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Abstract 

In this paperthe eflcient implementation of different types of orthogonal wavelet transforms 
with respect to practical applications is discussed. Orthogonal singlewuvelet triinsfornis being 
based on one scaling function and one wavelet function are used for  denosing of signals. 
Orthogonal multiwavelets are bused on several scaling filnctions and several wavelets. Since 
they allow properties like regularity, orthogonality and s y t n m e t ~ ~  being impossible in the 
singlewavelet case, miiltiwavets are well suited bases for  image compression applications. With 
respect to an eficient implementation of these orthogonal wcrvelet transforms approximating 
the exact rotation angles of the corresponding orthogonal wavelet lattice jilter:; by using very 
fbw CORDIC-based elementary rotations reduces the number of shift and add operations 
signijicuntly.. The performance of the resulting, conipututionully cheap, approximated wavelet 
transforms with respect to practical applications is discussed in this paper: 

1 Introduction 

In recent years wavelet transforms have gained a lot of interest in many application fields, whereby 
orthogonal wavelet bases have been introduced by examining different possibilj ties for their design 
[ 11. Orthogonal singlewavelet transforms using one scaling function and one wavelet function 
were designed. Suitable architectures for implementing wavelet transforms are octavfilterbanks, 
whereby each stage of the filterbank is composed of a lowpass filter G ( z )  and the complementary 
highpass filter H ( z ) .  Orthogonal lattice filters can be used t o  implement these stages, whereby 
only orthogonal 2 x 2-rotations are required [7, 81. Orthogonal singlewavelets are suitable bases 
for different types of signals, e.g. images, since they analyse high frequencies with bases of small 
compact support and low frequencies with bases of large support. An important application is the 
denoising of images [3]. Thereby, the noisy image is transformed into the wavelet domain. Then, 
the small coefficients being dominated by the noise are eliminated by setting them to zero. Only the 
remaining large coefficients are used for reconstructing the image. The result is a denoised image 
mainly containing the pure image information. 

Symmetry of the bases is a desired property for image compr'ession applications [lo], as symme- 
tric bases allow to preserve the signal's phase in the transform domain and an efficient processing at 
borders. However, with exception of the trivial Hadr bases, it is impossible to delsign orthogonal and 
symmetric singlewavelets. Multiwavelet systems based on 2 scaling functions and 2 multiwavlets 
allow the properties regularity, orthogonality and symmetry, simultaneously 19, 61. This makes 
multiwavelets to appropriate bases for image compression algorithms. Also for implementing mul- 
tiwavelet systems filterbank structures can be used. Thereby, with each stage of the transform the 
signal is divided by two lowpass filters GI ( z ) ,  Gz ( z )  concerning the scaling functions and two 
highpass filters H I  ( z ) ,  H2 ( z )  concerning the multiwavelets. For implementing these stages of the 
transform lattice structures being composed of orthogonal 2 x 2-rotations were presented in [6] .  
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With respect to image compression two different approaches are possible: With the first approach a 
inultiresolution of the image is executed and the coefficients of different scale are coded [lo]. With 
the second approach after an 8- or l k h a n n e l  filtering (DCT, LOT) of the image the coefficients of 
the different channels are coded [5]. The big advantagz of multiwavelet systems is, that they offer 
good bases for both approaches. 

The computational complexity plays an important role not only for image denoising and com- 
pression, but also for many other algorithms were wavelet transforms are used. Therefore, an 
efficient implementation of orthogonal wavelet transforms is desired. Since the basic modules of 
the wavelet lattice filters are orthogonal 2 x 2Zrotations, implementing the orthogonal rotations by 
a few shift and add operations is equivalent to an efficient implementation of the whole transform. 
The CORDIC-algorithm offers one possibility to execute elementary rotations, whereby a sequence 
of elementary rotations being implementable with a few shift and add operations is used. CORDIC- 
based approximate rotations [4, 8 ,2]  renounce on the full sequence of elementary rotations by using 
only a few elementary rotations such that the computational complexity is significantly reduced. In 
this paper the influence of this approximation on the performance of the wavelet transform with 
respect to the practical applications is discussed. Approximated, orthogonal wavelet systems sho- 
wing a very simple implementation are presented. With respect to practical applications, like image 
denoising or compression they perform in the same way as exact transforms. 

2 Orthogonal Singlewavelets 

Orthogonal singlewavelet systems are based on one scaling function @ ( t )  and one wavelet 
function Ik(t), which meet the following dilation equations: 

n-1 n-1 

a ( t )  = c gia (2t - i )  @ ( t )  = hi@ ( 2 t  - i) 
i = O  i = O  

The discrete coefficients gi and hi define the discrete wavelet transform and the wavelet filters 
G ( z )  = giz? (lowpass) and H ( z )  = h i x i  (highpass). Wavelet transforms can 
be implemented by the filterbank structure of Figure 1, whereby each stage is composed of the 
complementary wavelet filters. Suitable architectures for the implementation of these orthogonal 

H ( z i )  7 2  t 

Figure 1: Filterbank structure implementing a discrete wavelet transform 

filters are lattice structures. Figure 2 shows a lattice filter implementing one stage of Daubechies’ 
wavelet transform of length n = 4. Obviously, the basic modules are 2 x 2-rotations. By only using 
orthogonal rotations, orthogonality of the transform is structurally imposed. For the lattice filter to 
perform an orthogonal wavelet transform, another property is necessary. This property ensures, that 
the wavelet function is zero mean, what is equivalent with the wavelet having at least one vanishing 
moment and the transfer functions G ( z )  and H ( z )  having at least one zero at z = 1 and z = -1, 
respectively. In [7, 81 it was used, that these conditions are fullfilled, if the sum of rotation angles 
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Figure 2: Lattice filter implementing one stage of Daubechies' wavelet transform of length n = 4 

PI; is constant: Cph = -45" 
k 

Therefore, a lattice filter whose sum of all rotation angles is -45" performs an orthogonal wavelet 
transform, independent of the angles / ? E .  

3 Orthogonal Multiwavelets 

Multiwavelet systems using 2 scaling functions and 2 wavelets are based on 4 dilation equations, 
that are also represented by the basis matrix W of size 4 x 4m. 

2 2m-1 

2 Zm-1 

g1,o g1,1 . . . g1,4m-l 
Q2,o  92,l . ' ' g2,4m-I 
h1,o h1,l . ' . k 4 m - 1  

&,O h2,l . . ' h2,4m-1 

In [9] multiwavelets were designed that allow the properties regularity, ortogclnality and symme- 
try, simultaneously. Thereby, G I  (1st row of W )  and XPl (3rd row of W )  being symmetric, and 
a2 (2nd row of W )  and P2 (4th row of W )  being antisymmetric, requires a specially structured 
wavelet basismatrix W .  

bo a. bl al -bl al -bo a. 

ao bo ai bi a i  -bi 

Setting = 0.009977, 0.697129, bo = bl  = -0.083399 
results in the bases plotted in Figure 3. 

Also for multiwavelet transforms, filterbanks (Figure 4) and lattice structures offer an efficient 
implementation of the multiwavelet filters G , ( z )  = Cy:; gW/ ,  H,(z )  = Cy:: h,+ri ,  U E 
{ 1,2}. Figure 5 shows a lattice structure implementing orthogonal multiwavelet filters. Again, 
orthogonality is ensured by using only orthogonal rotations, (a wavelet transform (at least one 
vanishing moment) is guaranteed by the constant sum of rotation angles 
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Figure 3: Multiwavelets of R = 4, p = 2 and the corresponding scaling functions - 
stage 1 

stage 2 

w, w2 m 
Figure 4: Filterbank for implementing multiwavelet transformationen 

4 Efficient Implementation of Orthogonal Rotations 

Since in the singlewavelet- as well as in the multiwavelet case the lattice filters are composed of 
orthogonal 2 X 2-rotations only, in order to get a simple implementation of the filters, an efficient 
implementation of the orthogonal rotations is sufficient. 

An orthogonal 2 x 2-rotation R(N) is defined as follows: 

I c o s 0  - s i n &  [ s i n 0  C O S N  
R(0)  = 

The CORDIC algorithm is a common method to execute orthogonal rotations by using a sequence 
of w + 1 protations (U,  being the wordlength): 

with 2 K ,  = n-, L- ____ being the scaling factor. This corresponds to the representation of cy as 
1 + 2 - 2 ' i  

I; k 

This representation of an angle in the "arctan 2-I;" basis is also the basic idea of CORDIC-based 
approximate rotations [4], but there we have mk E { - l , O ,  +l}. 
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Figure 5: Lattice structure implementing mu1 tiwavelet filters 

In [4] double rotations consisting of 2 equal CORDIC elementary rotations were used, which 
rotate by the angle 2 a k ,  i.e. R ( 2 c r h )  = R(crk)R(crh) such that 

Now, the scaling factor 4 can be factorized into a sequence of shift & add operations: 
K ,  

With one (or a few) of these double rotations an approximate rotation can be composed, that is 
simple to implement, approximates any rotation angle to a certain accuracy (increasing the number 
of double rotations increases the accuracy), and is always exactly orthogonal independent of the 
accuracy. 

5 Efficiently implemented Singlewavelet transforms for image denoising 

In order to get efficiently implemented singlewavelet transforms, instead of the complete sequence 
of elementary rotations only a few CORDIC-based elementary rotations are used in order to 
approximate the exact rotations quite well. By always using double rotations (with different signs) 
the constant sum of rotation angles is not violated and a simple implementation of the scaling factor 
is possible. For the presented example of n = 4 PI = -60" and Pz = 15" are approximated by 

= a ~ c t a n 2 - ~  M 14.04". The corresponding scaling 
functions @(t)  for the exact rotation angles (dotted line) and for the case of the approximation (solid 
line) are plotted in Figure 6 (upper part) together with the zeros of the transfer functions G ( z ) .  The 
resulting lattice structure is shown in Figure 6 (lower part), whereby only very few shift and add 
operations are necessary. 

The decisive question is, how the performance of the wavelet transform is influenced by the 
approximation that allows the very simple implementation. Denoising of images is an important 
application of orthogonal wavelet transforms. Thereby, according to Figure '7 the noisy image 
is transformed into the wavelet domain, the small coefficients being dominated by the noise are 
threshholded, before the image is reconstructed by the inverse wavelet transform. In order to 
improve the performance of the transform, redundant, time-invariant, undecimated, orthogonal 
wavelet transforms are often used instead of nonredundant, time-variant, decimated, orthogonal 

= -45" - arctan2-' M -59.04" and 
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Figure 6: Comparison of Daubechies’ standard scaling function of  length n = 4 (dotted line) and 
the version showing a simple implementation (solid line) 

Figure 7: Denoising of signals via wavelet transform 

Figure 8 (left) shows a Lena image, whose quality is affected by white Gaussian noise of 21.2 
dB. By wavelet denoising the quality of the image can be improved to 28.4 dB what is documented 
in Figure 8 (right). Note, that this application is quite robust with respect to the accuracy of the 
wavelet transform: There is almost no difference in the performance of the algorithm using the 
exact or the approximated wavelet filters. Only exact orthogonality -this is guaranted in both cases- 
is important for this application. Note also, that wavelet denoising is not limited to a special kind 
of noise, different kinds of disturbances, e.g. blockartefacts, can be filtered out of the images. 
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Figure 8: Noisy (left) and denoised (right) version of Lena 

6 Efficiently implemented Multiwavelet transforms for irnage compres- 
sion 

In order to get efficiently implemented multiwavelet transforms, again, we approximate the exact 
rotation angles by using only a few CORDIC-based elementary rotations. The example of Figure 
3 requires the angles w1 = -w2 = 6.8", which are approximated by using only one elementary 
rotation by i;ll = -G2 = a ~ c t a n 2 - ~  F= 7.1". This results in the lattice structure of Figure 9 and 
in continuous bases that cannot be distinguished from those of Figure 3. With respect to image 

Figure 9: Lattice structure approximating the multiwavelet filters of n = 4 and p = 2 

compression one has to choose between two wide-spread algorithms: 

0 Wavelet coder encode the different scales of the image in the multiresoluting wavelet domain. 
Classical subband coder use the DCT or LOT [5] in order to get the 8 (16) frequency channels 

Though both approaches are possible with the presented multiwavelets, here we focus on the subband 
coder showing how multiwavelet packets work as lapped orthogonal transforms. In order to get an 

of the image being encoded and compressed. 
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8 channel filterbank, the wavelet packet transform with 2 stages of Figure 10 must be used. Note, 
that both stages (W,  , W,) are slightly different because a wavelet-like transform being necessary 
[9]. Implementing this wavelet packet transform with 2 stages using approximate rotations leads to 

stage 1 

stage 2 

Figure IO:  %channel wavelet packet structure 

the very simple structure of Figure 1 1. The computational costs are reduced to a few shift and add 
operations (Note, that only the scaling is not considered in Figure 11. Thereby, the analysis and 
synthesis can be combined). 

Figure 1 1 : Architecture for efficiently implementing the multiwaveletpacket-based lapped ortho- 
gonal transform 

The decisive question again is, how the multiwavelet-based lapped orthogonal transform showing 
the simple implementation performs in comparison to other well tried transforms with respect to 
image compression. Figure 12 compares the impulse responses of the transfer functions of the 8 
channels, whereby the dotted line belongs to the classical LOT designed by Malvar and the solid 
line belongs to the multiwaveletpacket-based lapped orthogonal transform (there are no visible 
differences between exact and approximated case). Obviously, the curves are similar, in the 
multiwavelet case the behavior at the borders is even smoother. 

In order to evaluate the quality of the multiwaveletpacket transform (MWT) in comparison to 
Malvar's LOT or the DCT, an image compression algorithm according to Figure 13 [ l l ]  was used. 
Figure 14 shows the results obtained for the Lena image, it confirms the similarity of the quality of 
Malvar's LOT and the multiwaveletpacket-based lapped orthogonal transform and the improvement 
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Figure 12: Impulse response of Malvar’s LOT-filters (dotted lint:) compared to niultiwaveletpacket- 
based filters (solid line) 

(LOT,M\NT) Coding 

Symmetric U Extension 

Figure 13: Coding procedure 

of these transforms in comparison to the classical DCT: Depending on the compression (0.1-1 .O 
bpp) the SNR between reconstructed and original image is analyzed for the DCT, Malvar’s LOT, 
and the multiwaveletpacket transform. For the most interesting range (0.5 bpp - 1.0 bpp) the 
multiwaveletpacket transform is even slightly better than Malvar’s LOT. 

Note, also DCT, LOT or generalized lapped orthogonal transforms can be efficiently implemented 
by using approximate rotations [2]. However, the presented architecture only requires cornputa- 
tional cheap orthogonal rotations, whereby other structures use orthortormal rotations additionally 
requiring a scaling procedure per rotation. 

7 Conclusion 

In this paper the efficient implementation of orthogonal singlewavelet transforms and symmetric 
multiwavelet transforms based on 2 scaling functions was presented. Since both transforms are based 
on orthogonal 2 x 2-rotations, their efficient implementation is achieved by using CORDIC-based 
approximate rotations being composed of very few shift and add operations. This approximation 
does not came the loss of the quality of the transform with respect to its properties orthogonality, 
regularity, frequency behavior. For practical applications, like image denoisirig or compression, 
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compress 
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Figure 14: Comparison of different transforms with respect to image compression 

where the computational complexity is important, the wavelet transforms showing a very simple 
implementation perform quite well. 
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