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Abstract

A number of features make Java an attractive but a debatable choice for High Perfor-

mance Computing (HPC). In order to gauge the applicability of Java to the Computational

Fluid Dynamics (CFD) we have implemented NAS Parallel Benchmarks in Java. The per-
formance and scalabili_y of the benchmarks point out the areas where improvement in

Java compiler technology and in Java thread implementation would move Java closer to

Fortran in the competition for CFD applications.

1. Introduction

The portability, expressiveness and safety of the Java language supported by rapid

progress in Java compiler technology have created interests in the HPC community to

evaluate Java technology on computationally intensive tasks. Java threads and network-

ing capabilities well position Java for programming on Shared Memory Parallel (SMP)

computers and on computational grids. On the other hand, Java safety, lack of light

weight objects and intermediate byte code compilation stage create a number of challeng-

es in achieving high performance of Java code. The challenges are met by work on imple-

mentation of efficient Java compilers [9],[5] and by extending Java with classes

implementing the data types used in HPC [10].

"In this paper, we report an implementation of the NAS Parallel Benchmarks (NPB) [1]

in Java. The benchmarks are accepted by HPC community as an instrument for evaluat-

ing performance of parallel computers, compilers and tools (in [8] mentioned that "Par-

allel Java versions of Linpack and NAS Parallel Benchmarks would be particularly

interesting"). The implementation of the NPB in Java builds a base for watching the

progress of Java technology, for evaluating Java as a choice for programming aerospace

applications and allows to identify the areas where improvement in Java compilers

would give the most gain in performance of the Computational Fluid Dynamics (CFD)

codes written in Java.

"MRJ Technology Solutions, Inc. M/S T27A-2, NASA Ames Research Center, Moffett Field, CA 94035-1000.
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Our implementation NPB in Java is derived from the optimized NPB3.2-serial, [7]

versions written in Fortran, except IS written in C. The NPB3.2-serial version was previ-

ously used by us for development of HPF [3] and OpenMP [7] versions. We start with an

evaluation of Fortran to Java conversion options by comparing performance of basic CFD

operations. The most efficient options are then used to translate the Fortran to Java. Then

we parallelize NPB using Java threads and master-workers load distribution model. Fi-

nally we profile the code on SGI Origin2000 and on SUN Enterprise10000 machines and

analyze its-performance.

2. NAS Parallel Benchmarks

NAS Parallel Benchmarks (NPB) were derived from CFD codes [1]. They were de-

signed to compare the performance of parallel computers and are recognized as a stan-

dard indicator of computer performance. NPB consists of five kernels and three

simulated CFD applications. The five kernels represent the computational core of five nu-

merical methods used in CFD applications. The simulated CFD applications mimic some

data movement and computations found in full CFD codes.

An algorithmic description of the benchmarks (pencil and paper specification) was

given in [5] and is referred to as NPB-1. A source code implementation of most bench-

marks (NPB-2.0) was described in [2]. The latest release of NPB-2.3 contains MPI source

code for all of benchmarks and a stripped-down serial version (NPB-2.3-serial). The serial

version was intended to be used as a starting point for parallelization tools and compilers

and for other types of parallel implementations. For completeness of discussion we out-

line the seven benchmarks (except for embarrassingly parallel, EP) that have been imple-

mented in Java.

BT is a simulated CFD application that uses an implicit algorithm to solve 3-dimen-

sional (3-D) compressible Navier-Stokes equations. The finite differences solution to the

problem is based on an Alternating Direction Implicit (ADI) approximate factorization

that decouples the x, y and z dimensions. The resulting system is Block Tridiagonal of 5x5

blocks and is solved sequentially along each dimension.

SP is a simulated CFD application that has a similar structure to BT. The finite differ-



ences solution to the problem is based on a Beam-Warming approximate factorization

that decouples the x, y and z dimensions. The resulting system of Scalar Pentadiagonal

linear equations is solved sequentially along each dimension.

LU is a simulated CFD application that uses symmetric successive over-relaxation

(SSOR) method to solve a seven-block-diagonal system resulting from finite-difference

discretization of the Navier-Stokes equations in 3-D by splitting it into block Lower and

Upper triangular systems.

FT contains the computational kernel of a 3-D fast Fourier Transform (FFT). FT per-

forms three series of one-dimensional FFTs, one series for each dimension.

MG uses a V-cycle Multi Grid method to compute the solution of the 3-D scalar Pois-

son equation. The algorithm works iteratively on a set of grids that are made between the

coarse and fine grids. It tests both short and long distance data movement.

CG uses a Conjugate Gradient method to compute an approximation to the smallest

eigenvalue of a sparse unstructured matrix. This kernel tests unstructured computations

and communications by using a diagonally dominated matrix with randomly generated

locations of entries.

IS performs sorting of integer keys using linear time Integer Sorting algorithm based

on computation of the key histogram. IS is the only benchmark written in C.

Our implementation is based on the optimized version of NPB-2.3-serial as described

in [7].

3. Fortran to Java Translation

Java is a more expressive language than Fortran. This implies a simple translation

from Fortran to Java as well as a challenge in achieving the performance of Java code

matching the performance of Fortran code. There are two general options in translating

Fortran code into Java: literal translation and object oriented translation. In the literal

translation the procedural structure of application is kept intact, arrays are translated to

Java arrays, complex numbers are translated into (Re, Im) pairs and no other objects are

used except the objects having the methods corresponding to the original Fortran subrou-

tines. The object oriented translation translates multidimensional arrays, complex num-



bers, matrices and grids into appropriate classes and changes the code structure from the

procedural style to the object oriented style. Advantage of the literal translation is that

mapping of the original code to the translated code is direct and the potential overhead

for access and modification of corresponding data is less than in the object oriented trans-

lation. On the other hand, the object oriented translation results in a better structured

code and allows to advise the compiler in special treatment of particular classes, for ex-

ample using semantic expansion (inlining), [9], [11]. Since we are interested in high per-

formance code we chose the literal translation as resulting in a faster code.

In order to compare efficiency of different options of the literal translation and to

form a baseline for estimation of the quality of our implementation of the benchmarks we

chose a few basic CFD operations and implemented them in Java. Relative performance

of different implementations of basic operations gives us a guide for Fortran-to-Java

translation. As basis operations we chose the operations we have used for building HPF

performance model [3]:

• loading/storingarray elements

• filtering an array with a local kernel (the kernel can be a first or second order

star-shaped stencil as in BT, SP and LU, or compact 3x3x3 stencil as in the

smoothing operator in MG);

• matrix vector multiplication of a 3D array of 5x5 matrices a 3D array of five-

dimensional vectors (manipulation with 3D arrays of five-dimensional vectors is

a common CFD operation);

• performing a reduction sum of 4D array elements.

We used two ways to implement these operations: with linearized arrays and with

preserving the number of array dimensions. The version with preserving array dimen-

sion was 2-8 times slower than the linearized version on SGI Origin2000 (Java 3.1), on Sun

Enterprisel0000 (Java 1.2.2) the ratio was within 2-5. So we have decided to translate For-

tran arrays into linearized Java arrays and present profiling data for the linearized trans-

lation only. The performance of serial and multithreaded implementations are compared

with the Fortran implementation. The results on SGI Origin2000 are summarized in

Table 1.
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TABLE 1. Execution time in seconds of basic CFD operations on SGI Origin 2000 for f77,

Java serial and Java multithreaded implementations (grid size 81x81x100). The column

number is the number of threads.

Operation f77

1. Assignment (10 iterations) 0.127

2. First Order Stencil 0.060

3. Second Order Stencil 0.069

4. Matrix vector multiplication 0.624

5. Reduction Sum 0.048

Serial 1 2 4 8 12 16

1.145 1.253 0.585 0.298 0.211 0.158 0.125

0.513 0.533 0.283 0.142 0.099 0.057 0.048

0.767 0.793 0.411 0.205 0.151 0.125 0.067

7.221 7.271 3.824 2.036 1.228 0.846 0.684

0.653 0.686 0.379 0.201 0.139 0.082 0.081

We can suggest some conclusions from the profiling data.

• Java serial code is factor of 8.6 (First Order Stencil) to 13.6 (Reduction Sum) times

slower than the corresponding Fortran operations.

• Thread overhead (serial column versus I thread column) contributes only a few

percent to the execution time.

• The external loop of the operations is completely parallel and speedup with 16

threads is around 11 for computationally expensive operations (2,3 and 4) and is

around 9 for less intensive operations (1 and 5).

For more detailed analysis of the basic operations we used an SGI profiling tool per-

fex. perfex uses 32 hardware counters to count issued/graduated integer and floating

point instructions, load/stores, primary/secondary cache misses. The profiling with

per f ex shows that the Java/Fortran performance correlates well with the ratio of the to-

tal number of executed instructions in the two codes. Also, the Java code executes as twice

as many floating point instructions as the Fortran code, confirming that Just-In-Time (JIT)

compiler does not use the "madd" instruction since the last is not compatible with Java

rounding error model, [9].

Once we chose a literal translation with array linearization of the Fortran to Java we

automate the translation with using emac s regular expressions. For example, to translate

Fortran array

REAL*8 u(5,nx,ny,nz)

u(m,i,j,k)=...

into Java array:

double u [] =new

int usizel=5,

double[5*nx*ny*nz];



usize2=usizel*nx,
usize3=usize2*ny;

u((m-1)+(i-1)*usizel+(j-1)*usize2+(k-1)*usize3)=...

we translated the declaration by hand and translated tl_e references to array elements by

using the macro

arrayname(\([",]+\) ,\([",]+\) ,\([",]+\),\([")]\)) =>

arrayname[((\l-l)+(\2-1)*sizel+(\3-1)*size2+(\4-1)*size3] .

Similarly,DO loops were converted to Java for loops using the macro

do[ ]+\([-+a-z0-9]+\) [ ]*=[ ]*\([-+a-z0-9]+\) [ ]*, [ ]*\(.+\)

=> for(\l=\2;\l<=\3;\l++) {.

Several Fortran constructs were changed to Java through context freereplacement. These

include all boolean operators, all type declarations (except character arrays which were

converted to Java strings), some i f-then-el s e statements, comments, the ca 11 state-

ment, and line continuation marker. The semiautomatic translation allowed us to trans-

late about 70% of Fortran code to Java. In general, even the literal translation requires

parsing the Fortran code and translation of the parse tree to a Java equivalent, for example

for labeled DO loops, common, format, and IO statements.

In general, each benchmark has the base class and derived main and workers classes.

The base class contains all global and common variables as members. The main class con-

tains one method per each Fortran subroutine, including main. There is one worker class

per each parallelizable Fortran subroutine (see discussion in the next section). The main

class has two additional methods: runBenchmark ( ) executed in serial mode and run ( )

executed in parallel mode. runBechraark () calls all methods exactly in the same se-

quence as in the original Fortran code. The run ( ) method manages the worker threads

in the parallel mode. Commonly used functions Timer and Random are implemented as

separate classes and are imported into each benchmark. All the benchmarks are united

into the NPB package.

4. Using Java Threads for Parallelization

A significant appeal of Java for parallel computing steams from presence of threads

as part of Java language. On a multiprocessor machine the Java Virtual Machine (J-VM)



can assign different threads to different processorsand speed up execution of the job if

the work is well divided between threads. Conceptually, Java threads are close to the

OpenMP threads, so we used the OpenMP version of the benchmarks, implemented at

NASA Ames ResearchCenter, [7] asa prototype for multithreading.

Thebaseclass(henceall other classes)of eachbenchmark was derived from classj a-

va. lang. Thread, so all benchmark objects are implemented as threads. The instance

of the main classwas designated asthemaster to control the synchronization of the work-

er objects. Workers were switched between blocked and runnable states with wait()

and notify ( ) methods of the Thread class.

The initialization of the threads and partitioning the work between them are per-

formed in the main class. The partition is accomplished by specifying the starting and

ending iterations of the outer for loops of eachworker. The master thread dispatches the

job to each worker, starts the workers and then waits until all workers are finished (see

Figure 1). Eachworker thread is then started and immediately goes into a blocked state

on the condition that the variable done is true, then it performs the work and notifies the

master that the work is done. The while loop around the wait call prevents an arbitrary

notify call from waking a thread before its time. All CFD codes are placed in the step

method.

Master's code

for(i=O;i<num_threads;i++)

worker[i].done=false;

for(i=O;i<num_threads;i++)

synchronized(worker[i]){

worker[i].notify();

}

for(i=O;i<num_threads;i++)

while(!worker[i].done){

try(wait();}

catch(InterruptedException ie){}

}

Worker' s code

while(done){

try{wait();}

catch(InterruptedException ie) {}

}

step();

done=true;

synchronized(master){master.notify();}

FIGURE 1. Master-Worker Thread Synchronization.

The described model of thread synchronization is applicable only if there is no depen-

dence between workers: each worker processes the job dispatched by the master indepen-

dently on other workers. Such dependences, however, exist in LU, where the
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computations are pipelined. We have implemented the pipelined computations with re-

lay-race thread synchronization. The master thread starts all workers but waits only for

the last worker to finish (the relay-race mechanism guarantees that all other workers have

finished already). The workers are synchronized between themselves with the job relay,

as shown in Figure 2.

while(true){

while(done)

tryfwait();}

catch(Inter_iptedException ie){}
for(k=l;k<nz;k--){

if(id>O)

while(todo<=O)

try{wait();}

catch(InterruptedException ie){}

step(k);

todo--;

if(id<num_threads-l)

synchronized(worker[id+l]){

worker[id+l].todo++;

worker[id+l].notify();

}

}

done=true;

if(id==num_threads-l) synchronized(master){master.notify();

}

FIGURE 2. Worker relay-race synchronization for pipelineing computations.

5. The Performance

We have tested the benchmarks on classes S,W and A for different problem size; the

performance is shown for the class A as the largest of tested classes. The full performance

results for IS, CG and MG will be included in the final version of the paper. The tests were

performed on two shared memory machines: SGI Origin2000 (195 MHz, 24 processors)

and SUN Enterprise 10000 (333 MHz, 16 processors). On the Origin we used Java version

"3.1 (Sun 1.1.5)" (in the final version of the paper we will compare its performance with

performance of SGI latest Java 3.1.1). On the Enterprise we used Java 1.1.3 (we also tested

the latest Java 1.2.2, but its scalability was significantly worse than that of Java 1.1.3). The

performance results are summarized in Table 2 and Table 3, and the profiles are shown

in Figure 3 and Figure 4 respectively.



TABLE2. Benchmarks time in seconds on SGI Origin2000 (195 MHz, 24 processors),
Java version "3.1 (Sun 1.1.5)". The column number is the number of threads.

Thread number Serial 1 2 4 8 9

BT.A Java 14605.2 16447.6 8448.4 4375.6 2550.9 2230 2

BT.A f77-OpenMP 1396.0 1477.8 749.0 378.6 177.9

SP.A Java 9948.0 10293.7 5640.4 3001.4 1699.3 1690.3

SP.A f77-OpenMP 1224.3 1227.1 646.0 350.4 175.0 160.8

LU.A Java 14684.8 17585.7 10330.0 4901.6 2511.1 2335.2

LU.A f77-OpenMP 1248.7 1234.4 585.6 336.2 184.4

FT.A Java 1088.1 1135.5 657.1 336.4 171.9

FT.A f77-OpenMP 113.1 114.5 60.2 30.9 16.2

IS.A Java 17.0 a a 19.4 14.5

IS.A C-Serial 7.9 -

CG.A Java 182.2 a a a a

CG.A f77-OpenMP 46.0 47.7 28.6 14.0 4.8

MG.A Java a a a a a

MG.A f77-OpenMP 47.3 47.6 27.1 13.7 7.0

12 16

1700.6 1367.4

106.1

1361.3 1254.9

91.4

1797.7 1655.9

96.1

145.7 105.9

8.6

a a

a a

2.5

a

3.9

a. The number will be supplied in the final version of the paper.

TABLE 3. Benchmarks time in seconds on SUN Enterprise10000 (333 MHz, 16
processors), Java version "1.1.3 ''a. The column number is the number of threads.

Serial 1 2 4 8 9

BT.A Java 13609.5 14671.3 7381.7 3846.3 2305.0 2042.7

SP.A Java 10235.8 11108.1 5692.9 3409.3 2095.5 1899.1

LU.A Java 12344.5 13578.9 6843.3 3765.7 2077.3 1892.7

1104.6 1318.8 674.7 384.2 342.7FT.A Java

IS.A Java 21.1 25.4 13.7 8.5 10.6

CG.A Java 203.8 b b b b

b b b b b
MG.A Java

12 16

1782.7 1762.2

1862.1 1671.2

1730.2 1745.4

353.4 363.3

13.9 11.8

b b

b b

a. Performance tests with Javal.2.2 showed that serial and single thread performance improved by 5%-10%
however 12 threads performance became worse by 50%-100%
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We can suggest the following conclusions from the performance results. There are 2

gr6ups: benchmarks BT, SP, LU and FT working on structured grids and benchmarks IS

and CG involving unstructured computations. For the first group the serial Java/Fortran

execution time ratio is within interval 8-12 which is close to 8-14 interval for the basic CFD

operations (Section 3). It means that our implementation of the benchmarks does not in-

troduce additional performance overhead to the overhead of the basic operations• For the

second group Java/NPB execution time ratio is within 2-4 interval. This separation in the
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two groups may be explained by the fact that the f77 compiler optimizes the regular com-

putations much better than the Java compiler.

The benchmarks working on structured grids are heavily involve the basic CFD op-

erations and any performance improvement of the basic operations would essentially im-

prove performance of the benchmarks. Such improvement can be achieved in three

directions. Firstly, an improvement in JIT must reduce the ratio of Java/Fortran instruc-

tions (which currently is factor of 10) for executing the basic operations. Secondly, the

Java rounding error should be compatible with well accepted for HPC computations the

"madd" instruction. Thirdly, in all benchmarks working on structured grids the array siz-

es and loop bounds are constants and simple compiler optimization can move bound

checking out of the loop (cf. [9]) without compromising the code safety.

Multithreading of the Java benchmarks introduces overhead about 10%. The speedup

of BT, SP and LU with 16 threads is in the range 6-12 (efficiency 0.38-0.75). The low effi-

ciency of FT on SUN Enterprise is explained by inability of JVM to use more than 4 pro-

cessors to run applications requiring significant amount of memory (FT.A uses about 350

Mb). An artificial increase in the memory use for other benchmarks also resulted in drop

of scalability for more than 4 threads. The lower scalability of LU can be explained by the

fact that it performs the thread synchronization inside a loop over one grid dimension,

thus introducing higher overhead due to thread relay-racing mechanism *. The low scal-

ability of IS was expected since the amount of work performed by each thread is small

relative to other benchmarks. The scalability of IS would improve for larger classes.

The profiles of different subroutines are shown in Figure 3 and Figure 4. All subrou-

tines, except RHS, show similar degradation of the efficiency, which is close to the 50%-

60% for16 threads and close to the efficiency of the basic CFD operations. The lower effi-

ciency of RHS can be explained by the fact that it processes larger number of indepen-

dently synchronized threaded nests and the nests are smaller, resulting in larger

multithreading overhead than in other subroutines.

6. Related Work

In our implementation of NPB only Java threads were used. The University of West-

"By the same reason OpenMP version of LU has less parallel efficiency than other benchmarks.

11



minster's Performance Engineering Group at the School of Computer Science used the

Java JNI (Java Native Interface) to create a system dependent Java MPI library. They also

used this library to implement the NAS benchmarks FT and IS using javaMPI [6]. The

Westminster version of javaMPI can be compiled on any system with Java 1.0.2 and LAM

6.1.

The University of Adelaide's Distributed and High Performance Computing Group,

has also released the NAS benchmarks EP and IS (with FT, CG and MG under develop-

ment), [8] along with many other benchmarks in order to test Java's suitability for grand

applications.

7. Conclusions

Although the performance of the implemented benchmarks in Java is not comparable

to Fortran and C at this time, using the performance enhancing methods detailed in [9],

serial performance could be improved to near Fortran-like performance. Efficiency of

parallelization with threads is about 0.5 for up to 16 threads and is lower than efficiency

of parallelization with OpenMP, MPI and HPF. However, with several groups working

on MPI for Java, improvements in parallel performance and scalability seem inevitable as

well. The attraction of Java as a numerically intensive applications language is primarily

driven by its ease of use, portability and high expressiveness, which, in particular, allows

to express parallelism. If it is made to run faster through methods that have already been

researched extensively, such as high order loop transformations, semantic expansion and

a wider availability of traditionally optimized native compilers, together with an imple-

mentation of multidimensional arrays and complex numbers it could be an attractive en-

vironment for HPC applications.
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