+By-1),x: (x+Bx-1)) - SE_dat a;
out put _i mage(y+Oy, x+Ox) = min(mn(imse));
end
end

%l ot s eroded i mage
figure;

i magesc(out put _i nage)
col ormap(gray);
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title([image_file, ' eroded by ', se_file]);

aip_dilate gsm

function output_image = aip_dilate_gs(inage_file,se_file);
%
% filename: aip_dilate_gs.m

% aut hor: Tony Nel son
% date: 12/ 7/ 99
% detail: perforns grayscale dilation on image_file using specified se_file

%

[ Bx, By, Ox, Oy, SE data] = LoadSE gs(se_file); %/l oads SE paraneters and data

i nput _i nage = Loadl mage(i nage_file); % | oads inmage into input_imge
[yl engt h, xl engt h] = si ze(i nput _i mage); % det ermi nes size of input image
out put _i mage = i nput_i nage; % nits output_i mage

SE data = -(SE_data); % finds negative of SE data for dilation

% | oops to sinulate SE wi ndow passing over inage
for y=1:yl engt h-By
for x=1:xl engt h- Bx
%dilation is the dual of erosion....
imse = input_inmage(y: (y+By-1), x: (x+Bx-1)) - SE_dat a;
out put _i mage(y+Oy, x+Ox) = nmax(max(i mse));
end
end

Y%l ots dilated i mage

figure;

i magesc(out put _i nage)

col ormap(gray);

title([image_file, ' dilated by ', se_file]);

i mvite(out put_i nage, gray(256), ' dil ated_i mage. bnp', ' bnmp');

conv_3x3.m

function [output_imge, out put _i mage_8] = conv_3x3(inage_file);
%
% filename: conv_3x3.m

% aut hor: Tony Nel son
% date: 1/20/ 00
% detail: perforns 3x3 convolution with specified kernel
%
K=1[121;.
2.4 2;..
12 1];
i nput _i mage = Loadl mage(i nage_file) ; % | oads image into input_imge
[yl engt h, xl engt h] = si ze(i nput_i mage); % det ermi nes size of input image
out put _i mage(1:yl ength, 1: xl ength) = zeros; % nits output_i mage

out put _i mage_8(1l:ylength, 1: xl ength) = zeros; %nits output_inage_8

% | oops to sinulate SE wi ndow passing over inage
for y=1:ylength-2
for x=1:xl ength-2

wi ndow = [input _image(y: (y+2), x: (x+2))];
mult = wi ndow. *K;
mult_v = [[mult(1,21:3)] [mult(2,1:3)] [mult(3,1:3)]];

add = sum(rmult _v);
out put _i mage(y+1, x+1) = add/9;
out put _i mage_8(y+1, x+1) = add/8§;
end
end

%l ot s convol ved i mage
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figure;

i magesc(out put _i nage)

col or map(gray(256));

title([' Convol ution Operation Qutput']);

%l ot s convol ved i mage

figure;

i magesc(out put _i nage_38)

col or map(gray(256));

title([' Convolution Operation Qutput with shift divide']);

m2vhdl.m
function nRvhdl (i nput _bnp, out put _bi n);
% filename: nRvhdl.m
% aut hor: Tony Nel son
% date: 1/ 21/ 00
% detail: a programto output a specified inage to a stream of
% integers for VHDL file input
%
% paraneters: input_bmp - file to convert to bin format
% output_bin - file ready for vhdl file input
| = Loadl nage(i nput _bmp);
J = intl6(l);
K = doubl e(J);
K=K;
M = reshape(K, 128*128, 1) ;

fid = fopen(output_bin,'wh');
fprintf(fid,'%\n',M;

fclose(fid);
vhdl2Zm.m
function | = vhdl 2m(i nput _bi n);
% filename: vhdl2mm
% aut hor: Tony Nel son
% date: 1/ 21/ 00
% detail: a programto read in the VHDL output file
%
% paranter: input_bin - vhdl output bin file
%
close all;
fid = fopen(input_bin);
[l,cnt] = fscanf(fid,"' %' ,inf);
fclose(fid);
I = reshape(l, 128, 128);
I =1";
originall = Loadl mage('d:/usr/nel son/courses/aip/elaine_128x128. bnp');
J = intl6(originall);
originall = double(J);
figure;
i mgesc(l);

title(input_bin);
Cmap = gray(256);
Col or map( Crap) ;
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APPENDIX B

VHDL SOURCE FILES

window_3x3.vhd

-- filename: wi ndow_3x3. vhd

-- aut hor: Tony Nel son

-- dat e: 12/ 13/ 99

-- detail: 3x3 wi ndow gener at or
-- limts none

library |EEE;

use | EEE. std_l ogic_1164.all;

entity window 3x3 is
generic (
vwi dt h: integer:=8

)

port (
a k :in std_logic;
RSTn :in std_logic;
D :in std_logic_vector(vwi dth-1 downto 0);
wll : out std_logic_vector(vwi dth-1 downto 0);
wl2 : out std_logic_vector(vwidth-1 downto 0);
wl3 : out std_logic_vector(vwi dth-1 downto 0);
w21 : out std_logic_vector(vwi dth-1 downto 0);
w22 : out std_logic_vector(vwidth-1 downto 0);
w23 : out std_logic_vector(vwi dth-1 downto 0);
w31l : out std_logic_vector(vwi dth-1 downto 0);
w32 : out std_logic_vector(vwi dth-1 downto 0);
w33 : out std_logic_vector(vwi dth-1 downto 0);
DV : out std_logic:="0'

)

end wi ndow_3x3;
architecture wi ndow _3x3 of w ndow 3x3 is

conponent fifo_128x8u

PORT
(
dat a IN STD_LOG C_VECTOR (7 DOANTO 0);
wrreq : IN STD_LOG C
rdreq : IN STD_LOJ C ;
cl ock : IN STD_LOG C
aclr IN STD_LOG C ;
q QUT STD_LOG C_VECTOR (7 DOANTO 0);
full QUT STD LOA C ;
enpty QUT STD LOA C ;
usedw QUT STD LOd C_VECTOR (6 DOWNTO 0)

)
END component fifo_128x8u;

signal all : std_l ogic_vector(vwi dth-1 downto 0);
signal al2 : std_l ogic_vector(vwidth-1 downto 0);
signal al3 : std_l ogic_vector(vwi dth-1 downto 0);
signal a2l : std_l ogic_vector(vwi dth-1 downto 0);
signal a22 : std_l ogic_vector(vwi dth-1 downto 0);
signal a23 : std_l ogic_vector(vwi dth-1 downto 0);
signal a3l : std_l ogic_vector(vw dt h-1 downto 0);
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begi n

si gnal
si gnal

a32
a33

--fifoa signals

signal clear
signal wreqga
signal rdreqga
signal ofulla
signal oenptya :
signal ofifoa

si gnal ousedwa :
--fifob signals
signal wreqgb
signal rdreqgb
signal ofullb
signal oenptyb :
signal ofifob :
signal ousedwb :
signal dwreqb:

-- signals for

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

fifoa:

fifob:

cl ear <= not (RSTn);

std_| ogi

std_I ogi

std_I ogi c;
std_logic:="1";
std_logic:=0";
std_I ogi c;
std_I ogi c;

std_I ogi

std_| ogi
std_logic:=0";
std_logic:=0";
std_I ogi c;

std_I ogi c;

std_| ogi

std_| ogi

std_logic:=0";

DV coordination
dddddddddDV: std_logic:="'0";
ddddddddDV: std_| ogi c;
dddddddDV: std_I ogi c;
ddddddDV: std_I ogi c;
dddddDV: std_I ogi c;
ddddDV: std_l ogi c;
dddDV: std_l ogi c;

ddDV: std_l ogic;

dDV: std_l ogic;

fifo_128x8u

port map (
data => al3,
wreq => wreqa,
rdreq => rdreqa,
clock => dk,
aclr => cl ear,
q => ofifoa,
full => ofull a,
enpty => oenptya,
usedw => ousedwa

)i

fifo_128x8u

port map (
data => a23,

)

wreq => wreqb,
rdreq => rdregb,
clock => dk,

aclr => cl ear,
q => ofifob,
full => oful | b,

enpty => oenptyb,
usedw => ousedwb

cl ock: process(d k, RSTn)

begi n

if RSTn

all
al2
al3
a2l
a22
a23

'0" then

<= (ot hers=>'
<= (ot hers=>'
<= (ot hers=>'
<= (ot hers=>'
<= (ot hers=>'
<= (ot hers=>'

c_vector(vwi dth-1
c_vector(vwi dth-1

c_vector(vwi dth-1
c_vector(vw dth-2

c_vector(vwi dth-1
c_vector(vw dth-2
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a3l <= (others=>'
a32 <= (others=>'
a33 <= (others=>'

eeaQ
—-——w

wll <= (ot hers=>'
wl2 <= (ot hers=>'
wl3 <= (ot hers=>'
w21 <= (ot hers=>'
w22 <= (ot hers=>'
w23 <= (ot hers=>'
w31l <= (ot hers=>'
w32 <= (ot hers=>'
w33 <= (ot hers=>'

eeceeeeaoeQ
—— e e —— e ——

wrega <= '0";
wregb <= '0";

ddddddddDV <= ' 0';
dddddddDV <= '0';
ddddddDV <= '0';
dddddDV <= '0';
ddddDV <= '0';
dddDV <= '0';
ddDV <= '0';
dbVv <= '0";
DV <= '0";

elsif rising_edge(d k) then
all <= D
al2 <= ali;
al3d <= alz;
a2l <= ofifoa;
a22 <= a2il;
a23 <= a22;
a3l <= ofifob;
a32 <= a3l;
a33 <= a32;

wll <= alil;
wl2 <= alz;
wl3 <= al3;
w21 <= a2il;
W22 <= a22;
w23 <= a23;
w31l <= a3il;
w32 <= a32;
w33 <= a33;

wrega <= '1";
wrregb <= dwr reqb;

ddddddddDV <= dddddddddDV;
dddddddDV <= ddddddddDV;
ddddddDV <= dddddddDV;
dddddDV <= ddddddDV:
ddddDV <= dddddDV;
dddDV <= ddddDV;
ddDV <= dddDV;
dDV <= ddDV,
DV <= dDV;
end if;
end process;

req: process(d k)
begi n
if rising_edge(dk) then
if ousedwa = "1111011" then
rdrega <= '1';
dwregb <= '1";
end if;
if ousedwb = "1111011" then
rdregb <= '1';



el sif ousedwb = "1111100" then
dddddddddDVv <= '1';
end if;
end if;
end process;

end wi ndow_3x3;

window_3x3 x.vhd

-- filename: wi ndow_3x3_x. vhd

-- aut hor: Tony Nel son

-- dat e: 1/ 13/ 99

-- detail: 3x3 wi ndow generator for Xilinx
-- limts none

Li brary XilinxCorelLi b;

use xilinxcorelib.ul_utils.all;
library |EEE;

use | EEE. std_l ogic_1164.all;
use | EEE. std_logic_arith.all;

entity window 3x3 is

generic (
vwi dt h: integer:=8
)i

port (
a k :in std_logic;
RSTn :in std_logic;
D :in std_logic_vector(vwi dth-1 downto 0);
wll : out std_logic_vector(vwi dth-1 downto 0);
wl2 : out std_logic_vector(vwi dth-1 downto 0);
wl3 : out std_logic_vector(vwidth-1 downto 0);
w21 : out std_logic_vector(vwi dth-1 downto 0);
w22 : out std_logic_vector(vwidth-1 downto 0);
w23 : out std_logic_vector(vwi dth-1 downto 0);
w31l : out std_logic_vector(vwi dth-1 downto 0);
w32 : out std_logic_vector(vwidth-1 downto 0);
w33 : out std_logic_vector(vwi dth-1 downto 0);
DV : out std_logic:=0'

)i

end wi ndow_3x3;
architecture wi ndow _3x3 of w ndow 3x3 is

conponent fifo_128x8x

port (

din IN std_| ogi c_VECTOR(7 downto 0);
w_en IN std_l ogic;

w_cl k IN std_l ogic;

rd_en IN std_l ogic;

rd_clk IN std_l ogic;

ainit I'N std_l ogi c;

dout : OUT std_l ogi c_VECTOR(7 downto 0);
full : OUT std_l ogic;

enpty : QOUT std_l ogic;
wr_count: OUT std_l ogi c_VECTOR(6 downto 0));
end conponent;

for all : fifo_128x8x use entity XilinxCorelLib.async_fifo_vl 0O(behavioral)
generic map(
c_w_err_low => 0,
c_has_rd_count => 0,
c_has_rd_ack => 0,
c_w _ack_l ow => 0,
c_has_wr_count => 1,
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begi n

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

--fifoa signals

all
al2
al3
a2l
a22
a23
a3l
a32
a33

c_has_wr_ack => 0,
c_has_al nmost _full => 0,
c_has_al nost _enpty => 0,

c_wr_count
c_rd_count

c_has_w_err =>

c_rd_ack_|
c_rd_err_|

_width => 7,
_width => 2,
c_has_rd_err => 0
c_data_ width => 8
0
0

ow =>
ow => 0

c_fifo_depth => 127,
c_enable_rlocs => 0,
c_use_bl ockmem => 1);

std_| ogi
std_I ogi
std_I ogi
std_I ogi
std_I ogi
std_| ogi
std_I ogi
std_I ogi
std_I ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_| ogi
std_I ogi
std_| ogi

std_| ogi

signal clear
signal wreqga
signal rdreqga
signal ofulla
signal oenptya :
signal ofifoa

si gnal ousedwa :
--fifob signals
signal wreqgb
signal rdreqgb
signal ofullb
signal oenptyb :
signal ofifob :
signal ousedwb :
signal dwreqb:

-- signals for

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

si gnal
si gnal

fifoa:

ddddDV:

c_vector(vwi dth-1
c_vector(vw dth-1
c_vector(vwi dth-1
c_vector(vwi dth-1
c_vector(vwi dth-1
c_vector(vwi dth-1
c_vector(vw dth-1
c_vector(vwi dth-1
c_vector(vwi dth-1

0O00O0o0
QR

c_vector(vwi dth-1
c_vector (6 downto

"o
o

OO0 00

c_vector(vwi dth-1
c_vector (6 downto

std_logic:=0";

DV coordi nation
ddddddddDV: std_|logic:=0";
dddddddDV: std_l ogi c;
ddddddDV: std_I ogi c;
dddddDV: std_I ogi c;

st d_| ogi c;

dddDV: std_l ogi c;
ddDV: std_l ogic;
dDV: std_l ogic;

ousedwa_t enp: i nteger: =0;

ousedwb_t enp: integer: =0;

fifo_128x8x

port map (
din => als3,
w_en => wreqa,
w_clk => dk,
rd_en => rdreqa,
rd_clk => dKk,
ainit => cl ear,
dout => ofifoa,
full => ofull a,
enpty => oenptya,

w _count => ousedwa
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fifob:

)

cl ear <= not (RSTn);

fifo_128x8x

port map (
din => a23,
w_en => wreqb,
w_clk => dk,
rd_en => rdregb,
rd_clk => dKk,
ainit => cl ear,
dout => ofifob,
full => oful I b,
enmpty  => oenptyb,
w_count => ousedwb

cl ock: process(d k, RSTn)

begi n

if RSTn = '0' then

all <= (others=>'0")
al2 <= (others=>'0")
al3 <= (others=>'0")
a2l <= (others=>'0")
a22 <= (others=>'0");
a23 <= (others=>'0")
a3l <= (others=>'0")
a32 <= (others=>'0")
a33 <= (others=>'0")
wll <= (others=>'0")
wl2 <= (others=>'0")
wl3 <= (others=>'0")
w21 <= (others=>'0")
w22 <= (others=>'0")
w23 <= (others=>'0")
w31l <= (others=>'0")
w32 <= (others=>'0")
W33 <= (others=>'0")
wrega <= '0';
wregb <= '0";
dddddddDV <= '0';

ddddddDV <= '0';
dddddDV <= '0';

elsif

rising_

ddddDV <= '0';
dddbV <= '0';
ddDV <= '0';
dbVv <= '0';
DV <= "'0';

all <= D

al2 <= ali;
al3d <= alz;
a2l <= ofifoa;
a22 <= a2il;
a23 <= a22;
a3l <= ofifob;
a32 <= a3l;
a33 <= a32;

wll <= alil;
wl2 <= alz;
wl3 <= al3;
w21 <= a2il;
W22 <= a22;
w23 <= a23;
w31l <= a3l;
w32 <= a32;
w33 <= a33;

edge(d k) then
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wrega <= '1";
wregb <= dw reqgb;

dddddddDV <= ddddddddDV;
ddddddDV <= dddddddDV;
dddddDV <= ddddddDV;
ddddDV <= dddddDV;
dddDV <= ddddDV;
ddDV <= dddDV;
dDV <= ddDV,
DV <= dDV;
end if;
end process;

req: process(d k)
begi n
if rising_edge(C k) then
if ousedwa = "1111011" then
rdrega <= '1';
dwregb <= '1";

end if;

if ousedwb = "1111011" then
rdregb <= '1';
ddddddddDV <= ' 1';

end if;

end if;
end process;
end wi ndow_3x3;

ro_filt_ 3x3 TB.vhd

-- filename: ro_filt_3x3_TB.vhd

-- aut hor: Tony Nel son

-- dat e: 1/ 24/ 00

-- detail: Test Bench for ro_filt_3x3

-- reads image data fromspecified file and wites processed
-- data to vhdl _output.bin

-- To use this functionality, use the follow ng nmethod for
-- determ ning sinulation | ength:

-- t_valid = tine when output data first becomes valid
-- t_delay =t_valid - 5 ns

-- t_simstop = 163835 ns + t_delay + 10 ns

-- this is 165305ns for this entity

library ieee;

use ieee.std_|l ogic_1164.all;
use ieee.std_logic_arith.all;
use std.textio.all;

entity ro_filt_3x3_tb is

generi c(
vwidth : INTEGER : = 8;
order : INTEGER : = 4;
numcols : | NTEGER : = 128;
numrows : | NTEGER := 128 );

end ro_filt_3x3_th;

architecture TB_ARCH TECTURE of ro_filt_3x3_tb is
conponent ro_filt_3x3
generi c(
vwidth : INTEGER : = 8;
order : INTEGER : = 4;
numcols : | NTEGER : = 128;

58



numrows : | NTEGER := 128 );

port(
a k :in std_logic;
RSTn :in std_logic;
D :in std_logic_vector((vw dth-1) downto 0);
Dout : out std_logic_vector((vwi dth-1) downto 0);
DV : out std_logic );
end conponent;
signal Ok : std_l ogic;
signal RSTn : std_l ogic;
signal D : std_l ogic_vector((vwi dth-1) downto 0);
si gnal Dout : std_l ogic_vector((vwi dth-1) downto 0);
signal DV : std_l ogic;
begi n
UUT : ro_filt_3x3
port nap
(dk = dk,
RSTn => RSTn,
D => D,
Dout => Dout,
DV => DV );

read_fromfile: process(d k)
variabl e indata_line: line;
variabl e indata: integer;
file input_data file: text open read_node is "elaine_128x128. bin";
begi n
if rising_edge(dk) then
readline(input_data file,indata_line);
read(indata_line,indata);
D <= conv_std_l ogi c_vector(indata, 8);
if endfile(input_data file) then
report "end of file -- looping back to start of file";
file_close(input_data_file);
file_open(input_data file,"elaine_128x128. bin");
end if;
end if;

end process;

wite to_file: process(d k)
variabl e outdata_line: line;
vari abl e outdata: integer:=0;
file output_data file: text open wite_npode is "vhdl _output.bin";
begi n
if rising_edge(dk) then
outdata : = CONV_I NTEGER(unsi gned(Dout));
if DV = '1" then
wite(outdata_line, outdata);
witeline(output_data_file,outdata_line);
end if;
end if;
end process;

cl ock_gen: process

begi n
ak <='0";
wait for 5 ns;
Ak <="'1";

wait for 5 ns;
end process;

reset_gen: process

begi n
RSTn <= '0';
wait for 10 ns;
RSTn <= '1';
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wai t ;
end process;

end TB_ARCH TECTURE;

configuration TESTBENCH FOR ro_filt_3x3 of ro_filt_3x3_tb is
for TB_ARCH TECTURE
for UUT : ro_filt_3x3
use entity work.ro_filt_3x3(ro_filt_3x3);
end for;
end for;
end TESTBENCH FOR ro_filt_3x3;

sort_3x3.vhd
-- filename: sort _3x3. vhd
-- aut hor: Tony Nel son
-- dat e: 12/ 15/ 99
-- detail: 3x3 sorting algorithm sorts input 3x3 wi ndow to out put

-- vectors fromlowest to highest. sl1 <=L, sb <=M S <=H

library |EEE;
use | EEE. std_l ogic_1164.all;

entity sort_3x3 is

generic (
vwi dt h: integer:=8
)i

port (
a k in std_|logic;
RSTn in std_|logic;
wll in std_logic_vector((vw dth-1) downto 0);
wl2 in std_logic_vector((vw dth-1) downto 0);
wl3 in std_logic_vector((vw dth-1) downto 0);
w21 in std_logic_vector((vw dth-1) downto 0);
w22 in std_logic_vector((vw dth-1) downto 0);
w23 in std_logic_vector((vw dth-1) downto 0);
w31l in std_logic_vector((vw dth-1) downto 0);
w32 in std_logic_vector((vw dth-1) downto 0);
w33 in std_logic_vector((vw dth-1) downto 0);
DVw :in std_logic;
DVs : out std_logic;
sl : out std_logic_vector(vwi dth-1 downto 0);
s2 : out std_logic_vector(vw dth-1 downto 0);
s3 : out std_logic_vector(vwi dth-1 downto 0);
s4 : out std_logic_vector(vwi dth-1 downto 0);
s5 : out std_logic_vector(vwi dth-1 downto 0);
s6 : out std_logic_vector(vwi dth-1 downto 0);
s7 : out std_logic_vector(vwi dth-1 downto 0);
s8 : out std_logic_vector(vwi dth-1 downto 0);
s9 : out std_logic_vector(vwi dth-1 downto 0)

)i

end sort_3x3;
architecture sort_3x3 of sort_3x3 is

-- conpare signals

signal c11_L: std_logic_vector((vwi dth-1) downto 0);
signal c11_H std_logic_vector((vwi dth-1) downto 0);
signal c12_L: std_logic_vector((vwi dth-1) downto 0);
signal c12_H std_l ogic_vector((vwi dth-1) downto 0);
signal c13_L: std_logic_vector((vwi dth-1) downto 0);
signal c13_H std_logic_vector((vwi dth-1) downto 0);
signal c14_L: std_logic_vector((vwi dth-1) downto 0);
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si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

-- regi
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

cl4_H: std_l ogic_vector((vwi dth-1) downto 0);
c21 L: std_logic_vector((vwi dth-1) downto 0);
c21_H: std_logic_vector((vwi dth-1) downto 0);
c22_L: std_logic_vector((vwi dth-1) downto 0);
c22_H: std_l ogic_vector((vwi dth-1) downto 0);
c23_L: std_logic_vector((vwi dth-1) downto 0);
c23_H: std_l ogic_vector((vwi dth-1) downto 0);
c24_L: std_l ogic_vector((vwi dth-1) downto 0);
c24_H:. std_l ogic_vector((vw dth-1) downto 0);
c31_L: std_logic_vector((vwi dth-1) downto 0);
c31_H: std_logic_vector((vwi dth-1) downto 0);
c32_L: std_logic_vector((vwi dth-1) downto 0);
c32_H: std_l ogic_vector((vwi dth-1) downto 0);
c33_L: std_logic_vector((vwidth-1) downto 0);
c33_H: std_l ogic_vector((vwi dth-1) downto 0);
c34_L: std_logic_vector((vwi dth-1) downto 0);
c34_H: std_l ogic_vector((vwi dth-1) downto 0);
c41_L: std_logic_vector((vwi dth-1) downto 0);
c41_H: std_l ogic_vector((vwi dth-1) downto 0);
c42_L: std_l ogic_vector((vwi dth-1) downto 0);
c42_H: std_l ogic_vector((vwi dth-1) downto 0);
c43_L: std_l ogic_vector((vwi dth-1) downto 0);
c43_H: std_l ogic_vector((vwi dth-1) downto 0);
cd4al L: std_logic_vector((vwi dth-1) downto 0);
cd4al H std_logic_vector((vwi dth-1) downto 0);
cd4a2_L: std_logic_vector((vwi dth-1) downto 0);
cd4a2_H: std_l ogic_vector((vwi dth-1) downto 0);
c4b0_L: std_l ogic_vector((vw dth-1) downto 0);
c4b0_H: std_l ogi c_vector((vwi dth-1) downto 0);
c4bl L: std_l ogic_vector((vwi dth-1) downto 0);
c4bl H: std_l ogic_vector((vwi dth-1) downto 0);
c4b2_L: std_l ogic_vector((vwi dth-1) downto 0);
c4b2_H: std_l ogi c_vector((vwi dth-1) downto 0);
c51_L: std_logic_vector((vwi dth-1) downto 0);
c51_H: std_l ogic_vector((vwi dth-1) downto 0);
c61_L: std_logic_vector((vwi dth-1) downto 0);
c61_H: std_l ogic_vector((vwi dth-1) downto 0);
c71_L: std_logic_vector((vwi dth-1) downto 0);
c71_H: std_l ogic_vector((vwi dth-1) downto 0);
c81_L: std_logic_vector((vwi dth-1) downto 0);
c81_H: std_l ogic_vector((vwi dth-1) downto 0);
c91 L: std_logic_vector((vw dth-1) downto 0);
c91 H: std_l ogic_vector((vwi dth-1) downto 0);
c101_L: std_logic_vector((vwi dth-1) downto 0);
c101_H: std_l ogic_vector((vwi dth-1) downto 0);
c111 L: std_logic_vector((vwi dth-1) downto 0);
cl1l11 H std_logic_vector((vwidth-1) downto 0);
ster signals

r1l: std_logic_vector((vwidth-1) downto 0);
r21: std_logic_vector((vwidth-1) downto 0);
r31: std_logic_vector((vwidth-1) downto 0);
r41: std_logic_vector((vwi dth-1) downto 0);
r42: std_logic_vector((vwidth-1) downto 0);
r43: std_logic_vector((vwidth-1) downto 0);
rd4al: std_logic_vector((vwidth-1) downto 0);
rd4a2: std_logic_vector((vwidth-1) downto 0);
r4a3: std_logic_vector((vwi dth-1) downto 0);
rd4ad: std_logic_vector((vwidth-1) downto 0);
r4a5: std_logic_vector((vwidth-1) downto 0);
r4bl: std_logic_vector((vwidth-1) downto 0);
r4b4: std_logic_vector((vwidth-1) downto 0);
r4b5: std_logic_vector((vwidth-1) downto 0);
r51: std_logic_vector((vwidth-1) downto 0);
r52: std_logic_vector((vwidth-1) downto 0);
r53: std_logic_vector((vwidth-1) downto 0);
r54: std_logic_vector((vwi dth-1) downto 0);
r55: std_logic_vector((vwidth-1) downto 0);
r56: std_logic_vector((vwidth-1) downto 0);
r57: std_logic_vector((vwidth-1) downto 0);
r6l: std_logic_vector((vwidth-1) downto 0);
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begi n

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

re62:
r63:
r64:
r65:
r66:
re7:
r71:
r72:
r73:
r74:
r75:
r76:
r77:
r81:
r82:
r83:
r84:
r 85:
r 86:
r87:
rol:
ro92:
ro3:
r94:
r95:
r96:
ro7:

r101:
r102:
r103:
r104:
r105:
r106:
r107:
r111:
r112:
r113:
ri114:
ri115:
ri116:
r117:

std_l ogi c_vector ((vw dt h-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector((vwi dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)
std_l ogi c_vector ((vw dth-1)

-- signals for DV coordination
dddddddddddddDV: std_l ogic:="0";
ddddddddddddDV: std_| ogi c;
dddddddddddDV: std_| ogi c;
ddddddddddDV: std_| ogic;
dddddddddDV: std_| ogi c;
ddddddddDV: std_l ogi c;
dddddddDV: std_I ogi c;
ddddddDV: std_I ogi c;
dddddDV: std_I ogi c;
ddddDV: std_l ogi c;

dddDV: std_l ogi c;

ddDV: std_l ogic;

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

dDV:

std_Il ogi c;

process(d k, RSTn)

begi n

if RSTn = '0' then

cll L <= (others=>'
cll H <= (others=>'
cl2_L <= (others=>'
cl12_H <= (ot hers=>'
cl13_L <= (others=>'
c13_H <= (ot hers=>'
cl4_L <= (others=>'
cl4_H <= (ot hers=>'
c21 L <= (others=>'

QoaeeaeaoeaQ
NNUNSNUNPNPNPNN

62

downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o



c21 H
c22_L
c22_H
c23_L
c23_H
c24_L
c24_H
c31 L
c31 H
c32_L
c32_H
c33_L
c33_H
c34_L
c34_H
c4l L
c4l H
c42_L
c42_H
c43_L
c43_H
cdal_L
cd4al_H
cda2_L
cd4a2_H
c4b0_L
c4b0_H
c4bl L
c4bl H
c4b2_L
c4b2_H
051_L
c51 H
c6l1 L
c6l1 _H
c71_L
c71_H
c81 L
c81 H
c91 L
c91 H
clOl L
c101_H
cl11 L
cl1l11 H
rll <=
r21 <=
r31 <=
r4l <=
r42 <=
r43 <=
rdal <=
rd4a2 <=
r4a3 <=
rdad <=
r4ab <=
rdbl <=
rdb4 <=
r4b5 <=
r51 <=
r52 <=
r53 <=
r54 <=
r55 <=
r56 <=
r57 <=
re6l <=
r62 <=
r63 <=
r64 <=
r65 <=

<= (ot hers=>'0'
<= (ot hers=>'0'
<= (ot hers=>'0'
<= (ot hers=>'0'
<= (ot hers=>
<= (ot hers=>
<= (ot hers=>
<= (ot hers=>
<= (ot hers=>
<= (ot hers=>
<= (ot hers=>
<= (ot hers=>
<= (ot hers=>
<= (ot hers=>
>
>
>
>
>
>
>

<= (others=
<= (others=
<= (others=
<= (ot hers=
<= (others=
<= (others=
<= (others=
<= (others=>'0
<= (others=>'0
<= (others=>'0
<= (others=>'0
<= (others=>'0
<= (others=>'0

>'0

>'0

>'0

>'0

<= (others=
<= (others=
<= (others=
<= (others=
<= (others=>'0
<= (others=>'0
<= (others=>'0
<= (others=>'0
<= (others=>'0
<= (ot hers=>'0'
<= (others=>'0
<= (others=>'0
<= (others=>'0
<= (others=>'0
<= (ot hers=>'
<= (ot hers=>'
<= (ot hers=>
<= (ot hers=>
(others=>'0");
(others=>'0");
(others=>'0");
(others=>'0");
0);
0);

(ot hers=>'
(ot hers=>
= (others=
= (others=
= (others=
= (others=
= (others=
= (others=
= (others=
= (others=
(ot hers=>'
(ot hers=>'
(ot hers=>
(ot hers=>
(ot hers=>
(ot hers=>
(ot hers=>
(ot hers=>
(ot hers=>
(ot hers=>
(ot hers=>
(ot hers=>
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r66 <= (others=>'
r67 <= (others=>'
r71 <= (others=>'
r72 <= (others=>'
r73 <= (others=>'
r74 <= (others=>'
r75 <= (others=>'
r76 <= (others=>'
r77 <= (others=>'
r81 <= (others=>'
r82 <= (others=>'
r83 <= (others=>'
r84 <= (others=>'
r85 <= (others=>'
r86 <= (others=>'
r87 <= (others=>'
r91 <= (others=>'
r92 <= (others=>'
r93 <= (others=>'
r94 <= (others=>'
r95 <= (others=>'
r96 <= (others=>'
r97 <= (others=>'
r101 <= (others=>'
r102 <= (others=>'
r103 <= (ot hers=>'
r104 <= (others=>'
r105 <= (ot hers=>'
r106 <= (others=>'
r107 <= (others=>'
r111 <= (others=>'
r112 <= (others=>'
r113 <= (ot hers=>'
r114 <= (others=>'
r115 <= (ot hers=>'
r116 <= (others=>'
r117 <= (others=>'
sl <= (others=>'
s2 <= (others=>'
s3 <= (others=>'
s4 <= (others=>'
s5 <= (others=>'
s6 <= (others=>'
s7 <= (others=>'
s8 <= (others=>'
s9 <= (others=>'
ddddddddddddDV <= ' 0';
dddddddddddDV <= '0';
ddddddddddDV <= '0';
dddddddddDV <= ' 0';
ddddddddDV <= ' 0';
dddddddDV <= '0';
ddddddDV <= '0';
dddddDV <= '0';
ddddDV <= '0';
dddDV <= '0';
ddbDV <= '0';
dDV <= '0';
DVs <= '0';
elsif rising_edge(d k) then
if Dvw ="1" then
-- level 1
if wil < wl2 then
cll L <= wil;
cll H <= wi2;
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NSNS NN N NN N NN NN

— e e — e e e e e e e e e

TITTITIIIIIRQeRReReeeeeeeQ

QeeeeoeaQaQ

Q

el se
cll L <= wl2;
cll_H <= will;

end if;

if wi3 < w21l then
cl2_L <= wi3;



c12_H <= wel;

el se

c12 L <= w2l
c12_H <= wi3

end if;

if w22 < w23 then
c13_L <= w22;
c13_H <= w23;

el se

c13 L <= w23
c13_H <= w22;

end if;

if w3l < w32 then
cld_L <= w31,
cld_H <= w32;

cl4 L <= wa2
c14 H <= wal;

if cll L < cl12_L then

c21 L
c21 H

c21 L
c21_H

el se

end if;
r1l <= w33;
-- level 2
el se

end if;

<= c1l_L;
<= c12_L;

<= c12_L;
<= c11_L;

if cll H< cl12_H then
c22_L <= cll H
C22_H <= c12_H,

el se

€22 L <= c12_H
c22_H <= c1l_H

end if;

if cl3_L < cl4_L then
c23_L <= c13_L;
C23_H <= c14_L;

el se

c23_L <= cl4_L;
c23_H <= cl13_L;

end if;

if c13_H < cl14_H then
c24_L <= cl3_H
c24_H <= cl14_H,

c24 L <= cl4 H
€24 H <= c13_H

if c21_L < ¢23_L then

c31 L
c31_H

c31 L
c31_H

el se

end if;
r21 <= r1li;
-- level 3
el se

end if;

<= c21_L;
<= c23_L;

<= c23_L;
<= c21_L;

if c21_H < ¢c23_H then
c32_L <= c21_H,
€c32_H <= c23_H,

el se

c32_L <= c23_H
€32_H <= c21_H

end if;

if c22_L < c24_L then
c33_L <= c22_L;
Cc33_H <= c24_L;

el se

€c33_L <= c24_L;
c33_H <= c22_L;
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end if;

if c22_H < ¢c24_H then
c34_L <= c22_H,
c34_H <= c24_H,

el se
c34_L <= c24_H,
c34_H <= ¢c22_H,

end if;

r31 <= r21;

-- level 4

rd4l <= c31_L;

if ¢c31_H < ¢32_L then
c4l L <= c31_H;
c4l1 H <= ¢32_L;

el se
c4l_L <= c32_L;
c41_H <= c31_H

end if;

if ¢32_H < ¢33_L then
c42_L <= c32_H;
c42_H <= ¢33_L;

el se
c42_L <= c33_L;
c42_H <= c32_H,

end if;

if ¢c33_H < ¢c34_L then
c43_L <= ¢33_H,
Cc43_H <= ¢34_L;

el se
c43_L <= c34_L;
c43_H <= c33_H,

end if;

rd42 <= c34_H,

r43 <= r31;

-- level 4a

rdal <= r4l,

if c41_ L < c42_H then
cd4al_L <= c4l1_L;
cd4al_H <= c42_H

el se
cdal_L <= c42_H
cd4al_H <= c41_L;

end if;

if c41_H < c42_L then
cd4a2_L <= c4l1_H
c4a2_H <= c42_L;

el se
cda2_L <= c42_L;
c4a2_H <= c41_H

end if;

rda2 <= c43_L;

rd4a3 <= c43_H

rdad <= r4z,

r4a5 <= r43;

-- level 4b

r4bl <= r4al;

if cdal L < cd4a2_L then
c4b0_L <= c4dal_L;
c4b0_H <= c4a2_L;

el se
c4b0_L <= cda2_L;
c4b0_H <= c4al_L;

end if;

if cd4a2_H < r4a2 then
c4bl_ L <= cd4a2_H;
c4bl_H <= r4a2;

el se
c4bl_L <= r4az;
c4bl_H <= c4a2_H;

end if;

if cdal_H < rda3 then
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c4b2_L <= c4al_H
c4b2_H <= r4as3;

el se
c4b2_L <= r4as3;
c4b2_H <= c4al_H

end if;

r4b4 <= r4a4;

r4b5 <= r4ab5;

-- level 5

if rdbl < r4b5 then
c51_L <= r4bi;
c51_H <= r4b5;

el se
c51_L <= r4b5;
c51_H <= r4bi;

end if;

r51 <= c4b0_L;

r52 <= c4b0_H;

r53 <= c4bl_L;

r54 <= c4bl_H

r55 <= c4b2_L;

r56 <= c4b2_H;

r57 <= r4b4;

evel 6

if r51 < ¢51_H then
c61l_L <= r51;
c61_H <= c51_H,

el se
c6l L <= c51_H,
c61_H <= r51;

end if;

ré6l <= c51_L; --

r62 <= rb52;

r63 <= rb53;

r64 <= rb4;

r65 <= r55;

r66 <= r56;

r67 <= r57;

evel 7

if r62 < c61_H then
c71_L <= r62;
c71_H <= c61_H,

el se
c71_L <= c61_H,
C71_H <= r62;

end if;

r71 <= r61; --

r72 <= c61_L; --

r73 <= r63;

r74 <= r64;

r75 <= r65;

r76 <= r66;

r77 <= r67;

evel 8

if r73 < c71_H then
c8l_L <=r73;
c81_H <= c71_H,

el se
c81 L <= c71_H,
c81_H <= r73;

end if;

r8l <= r71; --

r82 <= r72; --

r83 <= c71_L; --

r84 <= r74;

r85 <= r75;

r86 <= r76;

r87 <= r77;

evel 9

if r84 < c81_H then
c91_L <= r84;
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c91 H <= c81_H,
el se
c91 L <= c81_H,
c91_H <= r84;
end if;
r9l1 <= r81; -- L
r92 <= r82; -- 2L
r93 <= r83; -- 3L
r94 <= c81_L; -- 4L
r95 <= r85;
r96 <= r86;
r97 <= r87;
-- level 10
if r95 < c91_H then
c101_L <= r95;
c101_H <= c91_H,

el se
c101_L <= c91_H,
c101_H <= r95;
end if;
r101 <= r91; -- L
r102 <= r92; -- 2L
r103 <= r93; -- 3L
r104 <= r94; -- 4L
r105 <= c91_L; -- M
r106 <= r96;
r107 <= r97,
-- level 11

if rl106 < c101_H then
cl1l_L <= r106;
cl11_H <= c101_H;

el se
c111 L <= cl1l01_H;
cl111 H <= r106;
end if;
r1ll <= r101; -- L
r1l2 <= r102; -- 2L
r1l3 <= r103; -- 3L
r1l4 <= r104; -- 4L
r1l5 <= r105; -- M
r116 <= c101_L; -- 4L
r1l7 <= r107;
-- level 12
if rl1l7 < c111_H then
s8 <= r117; -- 2H
s9 <= cl11 H -- H
el se
s8 <= c111_H, -- 2H
s9 <= r117; -- H
end if;
sl <= r111; -- L
s2 <= r112; -- 2L
s3 <= r113; -- 3L
s4 <= r1l4; -- 4L
s5 <= r115; -- M
s6 <= r116; -- 4H
s7 <= c111_L; -- 3H

ddddddddddddDV <= dddddddddddddDV:;
dddddddddddDV <= ddddddddddddDV:;
ddddddddddDV <= dddddddddddDV:
dddddddddDV <= ddddddddddDV:
ddddddddDV <= dddddddddDV:
dddddddDV <= ddddddddDV:;
ddddddDV <= dddddddDV;

dddddDV <= ddddddDV:

ddddDV <= dddddDV;

dddDV <= ddddDV;

ddDV <= dddDV;

dDV <= ddDV;

Dvs <= dDv;
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end if;
if Dvw = '1' then
dddddddddddddDV <= '1';

end if;
end if;
end process;
end sort_3x3;
rc_counter.vhd
-- filename: rc_counter.vhd
-- aut hor: Tony Nel son
-- dat e: 12/ 22/ 99
-- detail: row col um counter
-- limts none

library |EEE;
use | EEE. std_l ogic_1164.all;

entity rc_counter is
generic (
num col s: integer:=128;
numrows: integer:=128

)i
port (
a k :in std_logic;
RSTn :in std_logic;
En :in std_logic;
Col Pos : out integer;
RowPos : out integer
)i

end rc_counter;

architecture rc_counter of rc_counter is
begi n

process(RSTn, d k, En)
vari abl e Col Pos_var: integer: =0;
vari abl e RowPos_var: integer: =0;
begi n
if RSTn = '0" then
Col Pos_var := -1;
Col Pos <= 0;
RowPos_var : = 0;
RowPos <= 0;
elsif rising_edge(d k) then
if En ='1" then
Col Pos_var := Col Pos_var +1;
if Col Pos_var = numcols then
RowPos_var : = RowPos_var +1;
Col Pos_var := 0;
if RowPos_var = numrows then
RowPos_var : = 0;
end if;
end if;
Col Pos <= Col Pos_var;
RowPos <= RowPos_var;
end if;
end if;
end process;

end rc_counter;
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ro_filt_3x3.vhd

-- filename: ro_filt_3x3.vhd

-- aut hor: Tony Nel son

-- dat e: 12/ 21/ 99

-- detail: 3x3 Rank Order Filter. Generic order sets filter order.

-- order: integer:=5is a Median Filter.

library |EEE;
use | EEE. std_l ogic_1164.all;

entity ro_filt_3x3 is
generic (
vwi dt h: integer: =8;
order: integer:=4;
num col s: integer:=128;
numrows: integer:=128

)i

port (
a k :in std_logic;
RSTn :in std_logic;
D :in std_logic_vector(vwi dth-1 downto 0);
Dout : out std_logic_vector(vwi dth-1 downto 0);
DV : out std_logic

)i
end ro_filt_3x3;
architecture ro_filt_3x3 of ro_filt_3x3 is

conmponent sort_3x3

generic (
vwi dt h: integer:=8
)i

port (
a k in std_|logic;
RSTn in std_|logic;
wll in std_logic_vector((vw dth-1) downto 0);
wl2 in std_logic_vector((vw dth-1) downto 0);
wl3 in std_logic_vector((vw dth-1) downto 0);
w21 in std_l ogic_vector((vwi dth-1) downto 0);
w22 in std_logic_vector((vw dth-1) downto 0);
w23 in std_logic_vector((vw dth-1) downto 0);
w31l in std_logic_vector((vw dth-1) downto 0);
w32 in std_logic_vector((vw dth-1) downto 0);
w33 in std_logic_vector((vwi dth-1) downto 0);
DVw :in std_logic;
DVs : out std_logic;
sl : out std_logic_vector(vwi dth-1 downto 0);
s2 : out std_logic_vector(vwi dth-1 downto 0);
s3 : out std_logic_vector(vwi dth-1 downto 0);
s4 : out std_logic_vector (vwi dth-1 downto 0);
s5 : out std_logic_vector(vwi dth-1 downto 0);
s6 : out std_logic_vector(vwi dth-1 downto 0);
s7 : out std_logic_vector(vwi dth-1 downto 0);
s8 : out std_logic_vector(vwi dth-1 downto 0);
s9 : out std_logic_vector(vwi dth-1 downto 0)

)i

end conponent sort_3x3;

signal wll: std_logic_vector((vwidth-1) downto 0);
signal wl2: std_logic_vector((vwidth-1) downto 0);
signal wl3: std_logic_vector((vwidth-1) downto 0);
signal w21: std_logic_vector((vwidth-1) downto 0);
signal w22: std_l ogic_vector((vwi dth-1) downto 0);
signal w23: std_logic_vector((vwidth-1) downto 0);
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signal w31l: std_logic_vector((vwidth-1) downto 0);

signal w32: std_logic_vector((vwidth-1) downto 0);

signal w33: std_logic_vector((vwidth-1) downto 0);

signal Dvw std_l ogic;

signal DVs: std_logic;

signal sl1: std_logic_vector(vwi dth-1 downto 0);

signal s2: std_logic_vector(vwi dth-1 downto 0);

signal s3: std_logic_vector(vwi dth-1 downto 0);

signal s4: std_logic_vector(vwi dth-1 downto 0);

signal s5: std_logic_vector(vw dth-1 downto 0);

signal s6: std_logic_vector(vwi dth-1 downto 0);

signal s7: std_logic_vector(vwi dth-1 downto 0);

signal s8: std_logic_vector(vwi dth-1 downto 0);

signal s9: std_logic_vector(vwi dth-1 downto 0);

conponent w ndow_3x3

generic (
vwi dt h: integer:=8
)i

port (
a k :in std_logic;
RSTn :in std_logic;
D :in std_logic_vector(vwi dth-1 downto 0);
wll out std_logic_vector(vwidth-1 downto 0);
wl2 out std_logic_vector(vwidth-1 downto 0);
wl3 out std_logic_vector(vwidth-1 downto 0);
w21 out std_logic_vector(vwidth-1 downto 0);
w22 out std_logic_vector(vwidth-1 downto 0);
w23 out std_logic_vector(vwidth-1 downto 0);
w31l out std_logic_vector(vwidth-1 downto 0);
w32 out std_logic_vector(vwi dth-1 downto 0);
w33 out std_logic_vector(vwidth-1 downto 0);
DV out std_logic:="0

)i

end conponent wi ndow_3x3;

conponent r
generic (

num col s: integer:=128;
numrows: integer:=128

port (

)

c_count er

)i

a k :in std_logic;
RSTn :in std_logic;
En in std_|logic;

Col Pos : out integer;
RowPos : out integer

end conponent rc_counter;

si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal
si gnal

Col Pos: integer: =0;
RowPos: i nt eger: =0;
Col Pos_c: integer:=0; -- corrected positions
RowPos_c: i nt eger: =0;

rtl:
rt2:
rt3:
rt4:
rt5:
rt6:
rt7:
rt8:
rt9:

rt10:
rt11:
rt12:
rt13:
rt14:
rt15:
rt16:

nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
nt eger: =0;
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signal flag: std_logic:="0";

begi n

sort_3x3x: sort_3x3
generic map (

vwidth => 8
port map (

ak = dKk,
RSTn => RSTn,
wll => will,
wil2 = wil2,
wl3 => wil3,
w21 = w21,
w22 = w22,
w23 => w23,
w31 => w31,
w32 => w32,
w33 => w33,
Dvw => DWw,
Dvs => DVs,
sl => sl,
s2 => s2,
s3 => s3,
s4 => s4,
s5 => sb,
s6 => s6,
s7 => s7,
s8 => s8,
s9 => s9

)

wi ndow_3x3x: w ndow_3x3
generic map (

vwidth => 8
port map (

ad k => d k,
RSTn => RSTn,
D => D,
wil => wil,
wl2 => wi2,
wl3 => wi3,
w21 => w21,
w22 => w22,
w23 => w23,
w31 => w31,
w32 => w32,
w33 => w33,
DV => DVw

)

rc_counterx: rc_counter
generic map (

num col s => 128,
num r ows => 128
)

port map (
ak = dKk,
RSTn => RSTn,
En => RSTn,
Col Pos => Col Pos,
RowPos => RowPos

)

ro_filt_proc: process(RSTn, d k)
begi n
if RSTn = '0' then
Col Pos_c <= 0;



rel <=
rt2 <=
rt3 <=
rt4 <=
rts5 <=
rté <=
rt7 <=
rt8 <=
rt9 <=
rt10o <=
rtll <=
rtl2 <=
rti13 <=
rtl14 <=
rt1s <=
rtl6 <= 0,
RowPos_c <= 0;
Dout <= (others=>'0");
DV <= '0";
flag <= '0";

elsif rising_edge(Cd k) then
-- counter correction
Col Pos_c <= ((Col Pos-16) nod 128);
rtl <= ((RowPos-1) nod 128);

PRLLeLeeeeRe

Lo

rt2 <=rti;
rt3 <=rt2;
rt4 <= rt3;
rt5 <= rt4;
rt6 <= rtbh;
rt7 <= rté6;
rt8 <= rt7;
rt9 <= rt8;
rt10 <= rt9;

rtll <= rt10;
rtl2 <= rtil;
rt13 <= rt12;
rtl4 <= rt13;
rt15 <= rti14;
rt16 <= rtib;
RowPos_c <= rt16;
-- screen edge detection
if (ColPos_c = numcols-1) or (RowPos_c = numrows-1) or (Col Pos_c
= numcol s-2) or (RowPos_c = 0) then
Dout <= (ot hers=>'0");
el se
if order = 1 then
Dout <= sl1;
elsif order = 2 then
Dout <= s2;
elsif order = 3 then
Dout <= s3;
elsif order = 4 then
Dout <= s4;
elsif order = 5 then
Dout <= sb;
elsif order = 6 t hen
Dout <= s6;
elsif order = 7 then
Dout <= s7;
elsif order = 8 then
Dout <= s8;
elsif order = 9 then
Dout <= s9;
end if;

end if;
if Col Pos >= 16 and RowPos >= 1 then
DV <= '1';

flag <= '1';
elsif flag = '1" then
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DV <= '1';

el se
DV <= '0';
end if;
end if;
end process;
end ro_filt_3x3;
conv_3x3.vhd

-- filenane: conv3x3. vhd
-- aut hor: Tony Nel son
-- dat e: 12/ 25/ 99
-- detail: 2D convol ution operator with 3x3 size kernel, selectable in

-- conv_3x3_pkg in the K constant.

library |EEE;
use | EEE. std_l ogic_1164.all;
use | EEE. nuneric_std.all;

package conv_3x3_pkg is
-- the constants kx defines the kernel to be used in the convol uti on operation
-- the kx value may be in the range -128<kx<128
constant kO : std_logic_vector(7 downto 0):=std_l ogi c_vector(to_signed(1,8))
constant k1 : std_logic_vector(7 downto 0):=std_| ogic_vector(to_signed(2,8));
constant k2 : std_logic_vector(7 downto 0):=std_l ogic_vector(to_signed(1,8));
constant k3 : std_logic_vector(7 downto 0):=std_|l ogic_vector(to_signed(2,8))
constant k4 : std_logic_vector(7 downto 0):=std_| ogic_vector(to_signed(9,8));
constant k5 : std_logic_vector(7 downto 0):=std_| ogic_vector(to_signed(2,8));
constant k6 : std_logic_vector(7 downto 0):=std_|l ogic_vector(to_signed(1,8));
constant k7 : std_logic_vector(7 downto 0):=std_|l ogic_vector(to_signed(2,8));
constant k8 : std_logic_vector(7 downto 0):=std_| ogic_vector(to_signed(1,8));

constant vw dth : integer := 8;
const ant order :integer := 1;
constant numcols ;. integer := 128;
constant num.rows : integer := 128;
end conv_3x3_pkg;
library |EEE;
use | EEE. std_l ogic_1164.all;
use | EEE. std_logic_arith.all;
use wor k. conv_3x3_pkg. al | ;
entity conv_3x3 is
port (
a k :in std_logic;
RSTn :in std_logic;
D :in std_logic_vector(vwi dth-1 downto 0);
Dout : out std_logic_vector((vw dth*2)+1 downto 0);
DV : out std_logic
)i

end conv_3x3;
architecture conv_3x3 of conv_3x3 is

signal wll: std_logic_vector((vwidth-1) downto 0);
signal wl2: std_l ogic_vector((vwi dth-1) downto 0);
signal wl3: std_logic_vector((vwidth-1) downto 0);
signal w21l: std_logic_vector((vwidth-1) downto 0);
signal w22: std_logic_vector((vwidth-1) downto 0);
signal w23: std_logic_vector((vwidth-1) downto 0);
signal w31l: std_logic_vector((vwidth-1) downto 0);
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signal w32: std_logic_vector((vwidth-1) downto 0);
signal w33: std_logic_vector((vwidth-1) downto 0);

signal Dvw std_l ogic;

conponent w ndow_3x3

generic (
vwi dt h: integer:=8
)i

port (
a k :in std_logic;
RSTn :in std_logic;
D :in std_logic_vector(vwi dth-1 downto 0);
wll : out std_logic_vector(vwi dth-1 downto 0);
wl2 : out std_logic_vector(vwi dth-1 downto 0);
wl3 : out std_logic_vector(vwidth-1 downto 0);
w21 : out std_logic_vector(vwidth-1 downto 0);
w22 : out std_logic_vector(vwidth-1 downto 0);
w23 : out std_logic_vector(vwi dth-1 downto 0);
w31l : out std_logic_vector(vwi dth-1 downto 0);
w32 : out std_logic_vector(vwi dth-1 downto 0);
w33 : out std_logic_vector(vw dth-1 downto 0);
DV : out std_logic:="0'

)i

end conponent wi ndow_3x3;

-- 16 bits for 8x8 plus 1 bit for sign

signal nD: signed((vw dth*2) downto 0):
signal ml: signed((vw dth*2) downto 0):
signal n2: signed((vwidth*2) downto 0):
signal nmB: signed((vw dth*2) downto 0):
signal md: signed((vw dth*2) downto 0):
signal nb: signed((vw dth*2) downto 0):
signal nmb: signed((vw dth*2) downto 0):
signal nv7: signed((vw dth*2) downto 0):
signal nmB: signed((vw dth*2) downto 0):

signal al0: signed((vw dth*2)+1
signal all: signed((vw dth*2)+1
signal al2: signed((vw dth*2)+1
signal al3: signed((vw dth*2)+1
signal al4: signed((vw dth*2)+1
signal a20: signed((vw dth*2)+2
signal a2l: signed((vw dth*2)+2
signal a22: signed((vw dt h*2)+2
signal a30: signed((vw dth*2)+3
signal a31: signed((vw dth*2)+3
signal a40: signed((vw dth*2)+4

downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o
downt o

=( ot her s=>'
=( ot her s=>'
=( ot her s=>'
=( ot her s=>'
=( ot her s=>'
=( ot her s=>'
=( ot her s=>'
=( ot her s=>'
=( ot her s=>' ;
0):=(others=>'0
0):=(others=>'0
0):=(others=>'0
0):=(others=>'0
0):=(others=>'0
0):=(others=>'0
0):=(others=>'0
0):=(others=>'0

0

0

0

QeeeQeeoQQ
NUNUNONUNDNUNDNN

~— L — —

0) : =( ot her s=>"
0) : =( ot her s=>'
0) : =( ot her s=>"

.)’
.)’
.)’
.)’

signal dO: signed((vw dth*2)+1 downto 0):=(others=>'0");

conponent rc_counter

generic (
num col s: integer:=128;
numrows: integer:=128

port (
a k :in std_logic;
RSTn :in std_logic;
En :in std_logic;
Col Pos : out integer;
RowPos : out integer
)i

end conponent rc_counter;

signal Col Pos: integer: =0;

si gnal RowPos: i nteger: =0;
signal Col Pos_c: integer:=0; -
signal RowPos_c: integer: =0;
signal rtl: integer:=0;

signal rt2: integer:=0;

signal rt3: integer:=0;

signal rt4: integer:=0;

signal rt5: integer:=0;

corrected positions
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signal rt6: integer:=0
signal rt7: integer:=0
signal rt8: integer:=0
signal flag: std_logic:="0";

begi n

wi ndow_3x3x: w ndow_3x3
generic map (

vwi dth => 8

port map (
ad k => dk,
RSTn => RSTn,
D => D,
wil => wil,
wl2 => wi2,
wi3 => wl3,
w21 => w21,
w22 => w22,
w23 => w23,
w31 => w31,
w32 => w32,
w33 => w33,
DV => DVw

)

rc_counterx: rc_counter
generic map (

num col s => 128
num r ows => 128
port map (

ak => dk
RSTn => RSTn
En => RSTn,
Col Pos => Col Pos,
RowPos => RowPos

)

convproc: process(d k, RSTn)
begi n

'0" then

<= (ot hers=
<= (ot hers=
<= (ot hers=
<= (ot hers=
<= (ot hers=
<= (ot hers=
<= (ot hers=
<= (ot hers=
<= (ot hers=>
al0 <= (others=
all <= (others=
al2 <= (others=
al3 <= (others=
al4 <= (others=
a20 <= (others=
a2l <= (others=
a22 <= (others=
a30 <= (others=
a3l <= (others=
a40 <= (ot hers=>
d0 <= (others=>'0'
Dout <= (others=>'0")

if RSTn

333323IR3 0

DV <="'0'
Col Pos_c <= 0;
rtl <=0
rt2 <=0

rt3 <=0



elsif

rt4 <=
rts <=
rt6 <=
rt7 <=
rt8 <=
RowPos

c<_

flag <= '0";
risi ng_edge(Cl k) then

-- counter

0;

correction

Col Pos_c <= ((Col Pos-8) nod 128);
((RowPos-1) nod 128);

rtl <=
rt2 <=
rt3 <=
rt4 <=
rt5 <=
rt6 <=
rt7 <=
rt8 <=

RowPos_

if (Col Pos_c

rtl;

rt2;
rt3;
rt4;
rt5;
rt6;
rt7;

cC <=1r1t8;
-- screen edge detection

= numcol s-1) or (RowPos_c

= numcol s-2) or (RowPos_c = 0) then

end if;
if Dvw =

Dout

C1

<

t

= (others=>'0");

hen

-- windowkernel multipliers
-- this could be optinized by using hardware-specified multipliers

n <=
m <
m <
B <
m <
b <
b <
nm <
B <

<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=

signed(' 0' &11) *si gned(kO) ;
si gned(' 0' &12) *si gned(k1);

si gned(' 0' &13) *si gned(k2);
si gned(' 0' &\21) *si gned(k3);
si gned(' 0' &\22) *si gned( k4) ;
si gned(' 0' &23) *si gned(k5) ;
si gned(' 0' &31) *si gned(k6) ;
signed(' 0' &32) *si gned(k7);
si gned(' 0' &\33) *si gned(k8) ;

(nD(16) &) +n;
(n2(16) &) +nB;
(ma(16) &md) +nb;
(m6(16) &B) +ni7;
nB(16) &n8;
(a10(17) &a10) +all;
(al12(17) &al2) +al3;
al4(17) &al4,

(a20( 18) &a20) +a21;
a22(18) &a22;
(a30(19) &a30) +a31;
a40(20 downto 3);

numrows-1) or (Col Pos_c

if (ColPos_c = numcols-1) or (RowPos_c = numrows-1) or
(Col Pos_c = numcols-2) or (RowPos_c = 0) then

Dout <= (others=>'0");

el se
Dout <= std_|l ogi c_vector(d0);
end if;
end if;
if Col Pos >= 8 and RowPos >= 1 then
DV <= '1';
flag <= '1';
elsif flag = '1" then
DV <= '1';
el se
DV <= '0';
end if;

end if;

end process;

end conv_3x3;
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