
IMPLEMENTATION OF REAL-TIME SOFTWARE

RECEIVER FOR GPS OR GLONASS L1 SIGNALS

Senlin Peng

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

Wayne A. Scales, Chair

Jeffrey H. Reed

Scott Bailey

Jan 22, 2010

Blacksburg, Virginia

Keywords: GPS, GLONASS, Software Receiver

Copyright 2010, Senin Peng

IMPLEMENTATION OF REAL-TIME SOFTWARE RECEIVER FOR

GPS OR GLONASS L1 SIGNALS

Senlin Peng

(ABSTRACT)

A 12 channel real-time GPS L1 C/A-code software receiver has been implemented on a

Desktop with 1.84GHz Intel CPU. The software receiver has the capability to acquire new

satellites coming in, keep tracking of satellites in view and give a user solution accuracy of

30 meters. This study also explores a real-time correlator for the GLONASS L1 signals.

This software receiver is going to be used for scientific research and education. This work

is a part of the ongoing effort to develop a low-cost, flexible, and capable GNSS receiver

for use as a scientific instrument and for GNSS receiver technology development.

The software receiver developed here makes use of a reconfigurable RF front end called

the Universal Software Radio Peripheral (USRP) with a maximum real sampling frequency

of 8MHz of complex samples. The USRP uses interchangeable daughter boards to down-

convert and digitize RF signals in the range of DC to 2.9GHz, where each daughterboard

covers an overlapping subset of this range. This RF front end was chosen for its flexibility

and ease of use. The output of the RF front end is 8-bit complex I/Q samples output via a

USB cable.

The software receiver processing of the RF front-end outputs is accomplished by using

bit-wise parallelism, as described in References [1] and [2]. In order to process the incom-

ing RF data in this manner, the 8-bit complex I/Q samples are quantized to two bits. This is

performed in the software receiver prior to signal correlation. In-phase and quadrature ac-

cumulations are computed using bit-wise parallel techniques, and these accumulations are

used to drive code tracking delay-lock loops (DLLs) and carrier tracking phase-lock loops

(PLLs). The computation of accumulations and the implementation of DLLs and PLLs for

the GNSS ranging signals are detailed in the thesis.

iii

The software receiver is developed by C++. It consists of two parts: the software

receiver core program and a simple interface. The current software receiver runs under

Ubuntu Linux systems, but it is convenient to implement on other Linux systems. The

software prerequisites for the software receiver are GNUradio and QT4.0. GNUradio is an

open source program which provides the driver for the USRP board. The current version

used by the software receiver is GNUradio-3.1.3. The user interface program is developed

by using the classes provided by QT4.0. The hardware of the whole system consists of

computer with intel 1.84 GHz CPU and 2GHz RAM, GPS and GLONASS antenna, USRP,

and analogue signal generator. One problem with the USRP is that its on-board oscillator

is not particularly stable in terms of frequency and phase. One solution to this problem is to

use a high-quality external oscillator. An Agilent N5181A MXG Analog Signal Generator

configured to output a 64MHz signal has been used as an external input clock to the USRP.

This oscillator has a stated frequency error of 1 ppm/yr, has decent short-term frequency

stability, and has a reasonably low phase noise at 64MHz. The outputs of the USRP board

are 8 bits complex data with 4MHz sampling frequency with an intermediate frequency of

zero. The input data are re-quantized and pack into 32-bit of integers. The total CPU usage

of the software receiver is about 30 ∼ 40% of the 1.84GHz CPU. The software receiver

is started with a FFT based acquisition. The acquisition results are then used to initialize

the receiver. The background search of satellites is accomplished by a serial search of PRN

code replicas. The novelty of the the software receiver developed in this study is as follows:

first, a reconfigurable RF front end is used which makes the software receiver extendable.

Second, The software is developed with C++ in the general Linux system; This will make

the software receiver easy to maintain and update. Third, the current software receiver also

iv

explores the process of GLONASS L1 signals with bit-wise parallel correlation.

v

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Wayne Scales, who have pro-

vided support for this research within GPS lab of Virginia Tech along the way. The work

in this dissertation would be impossible without the kind, patient and generous help from

him. I would also like to acknowledge Dr. Brent Ledvina, who introduced me into the

satellite navigation field. The classes taught by Dr. Ledvina in GPS theory and software re-

ceiver provided me the chance to study navigation satellite system systematically. His great

passion and expertise helped me to shape my professional career. The help and assistance

provided by friends and faculty will also be appreciated. Finally, I am greatly thankful to

my parents, thanks your everlasting love and support.

vi

Contents

Abstract ii

Acknowledgements vi

List of Tables ix

List of Figures x

List of Acronyms xiii

1 Introduction 1

1.1 Introduction to GPS . 2

1.1.1 Space Segment . 3

1.1.2 Control Segment . 4

1.1.3 User Segment . 5

1.2 Introduction to GLONASS . 6

1.3 Introduction to GNSS Software Receiver 7

2 GNSS RF Front End 11

2.1 Software Receiver Architecture . 11

vii

2.2 RF Front End Design . 12

3 Acquisition of GPS and GLONASS L1 Signals 18

3.1 GPS L1 Signal Structure . 18

3.2 GLONASS L1 Signal Structure . 21

3.3 Signal Acquisition . 22

3.4 FFT Based Acquisition . 24

4 Signal Tracking 25

4.1 Software Receiver ARCHITECTURE . 25

4.2 Phase Lock Loop . 27

4.3 Frequency Lock Loop . 34

4.4 Delay lock loop . 39

4.5 Review of Bit-Wise Parallel Correlation 41

5 Navigation Data Processing 49

5.1 GLONASS Message Structure . 49

5.2 Computation of GLONASS Satellite Positions 51

5.3 pseudorange correction . 58

6 Design And Implementation of The Real Time Software Receiver 59

6.1 Implementation Of The Real Time Software Receiver 59

7 Summary And Future Works 76

Bibliography 78

viii

List of Tables

1.1 GLONASS and GPS system comparison 8

4.1 GLONASS and GPS system comparison 42

4.2 Sign and magnitude combinations of the input GPS signal. 45

4.3 4-level, 8-phase Sample of sinusoids . 45

4.4 Sign and magnitude combinations of the sinusoids 45

4.5 Sample of Input Signal . 46

4.6 Sign, high-magnitude, low-magnitude, and zero- mask combinations of the

fully mixed early-minus-late integrand. 46

5.1 Several important parameters in GLONASS message 52

6.1 RF data setting in the software receiver . 66

6.2 FLL and PLL setting in the software receiver 66

ix

List of Figures

1.1 Segments of GPS . 3

1.2 Position of the Monitor Stations and the Master Control Stations 5

1.3 Structure of a Typical GNSS Receiver . 9

2.1 Struture of a Software GNSS Receiver . 12

2.2 USRP mother board with two RX and two TX daughter boards 13

2.3 Schematic of a USRP board . 14

2.4 Photograph of the USRP and the External 64 MHz Clock 16

2.5 Frequency Domain (Magnitude) Plot of Collected GPS L1 data 17

3.1 Structure of Shift Register Used for Ranging Code Generation 20

3.2 Block Diagram of Code Acquisition . 23

4.1 Diagram of the Tracking Loop . 26

4.2 Blockdigram of the PLL . 28

4.3 frequency domain model of the PLL . 31

4.4 Block Diagram of the Costas loop . 33

4.5 Block Diagram of FLL . 35

4.6 Frequency Domain Model of FLL . 37

x

4.7 block diagram implementation of the FLL 38

4.8 Early and Late Correlation Peak . 40

4.9 Tracking module block diagram . 43

4.10 Memory usage of the bit-wise parallel The sample of the sinusoid 48

5.1 Data Sequence Generation . 50

5.2 Multi-step approach to decoding the navigation message 51

5.3 Satellite position time histories computed using backward and forward in-

tegration of the differential equations using two successive sets of initial

conditions separated in time by 30 minutes for one SV 56

5.4 Zoomed-in version of Figure 9 showing the satellite position time histories 57

6.1 Implementation of Real-time Software Receiver 60

6.2 Detail of the Correlator . 61

6.3 Diagram of the Software Receiver . 63

6.4 Interface of The Cascade hard receiver in GPS lab 67

6.5 GLONASS signal acquisition results . 67

6.6 View of acquisition results in code phase 68

6.7 GPS signal acquisition results . 68

6.8 View of acquisition results in code phase 69

6.9 GLONASS Channel 2 Tracking Results 70

6.10 GPS Channel 22 Tracking Results . 71

6.11 GPS Position Solution Error . 72

6.12 GPS Velocity Solution Error . 73

xi

6.13 2-dimensional residual navigation errors output from GLONASS software

receiver . 74

6.14 Interface of software receiver . 75

xii

List of Acronyms

CDMA Code division multiple access

C/N0 Carrier-to-Noise ratio

DLL Delay Lock Loop

DOP Dilution Of Precision

FDMA Frequency-division multiple access

FFT Fast Fourier Transform

FIR Finite Impulse Response

FLL Frequency Lock Loop

GLONASS Global Navigation Satellite System

GNSS Global Navigation Satellite System

GPS Global Positioning System

IF intermediate frequency

NCO numerically controlled oscillator

PLL Phase Lock Loop

PRN Pseudo Random Noise

PSD power spectral density

RF radio frequency

SDR Software Defined Radio

SNR signal-to-noise ratio

USRP Universal Software Radio Periph-

eral

xiii

Chapter 1

Introduction

Global Navigation Satellite System (GNSS) is the general name given to satellite naviga-

tion systems that provide geo-spatial positioning with global coverage. There are currently

two global systems in operation: the Global Positioning System (GPS) owned by the United

States of America, and GLONASS (Global’naya Navigatsivannaya Sputnikovaya Sistema)

of the Russian Federation. A third system called GALILEO is under development by the

European Community (EC) countries. The first two test satellite of the Galileo system,

GIOVE-A and GIOVE-B, were launched on December 28, 2005, and April 27, 2008, re-

spectively. China is also involved in the development of its own system, Compass. China

intends to first provide a regional capability for Compass/Beidou, followed by completion

of its full constellation which consists of 30 middle earth orbit and five geostationary satel-

lites after 2015 and before 2020.

1

1.1 Introduction to GPS

The Global Positioning System (GPS) is a space based satellites navigation system de-

ployed by the United States and managed by the U.S. Department of Defense (DoP). The

principle objective of the U.S. Department of Defense in developing GPS was to offer

the U.S. military accurate estimates of position, velocity, and time [3]. The GPS system

evolved into a dual use system as the results of tremendous application potential in trans-

portation, land surveying, commerce, scientific uses, tracking and surveillance. Two kinds

of service are provided:

1 Standard Positioning Service (SPS) for civil use,

2 Precise Positioning Service for military use.

The entire GPS system consists of three segments: the control segment, the space segment

and the user segment as shown in Figure 1.1. The space segment consists of the satellites,

precision clocks, and the signals they transmit to the ground, including the ranging singles

and GPS navigation message [4].The control segment consists of five GPS earth stations.

The main function of the control segment is to monitor the performance of the GPS satel-

lites. It also determines the satellite ephemerides by monitoring the ranging signals. The

ephemerides are parameters from which the satellite position can be accurately calculated.

The ephemerides are regularly updated by the control segment. The user segment consists

of receivers and their applications. The user segment covers activities related to the devel-

opment of military and civil GPS user equipment.

2

Monitoring

Control Signals

Ephemerides

Space Segment

Satellites

User Segment

Receiver

Navigation Solution

Ranging Signals

Navigation Messages

Control Segment

Satellite Control

Orbit Control

Figure 1.1: Segments of GPS

1.1.1 Space Segment

The space segment (SS) comprises the orbiting GPS satellites or Space Vehicles (SV) in

nearly circular orbits with a radius of 26,560 km and a period of about twelve hours. The

baseline constellation compromises 24 operational satellites which are distributed in six

orbit plans with an inclination of 55 degree relative to the equational plan. The six planes

and are separated by 60o right ascension of the ascending node [3]. The orbits are arranged

so that at least six satellites are visible from almost any point on the Earth. The satellites

transmit ranging signals and navigation data allowing the user to compute their pseudor-

anges and to estimate their positions. The carrier signals are synchronized to the onboarded

high accuracy atomic clock.

3

As of September 2009, the GPS constellation consists of 31 actively broadcasting satel-

lites. The additional satellites improve the precision of GPS receiver calculations by pro-

viding redundant measurements. With the increased number of satellites, the constellation

is arranged unevenly. Such an arrangement improves reliability and availability of the sys-

tem. The first of the satellites was brought to its orbit in 1978. Since then, the satellites

became more sophisticated; meanwhile, five different types of these satellites been devel-

oped (Block I, Block II, Block IIA, Block IIR and Block IIF). The next generation (Block

IIF) plans to provide a third frequency L5 for civil use, allowing position determinations

with even higher precision. The Block IIF satellites may be equipped with hydrogen maser

clocks instead of atomic clocks, which provide higher stability.

1.1.2 Control Segment

There are five monitor stations located around the world. The master control station is lo-

cated at the Schriever Air force base in Colorado Springs, CO. The other four additional

monitoring stations are located in Hawaii, Ascension Islands, Diego Garcia and Kawa-

jalein. During 2005, six more monitor stations of the National Geospatial Intelligence

Agency (NGA) were added to the grid. Currently, every satellite can be monitored by

at least two monitor stations. This allows calculating more precise satellite orbits and

ephemerides. For the user segment, a higher position precision can be expected. In the

near future, five more NGA stations will be added so that every satellite can be monitored

by at least three monitor stations. This improves integrity monitoring of the satellites and

4

thus improve the precision of the GPS system. Figure 1.2 shows the location of the monitor

stations.

Figure 1.2: Position of the Monitor Stations and the Master Control Stations

1.1.3 User Segment

The user segment consists of the GPS receivers. The receivers compute the user position

and velocity, as well as synchronized GPS time by utilizing the signals transmitted from the

satellites, together with precise measurement of the signal transmission delays. The users

can be classified into two groups: military and civilian. The military users can use both the

military signals and the civilian signals but the civilian users are limited to civilian signals.

The content and structure of the GPS signals will be detailed in the later part of the paper.

5

1.2 Introduction to GLONASS

The Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), which translates

into global navigation satellite system in English [5], is the satellite navigation system op-

erated by the Russian Space Agency. A full constellation of the GLONASS satellites con-

sists of 24 satellites deployed in three orbital plans. However, there are plans to upgrade

the current system to 32 satellites in the full constellation. As of September 2009, there are

19 operational satellites in orbit, with 17 of these satellites broadcasting valid navigation

messages. The Russian Space Agency is replenishing and modernizing GLONASS con-

stellation. They plan to restore the global coverage of GLONASS by 2009 and to increase

the number of satellites to 30 by 2011 to match the performance of GPS.

GPS and GLONASS share similarities in their signal structures, which translate into simi-

larities in how a receiver could be designed to use either set of signals for navigation. Both

systems broadcast carrier signals in the L-band frequency range. The frequency separation

between the center of the GPS L1 band and lowest frequency content of the GLONASS L1

band is about 23MHz. The overall bandwidth of the GLONASS civilian L1 signals is about

18MHz. These systems both employ pseudo-random number codes for code modulation of

the carriers. This provides the spreading of the signals and allows for precise measurement

of pseudoranges. Additionally, both systems broadcast satellite-dependent navigation mes-

sages, which contain information about the satellite positions, clocks, health, and time.

Despite the similarities between GLONASS and GPS systems, there are several signifi-

cant differences that are listed in Table 1.1. First, the GLONASS satellites are deployed

6

in three orbital planes while GPS satellites are deployed in six orbital planes. Second,

GLONASS uses frequency division multiple access (FDMA) instead of code division mul-

tiple access (CDMA) used by GPS [4]. The third difference is in the time reference systems.

GLONASS time is referenced to and synchronized with UTC Soviet Union (SU) time, the

Russian National time scale, whereas, GPS time is referenced to international UTC with

an integer number of leap seconds offset between GPS time and UTC. UTC and UTC (SU)

are separated by a constant bias of three hours and a fractional bias that changes with time.

The fourth difference is that GLONASS and GPS employ different geocentric coordinate

systems. GPS uses WGS 84, while GLONASS uses PZ-90. Fortunately, the differences

between these coordinate systems are small and do not vary with time. The GLONASS

navigation message content is different from the GPS navigation message, which results in

different algorithms being used in the GLONASS software receiver. The main differences

between the GPS system and the GLONASS system are listed in table 1.1.

1.3 Introduction to GNSS Software Receiver

A software receiver performs the entirety of the receiver’s digital signal processing us-

ing software running on a microprocessor. This differs from a hardware receiver, which

typically performs correlation on a specialized processor or ASIC (application-specific in-

tegrated circuit) [6, 7]. The software receiver architecture can provide GNSS user with

operational flexibility that will become more and more important as the modernization of

GPS and construction of new satellite navigation systems. The current GPS system is to

expand its capabilities to modulate new civilian codes on the L2 frequency and a new L5

7

Table 1.1: GLONASS and GPS system comparison

GLONASS GPS

Number of Orbital plans 3 6

Signal FDMA CDMA

Ephemeris representation Position, Velocity, and Acceleration Orbital Parameters

Time reference UTC (SU) GPS time

C/A Code rate 0.511M chips/s 1.023M chips/s

Coordinate system PZ-90 WGS 84

frequency. A receiver with a hardware correlator will require hardware modifications in

order to use these new signals. However, the software receiver can utilize new signals just

by modification of the software.

8

Antenna

Pre-Amp

Amplifier

Down

converter

A/D

converter

Signal acquisition

tracking;

Data demodulation;

Navigation solution;

User interface;

RF Front End

Microprocessor

ASIC Correlator

Channel 1 to N

User

Interface

Figure 1.3: Structure of a Typical GNSS Receiver

A typical GNSS receiver can be broken down into separate functional components (see

Figure 1.3). The first component is the antenna, possibly followed by some pre-amplifiers.

After the antenna comes the RF front end that down converts the GHz GNSS signals to

an intermediate frequency of MHz range. Then the signals are digitized and feed into the

correlators. The basic function of the correlator is to mix the RF data with the local gen-

erated sinusoids and PRN codes. Each correlator is assigned to a different satellite and

works parallel to other channels. A modern receiver may have 12 or more channels. The

last components of the receiver are software programs that demodulate the navigation mes-

sage, and compute the navigation solution. In the software receiver, the functions of the

correlator chip are moved to software running on a general purpose processor. Software

receiver provide more flexibilities than the hardware receiver [1].

9

The notion of a software GPS receiver has been around for several years. During the

early years, the software receivers were implemented in post process [7]. The huge compu-

tation burden of the software receiver makes it difficult in full implementation on a simple

processor. Due to the improvement in both software receiver algorithms and the perfor-

mance of processors, real-time software receiver has been implemented on personal com-

puters and DSP processors [8, 9, 10, 11]. With the decrease in the cost of DSP chips,

software receiver products start to enter the market. The author predicts that in a few years

the software receiver would become more important than the hardware receiver. The cur-

rent work can be viewed as an extension of the work reported in Ref. 1. The software

receiver developed here is using a general RF front end which can process a wide range of

GNSS signals. The second improvement is that the software is developed with C++ in the

basic Linux system. This will make the software receiver easy to maintain. The current

software receiver also explores the process of GLONASS L1 signals.

10

Chapter 2

GNSS RF Front End

2.1 Software Receiver Architecture

The block diagram of the GNSS L1 software receiver is shown in Figure 2.1. The main

difference between the hardware receiver and the software receiver is that the correlator is

implemented by software instead of ASIC as shown in Figure 1.3. The analog signal output

from the antenna is down-converted and digitized by the RF front end and then output to

the software receiver. The main processing component of the GNSS software receiver is

the PC’s general-purpose microprocessor, which performs signal correlation, acquisition

and tracking, decoding of the navigation message, measurement of pseudoranges, compu-

tation of the satellite positions, and computation of the navigation solution. The computer

system consists of an Intel 1.8 GHz processor, running the UBUNTU Linux system. The

rooftop antenna used with this software receiver is NovAtel’s GPS-702-GG antenna, which

provides access to the GPS L1 and L2 signals, as well as GLONASS’s L1 and L2 signals

[15]. It is mounted on the top of Whittemore Hall in Blacksburg, VA. The LNA gain of the

11

antenna is 29 dB. The pre-amplifier next to the antenna has 30dB gain.

Antenna

Pre

Amplifier

Down

converter

Software

correlator

A/D

converter

Signal acquisition

tracking;

Data demodulation;

Navigation solution;

User interface;

RF Front End

Microprocessor

Figure 2.1: Struture of a Software GNSS Receiver

2.2 RF Front End Design

The RF front end used in this real-time software receiver is Universal Software Radio Pe-

ripheral (USRP), which is a hardware radio platform that provides RF signal reception and

transmission over a broad range of radio frequencies. It provides the ability to rapidly de-

sign and implement software radio systems [16]. The USRP has been chosen primarily

for its flexibility and ease of use. The USRP consists of a motherboard with A/D and D/A

converters, mixers, filters, and an FPGA for low-level signal processing. Interchangeable

12

add-on daughtercards allow the USRP to process signals from DC to 2.9 GHz [16]. The

broad flexibility of USRP allows it to process most of the civilian signals of satellite navi-

gation systems, including GPS L1 and L2C, GLONASS L1, and Galileo E1. Note that due

to bandwidth limitations, the URSP can only be used as an RF front end for one set of these

signals at a time. Figure 2.2 is a picture of the USRP board.

Figure 2.2: USRP mother board with two RX and two TX daughter boards

13

Figure 2.3: Schematic of a USRP board

The schematic of a USRP board is shown in Fig. 2.3. It has four high-speed analog to

digital converters (ADCs) with sample frequency of 64MHz and 12 bits per sample. There

are also four high-speed digital to analog converters (DACs) with sample frequency of

128MHz and 14 bits per sample. These four input and four output channels are connected

to an Altera Cyclone EP1C12 FPGA. The USRP board connects to the computer via a high

speed USB2 interface. The maximum sample frequency of the USRP is 8MHz complex

sampling.

The driver of the USRP is provided by GNU Radio which is an open source project.

The USRP is configured right after the start of the software receiver. As there is only one

daughter board mounted on the USRP, the software receiver can only be a GPS L1 receiver

or a GLONASS L1 receiver. The center frequency of the incoming signal, the sample fre-

quency, down converted frequency and output data format are initialized at the beginning

14

of the program. The sample frequency of the incoming signal plays an important role in

the design of the software receiver. This sample frequency must first meet the Nyquist

sample theorem Fs ≥ 2 ∗ B, where B is the bandwidth of the signal to be sampled. A

higher sample frequency will provide a more stable tracking loop and more accurate code

arrival time. However, more computation will be involved in the tracking loop, which will

decrease the real-time performance of the software receiver. Therefor, the choice of the

sample frequency of the software receiver is based on the balance of these factors.

The software receiver described here works at a sampling rate of 4MHz for GPS L1 signals

and 8MHz for GLONASS L1 signals. This sampling frequency covers the majority of the

GLONASS bandwidth, but is not ideal for a fully-functional GLONASS L1 receiver since

the full bandwidth of the GLONASS L1 signal has a bandwidth of 12.2MHz. However,

since the GLONASS satellites are currently only broadcasting on channels -2 to +7, which

cover a frequency band of 6MHz, this RF front end is adequate for the time being. One

problem with the USRP is that its on-board oscillator is not particularly stable in terms of

frequency and phase. One solution to this problem is to use a high-quality external oscil-

lator. An Agilent N5181A MXG Analog Signal Generator configured to output a 64MHz

signal has been used as an external input clock to the USRP [17]. This oscillator has a

stated frequency error of ≤ ±1 ppm/yr, has decent short-term frequency stability, and has

a reasonably low phase noise at 64 MHz [17]. Figure 2.4 shows the USRP, along with the

external oscillator, and the USB cable, which connects the USRP to the PC. Figure 2.5

shows the frequency domain plot of the collected GPS L1 data from the USRP board. The

input signal is from the GSS6560 simulator. As the bandwidth of the GPS L1 signal is

2MHz, the sample frequency is set to 4MHz to meet the Nyquist sample theory. From the

plot, we can clear see that the signal bandwidth is around 2Mhz.

15

Input Clock

USRP

USB
Cable

Figure 2.4: Photograph of the USRP and the External 64 MHz Clock

16

Figure 2.5: Frequency Domain (Magnitude) Plot of Collected GPS L1 data

17

Chapter 3

Acquisition of GPS and GLONASS L1

Signals

3.1 GPS L1 Signal Structure

In order to design a software receiver, it is essential to understand the structure of the

signals. The GPS L1 signals are transmitted at a center frequency of 1575.42MHz. The

signals are composed of carrier wave, navigation data and pseudo-random noise ranging

code. Two levels of services are available: the military specific precise positioning ser-

vice and the standard positioning service for civil applications. The broadcasted L1 signal

structure is:

S L1 =
√

2PC1D(t)X(t) cos(2π fl1 + θl1) +
√

2PY1D(t)Y(t) sin(2π fl1 + θl1), (3.1)

In this equation,
√

2PC1 is the amplitude of the civil signal which is the object of the

software receiver discussed here, D(t) is the navigation data, X(t) or Y(t) is the spread

spectrum which is also called ranging code, and sin(2π fl1 + θl1) or cos(2π fl1 + θl1) is the

18

carrier. The coarse/acquisition (C/A) code is being used as the ranging code for the civil

signal. Equation (3.1) indicates that all satellites are broadcasting signals at the same center

frequency. Code-division-multiple-access technique (CDMA) is used to identify different

SVs even though they may transmit at the same frequencies. The C/A code has a chip rate

of 1.023Mbps and a period of 1ms, or 1023 chips in length. The C/A codes are a subset

of the Golden code family. They are also referred to as pseudo-random noise sequence

[Akos], or PRN sequence. The Gold codes are selected as spreading sequences for GPS

signals because of their correlation properties. The two important correlation properties of

the C/A codes are as follows [3]:

1 Nearly no cross correlation: All C/A codes are almost uncorrelated with each other.

For two codes Ci and Ck from two different satellites, the correlation can be written

as:

Cik(m) =
1022∑
l=0

Ci(l) ×Ck(l + m) ≈ 0, (3.2)

Where m ∈ (0, 1022).

2 Nearly no auto correlations except zero lag: All C/A codes are nearly uncorrelated

to themselves, except for zero lag.

Ckk(m) =
1022∑
l=0

Ck(l) ×Ck(l + m) ≈ 0, (3.3)

Where m ∈ (0, 1022).

The auto correlation properties can be used to find the exact start position of the C/A

in the incoming signals. The cross correlation property can be used to separate different

signals from different satellites. The generation of the GPS L1 C/A code is sketched in

Figure . Two shift registers G1 and G2 are contained in the C/A code generator. Each

19

generator contains 10 cells generating code sequences of 1023 chips. The two sequences of

1023 chips are used to generate a new 1023 chips long C/A code by modulo-2 addition. The

two shift registers are reset with all ones for every 1023 chip period. The code generation

polynomial for register G1 is [36]:

f (x) = 1 + x3 + x10, (3.4)

This means that the modulo-2 addition of state 3 and state 10 are fed back to the input. The

polynomial for register G2 is:

f (x) = 1 + x2 + x3 + x6 + x8 + x9 + x10, (3.5)

The outputs of the two registers are combined to generate C/A code for all satellites.

The G1 register provides its output, but the output of G2 register is the modulo-2 addition

of two of its states. The different combination of the two states of G2 register will generate

different C/A codes. A complete combinations table is provided in GPS ICD [36].

Generator

1 2 3 4 9 105 6 7 8

1 2 3 4 9 105 6 7 8

1.023MHz

Clock
Reset

Generator

C/A code

output

20

Figure 3.1: Structure of Shift Register Used for Ranging Code Generation

3.2 GLONASS L1 Signal Structure

GLONASS uses frequency division multiple access (FDMA) modulation to provide a re-

ceiver access to each satellite signal. This means each satellite transmits its carrier signal

on its own sub-band. The nominal values of transmitted L1 carrier frequencies are defined

by the following equations [5]:

fm1 = f + m × 4 f1, f01 = 1602MHz; 4 f1 = 562.5KHz, (f orL1sub − band) (3.6)

where the channel number m ranges from -7 to 13 (0 inclusive), fm1 is the transmitted carrier

frequency, and 4 f1 is the frequency offset between carriers. Currently, the GLONASS

satellites use frequency channels with m = [−2, 7]. The L1 sub-carrier is modulated by

a modulo-2 addition of a pseudorandom (PR) ranging code, the navigation data bits, and

the meander code. The PR ranging code has a chipping rate of 511k chips per second and

a period of 1 millisecond. The data bit rate of the navigation data bits is 50 bps, and the

meander code has a bit rate of 100 bps. This meander code is phase-locked to the navigation

data bits such that the resultant received navigation message has a bit rate of 100 bps. The

PR ranging code, which is the same for each satellite, is generated using the polynomial

[5]:

G(x) = 1 + x5 + x9 (3.7)

The complex output signal of the receiver’s RF front end is the combination of the signals

from all satellites in view and can be written as:

y(tn) =
∑

j

A jD jkM jkC × [0.001 × (
tn − τ jk

τ jk+1 − τ jk
)]

21

×[cos(ωIF j + θ j(tn)) + sin(ωIF j + θ j(tn))] + n j (3.8)

where tn represents the sample time, j refers to the channel number of a GLONASS

satellite in view, A j is the amplitude, M jkis the meander code, D jk is the navigation data

bit, C[t] is the periodic PR ranging code, τ jk and τ jk+1 are the start of the received kth

and (k + 1)th PR code periods, ωIF j is the intermediate frequency corresponding to the L1

carrier frequency of satellite j, θ j(tn) is the carrier phase, sin(ωIF j+θ j(tn)) is due to complex

sampling, and n j is the noise. The task of the receiver is to compute the accurate estimates

of (τ j, τ j+1, ωDopp j, θ j) by the correlation between the input signal and a local replica of it,

where ωDopp j is the carrier Doppler shift frequency.

3.3 Signal Acquisition

After the signals pass through the RF front end, the signals are down converted, amplified

and digitized. The signals are now well suited for processing. The signal from one satellite

has the form of:

S (t) =
√

CD(t − τ)X(t − τ) cos(2π(fIF + fD)t + δθ) + n(t), (3.9)

where
√

C is the amplitude of the incoming signal, D(t − τ) is the navigation data,

X(t − τ)is the PRN code, δθis the initial phase, fIF is the intermediate frequency, fD is

the Doppler shift frequency, and n(t)is the noise. Doppler shift frequency is caused by the

relative motion between the receiver and the satellite. The range of the Doppler shift is

±10KHz for civilian applications. In order to demodulate the navigation messages from

the satellite signal, a local PRN code and carrier must be generated. The purpose of the

acquisition is to find out the visible satellites and the coarse values of the Doppler shift

22

frequency and the code phase of the signals. Two acquisition methods are used in this

software receiver: the FFT based acquisition is used for initialization and the serial search

acquisition is used in the background acquisition.

Incoming
signals

Local
oscillator

PRN
Generator

I

Q

Output

2
)(

2
)(

090

Figure 3.2: Block Diagram of Code Acquisition

The algorithm is based on multiplication of locally generated PRN code and locally

generated carrier signals. As the initial phase of the incoming signal is unknown, the in-

phase and quaduature carrier are generated to mix with the input. The output is the sum

of the in-phase and quaduature mixing. The serial search algorithm performs two different

sweeps [6]: a frequency sweep over all possible carrier Doppler shift frequencies and a

code phase sweep over all different code phases. Obviously, this serial search involves a

large number of computations. To make the software receiver running in real-time, the bit-

23

wise parallel correlation is used which will be explained in greater detail in the later chapter.

3.4 FFT Based Acquisition

Another more computation-efficient method for signal acquisition is to use the Fast Fourier

Transform (FFT) to simultaneously search for all possible code offsets at a particular fre-

quency [28]. This method is especially important when one wishes to increase acquisition

sensitivity by extending the integration interval. The FFT based convolution is proved in

reference [28]. In order to implement of the FFT based acquisition algorithm, The follow-

ing steps can be taken:

1 Take the DFT of the PRN code samples ck to get Ck

2 Select a Doppler frequency

3 Perform complex mixing of the incoming signal with local generated sinusoid. This

operation will shift the incoming signal to baseband signal

4 Compute the DFT of the complex mixing results to get Gk

5 Multiply Ck with the complex conjugate of Gk; i.e., calculate Zk = Ck ∗G∗k

6 Take the inverse DFT of Zk to get the correlation sequence zk

7 Find the max value of |zk|, if the max value exceeds the threshold, then the satellite is

visible and the index is the code phase start position

24

Chapter 4

Signal Tracking

4.1 Software Receiver ARCHITECTURE

After the acquisition process is complete, the rough estimation of the Doppler shift fre-

quency and the code phase are computed. The main purpose of the tracking loop is to

refine these values, keep tracking, and demodulate the navigation data [6, 18, 21]. Figure

4.1 shows the scheme used to demodulate the input signal to obtain the navigation mes-

sages. First, the input signal is multiplied with a carrier replica. As the initial phase of the

incoming signal is unknown, in-phase and quaduature replicas are generated. This multi-

plication is used to wipe off the carrier from the signal. Second, the signal is multiplied

with a code replica, and the output of this multiplication gives the navigation message. The

theory derivation is given in the following part.

25

L

P

E

In coming signal

I

Q P

E

L

Integrate & dump

Integrate & dump

Integrate & dump

Integrate & dump

Integrate & dump

Integrate & dump

PRN code

generator

PRN code generator

NCO carrier

generator

Code loop discriminator

Carrier loop

discriminator

090

Figure 4.1: Diagram of the Tracking Loop

The signal from one satellite has the form of:

S (t) =
√

CD(t − τ)X(t − τ) cos(2π(fIF + fD)t) + n(t), (4.1)

To obtain the navigation data from the signal, the carrier and the PRN code need to be

removed. The carrier removal is done by multiplying the input signal with a replica of the

carrier. The local replica has the same frequency and phase with the incoing signal. The

product of the multiplication is:

S (t) × cos(2π(fIF + fD)t) =
√

CD(t − τ)X(t − τ) cos(2π(fIF + fD)t) cos(2π(fIF + fD)t)

+n(t) cos(2π(fIF + fD)t)

=
1
2

D(t − τ)X(t − τ) +
1
2

D(t − τ)X(t − τ) cos(2 × 2π(fIF + fD)t)

+n(t) cos(2π(fIF + fD)t)(4.2)

26

The latter part of the signal can be removed by applying a low pass filter. The resulting

signal is:
1
2

D(t − τ)X(t − τ) (4.3)

The PRN code can be removed by multiplication of the signal with a local code replica.

The phase of the replica should be exactly the same with the signal. The product of the

multiplication is:
N−1∑
n=0

X(t − τ)X(t − τ)D(t − τ) = ND(t − τ), (4.4)

where the ND(t− τ) is the navigation message multiplied with the number of samples. The

derivation above shows that a local carrier replica with accurate frequency and phase and

a code replica with the exact phase are essential parts of the tracking loop. The following

parts describe the tracking loop in the software receiver in detail. The tracking loop always

consists of delay lock loop (DLL), phase lock loop (PLL) and frequency lock loop (FLL).

The delay lock loop (DLL) refines the initial estimated code phase by the acquisition loop.

The FLL refines the initial estimate of the Doppler frequency and tracks into the future.

The PLL tracks the carrier phase and the carrier frequency.

4.2 Phase Lock Loop

The PLL is a basic building block for many subsystems used in the implementation of mod-

ern communication systems. PLLs are widely used in frequency synthesis, for frequency

multipliers and dividers, for carrier and symbol synchronization, and in the implementation

of coherent receivers [1, 2].Below is the block diagram of the phase lock loop [24, 34]:

27

FM Output

Output signal

Input signal

Phase
Detector

Loop Filter

Voltage
Controlled
Oscillator

)(, 11 u

)(tud

)(tu f

)(2 tu

)(, 22 u

Figure 4.2: Blockdigram of the PLL

The signals of interest within the PLL circuit are defined as follows:

1 The reference or input signal u1(t)

2 The angular frequency ω1 of the reference signal

3 The output signal u2(t) of the VCO

4 The angular frequency ω2 of the output signal

5 ud(t) the output signal of the phase detector

6 The output signal of the loop filter: u f (t)

7 The phase error defined as the phase difference between input and output signals: θe

28

The VCO oscillates at an angular frequency of ω2, which is determined by the output signal

u f (t) of the loop filter. The angular frequency of VCO is given by:

ω2(t) = ω0 + K0u f (t) (4.5)

Where K0 is the VCO gain.The output signal of the Phase Detector ud(t) which is approxi-

mately proportional to the phase error θe.

ud(t) = Kd × θe (4.6)

Where Kd is the gain of the Phase Detector. Let us analyze how the PLL blocks work

together. First we assume the angular frequency of the input signal is equal to the center

frequency of the VCO ω0. The VCO then operates at its center frequency ω0. In this case,

the phase error θe is zero. If the phase error is zero, then the output signal ud of the PD must

also be zero. Consequently, the output signal of the loop filter u f will also be zero. This is

the condition that permits the VCO to operate at its center frequency.

Assume now that the frequency of the input signal is changed suddenly by the amount

of ∆ω. The phase of the input signal starts leading the phase of the output signal. A phase

error is built up and increases with time. The PD develops an output signal ud(t) which

also increases with time. The output of loop filter, u f (t), which will also increase with

ud(t). This will cause the VCO to increase the output frequency. The phase error becomes

smaller now. After some settling time the VCO will oscillate at a frequency that is exactly

the frequency of the input signal. The transfer function which relates the phase θ1 of the

input signal and the phase of the output θ2 signal is given by:

H(s) =
θ2(S)
θ1(S)

(4.7)

29

The input signal of a PLL is usually a sinusoid wave:

u1(t) = U10 sin(ω1t + θ1) (4.8)

The output signal is usually a square wave and can therefore be written as a Walsh function:

u2(t) = U20W(ω2t + θ2) (4.9)

To simplify the analysis, the Walsh function is replaced by the Fourier series:

u2(t) = U20[
4
π

cos(ω2t + θ2) +
4

3π
cos(3ω2t + θ2) . . .] (4.10)

The output signal of the phase detector when ω1 equals to ω2 is:

ud(t) = u1(t) × u2(t) = U10U20[
2
π

sin(θe) + . . .] (4.11)

When the value of θe is small, the output can be linearized as:

ud(t) ≈ Kd sin(θe) ≈ Kdθe (4.12)

The angular frequency of VCO is given by:

ω2(t) = ω0 + K0u f (t) (4.13)

The phase θ2 is given by the integral over the frequency variation:

θ2(t) = K0

∫
u f (t)dt (4.14)

The Laplace transform is given by:

θ2(S) =
K0

S
U f (S) (4.15)

30

+

-

PD

Filter

VCO

(S)1

(S)2
(S)e

S

K0

dK

)()(SKSU edd

)()(SFUSU df

Figure 4.3: frequency domain model of the PLL

Figure 4.3 shows the model of the phase lock loop in frequency domain and how the

preceding values related. The input of the loop can be frequency, phase and chips (Delay

lock loop). The main purpose of the discriminator is to compute the error between the input

and the output, and then we can compute the output through the transfer function. Let the

loop gain be:

K = Kd ∗ K0 (4.16)

The constant loop gain can be put into the filter function to simplify the phase lock. So the

transfer function of the system can be simplified as :

H(S) = F(S)/S/(1 + F(S)/S) (4.17)

31

For a second order loop

F(S) = K(S + A)/S (4.18)

H(S) = (K(S + A))/(S 2 + KS + KA) = (K(S + A))/(S 2 + 2ξωS + ω2) (4.19)

The relationship of these coefficients:

ω2 = KA,K = 2ξω (4.20)

For a second order loop the noise bandwidth is computed as [23]:

BL =
ω

8ξ
(4ξ2 + 1) (4.21)

Implementation of the filter in discrete time [26]:

S = (Z − 1)/T (4.22)

or

S =
2
T

1 − z−1

1 + z−1 (4.23)

F(S) =
K(S + A)

S
(4.24)

F(Z) =
(K(Z − 1) + AT K)

(Z − 1)
(4.25)

The output frequency from the carrier filter is:

f = F(Z) × θe (4.26)

In software receiver, the VCO is replaced by a local sinusoid generator program. The new

center frequency of the sinusoid can be computed by the equation above if the phase error

θe is known. The Costas loop is adopted in the GPS receiver to estimate the phase error.

32

Incoming

signal

Integrate

&dump

Carrier Loop

filter

Carrier Loop

discriminator

NCO Carrier

generator

Integrate

&dump

I

Q

090

Figure 4.4: Block Diagram of the Costas loop

Figure 4.4 shows the block diagram of the Costas loop where the input signal is cos(ωIFt)

[27]. The carrier generator generates in-phase cos(ωIFt + θe) and quaduature sinusoids

sin(ωIFt+ θe) to mix with the input signal where ωIF is the IF frequency and θe is the phase

error between in input and the local sinusoid. The in-phase arm mix result is:

cos(ωIFt) ∗ cos(ωIF + θe) = 1/2 cos(θe) + 1/2 cos(2ωIFt + θe) (4.27)

The quaduature arm mix result is:

cos(ωIFt) ∗ sin(ωIF + θe) = 1/2 sin(θe) + 1/2 sin(2ωIFt + θe) (4.28)

Then the mix results are integrated over time interval T . The double IF frequency term is

removed by the integration and the following part remains:

1
2

cos(θe) × T (4.29)

33

1
2

sin(θe) × T (4.30)

The phase error can be estimated by an arctan discriminator:

arctan(
1
2 sin(θe) × T
1
2 cos(θe) × T

) = θe (4.31)

The noise bandwidth used in the software receiver is 10Hz. The choosing of the loop noise

bandwidth is referenced to [3, 18]. The arctan discriminator is selected as it is sensitive to

frequency error but insensitive to the unknown carrier phase and data bits.

4.3 Frequency Lock Loop

The automatic frequency control (AFC) loop which is also called the frequency lock loop

(FLL) is quite similar to the PLL [31]. In contrast to PLL, the FLL has a better performance

in the presence of high Doppler rates, spectrum multipath and ionospheric anomalies. As

the result, a FLL is used to lock the Doppler shift frequency prior to the PLL in the software

receiver. After incoming signal been tracked by the FLL, the carrier loop switches to the

more accurate PLL to get the phase information of the signal. A typical discrete time FLL

diagram is shown below in Figure 4.5. The integration filters are used to limit the input

noise and remove double frequency parts after the mixing of the incoming signal and the

local sinusoids.

34

I(t)

_

+

Q(t)

VCO F(Z)

U(t)

1Z

1Z

Figure 4.5: Block Diagram of FLL

Figure 4.5 shows the block diagram of the FLL and the effect of noise is not taken

into account for simplicity. The initial output frequency of the VCO is an estimation of

the incoming signal f + ∆ f . We want to keep the VCO output close to the input signal

frequency f . The basic operation principle of the FLL is quite similar to the PLL. An in-

phase and a quadrature arm are generated to mix with the incoming signal. The mix results

for in-phase and quadrature are:

I(t) = A×cos(2π f t)×cos(2π(f +∆ f)t) =
1
2

A×cos(2π∆ f t)+
1
2

A×cos(2π(2 f +∆ f)t) (4.32)

Q(t) = A×cos(2π f t)×sin(2π(f +∆ f)t) =
1
2

A×sin(2π∆ f t)+
1
2

A×sin(2π(2 f +∆ f)t) (4.33)

The high frequency parts are removed by the integrator. Let the integration interval be T .

Ik−1 =

∫ T

0
A × cos(2π∆ f t)dt =

A
(2π∆ f)

× sin(2π f T) (4.34)

35

Qk−1 =

∫ T

0
A × sin(2π∆ f t)dt =

A
(2π∆ f)

× (1 − cos(2π∆ f T)) (4.35)

Ik =

∫ T

0
A × cos(2π(∆ f t + ∆ f T))dt =

A
(2π∆ f)

× [sin(2π∆ f 2T) − sin(2π∆ f T)] (4.36)

Qk =

∫ T

0
A × sin(2π(∆ f t + ∆ f T))dt =

A
(2π∆ f)

× [cos(2π∆ f T) − cos(2π∆ f 2T)] (4.37)

The discriminator output is represented by

D =
(Qk × Ik−1 − Ik × Qk−1)

(amplitude(I,Q))
(4.38)

By some computation we can simplify the discriminator output as:

D = sin(2π∆ f T) (4.39)

So after the linearization of the cross product, the result is the difference between the input

frequency and the VCO output frequency times the sample interval T .

In the frequency lock loop, the Jaffe-Rechtin filter is chosen as the low pass filter. Jaffe-

Rechtin filter is widely used in software GPS receivers. Unfortunately, I cannot find any

material going through in detail about how to implement it. So I try to write down step by

step how to implement the Jaffe-Rechtin filter in the frequency lock loop. Here a second

order Jaffe-Rechtin filter is used as an example. The transfer function of the filter is given

by [30]:

F(s) =
(B2 +

√
2BS)

AKS
(4.40)

Where B is the noise bandwidth, A,K are amplify coefficients. In S domain the Laplace

transform of integration is [33]:

L(
∫

) =
1
S

(4.41)

Then we can simplify the automatic frequency control loop to be as shown in Figure 4.6

which is similar to the block diagram of the PLL:

36

+

_

A K/S F(S)

f

ff

f

Figure 4.6: Frequency Domain Model of FLL

The input to the frequency loop is f + ∆ f . The output from the loop is f . The purpose of

the loop is to compute ∆ f to update the output of the tracking loop. The transfer function

of this system is computed as:

H(S) =
(AKF(S))

(S + AKF(S))
=

(B2 +
√

2BS)

(S 2 +
√

2BS + B2)
(4.42)

The block diagram implementation of the system is shown in Figure 4.7:

37

+

1/s 1/s
V

ffU

2B

2B

_

+

B2

B2

'

1X '

2X1X 2X

Figure 4.7: block diagram implementation of the FLL

The output of the system is V , the initial guess value of V is f . The initial input value

is :

U = f + ∆ f (4.43)

The state space equations for this system are:

X
′

1 = B2 × (U − V) (4.44)

X
′

2 = X1 +
√

2B × (U − V) (4.45)

V = [0 1] ×
[
X1

X2

]
= X2 (4.46)

The Laplace transform of these equations above are:

S × X1 = B2 × (U(s) − V(S)) (4.47)

38

S × X2 = X1 +
√

2B × (U(S) − V(S)) (4.48)

Implementation these equations in discrete time by backward integration is:

S =
(1 − Z−1)

T
(4.49)

So replace the S in (7) and (8) we have [22]:

X1(n + 1) = X1(n) + T × B2 × (U − V) = X1(n) + T × B2 × ∆ f (4.50)

X2(n+1) = X2(n)+T ×X1 +T ×
√

2B× (U −V) = X2(n)+T ×X1 +T ×
√

2B×∆ f (4.51)

The next states of the registers can be computed by the equations above if the value of ∆ f

is known. From equation (1) we have:

θ =
(QkIk−1 − IkQk−1)
(amplitude(I,Q))

= sin(2π∆ f T) (4.52)

From the equation above we can get the frequency offset between the input and output.

This offset is used as the input to equation to compute the next state values.

4.4 Delay lock loop

The purpose of the code tracking loop is to refine and keep tracking the code phase of the

specific ranging code in the signal. The code tracking loop used in this software receiver is

the delay lock loop [25]. This loop consists of correlator, accumulator, DLL discriminator

and loop filter as is shown in Figure 4.8. The design of DLL is based on the autocorre-

lation and cross correlation property of the pseudo random code. The DLL correlates the

received signal with a slightly early replica and a slightly late replica. As we know from the

autocorrelation property, only when the two codes are perfectly aligned will a peak value

39

be computed. If the two codes are shifted by more than one chip, there is almost no cor-

relation between them. As the shift increases from zero to one chip, the correlation results

decrease almost linearly.

Early Late

CT
CT

C

)/1(CTC)/1(CTC

Figure 4.8: Early and Late Correlation Peak

The signal components of the early and late samples are given by:

S E =
√

CR(∆τ − dTC/2) (4.53)

S L =
√

CR(∆τ + dTC/2) (4.54)

where R(τ) is the autocorrelation function, TC is the length of on chip of the pseudo random

code, d is a constant value of the correlator spacing, ∆τ is the offset between the prompt

code and the object code in the signal,
√

C is the maximum correlation value. The auto-

40

correlation function is given by [3]:

R(∆τ) =

τ

TC
+ 1, TC < τ < 0, (4.55a)

−τ

TC
+ 1, , 0 < τ < TC. (4.55b)

0, otherwise (4.55c)

The time offset be computed by:

∆τ = TC(S E − S L)/2
√

C (4.56)

The DLL discriminator provides the linear relationship of the time offset to the correlation

results. Several typical types of DLL discriminators are described in the table 4.1.

The normalized early minus late envelope delay lock loop is very widely used. It removes

the signal amplitude sensitivity, but it is very computationally expensive. The normalized

early minus late envelope discriminator is used is this software receiver to track both GPS

and GLONASS L1 signals. The difference between the power of early and late is calculated

and sent to the discriminator. This difference indicates which one (early or late ranging

code) contains more energy. The NCO must advance or delay the locally generated code

according to this difference. When the power of the early and late correlators is the same,

this means the prompt code lies perfectly with the incoming code and this is the objective

of code tracking loop. The result of the discriminator is filtered and sent to the code NCO

to update the chip rate of the pseudo random code.

4.5 Review of Bit-Wise Parallel Correlation

The correlator performs the mixing of input RF data with local code and carrier replicas,

and accumulation of the base-band signals. The details of these operations are covered in

41

Table 4.1: GLONASS and GPS system comparison

Type Discriminator Characteristics

Coherent IE − IL Low computational load. Does not re-

quire the Q branch but require a good car-

rier tracking loop.

Non Coherent (IE − IL) × IP + (QE − QL) × QPDot-product power. This is the only DLL

discriminator that uses all three correla-

tors and this results is the lowest baseband

computational load. For 1/2 chip early-

late spacing, it produces true tracking er-

ror within 0.5 chip of input error.

(I2
E − I2

Q) + (Q2
E − Q2

Q) Early-minus-late power. Moderate com-

putational load. For 1/2 chip early-late

spacing, it produces true tracking error

within 0.5 chip of input error.

((I2
E − I2

Q) + (Q2
E − Q2

Q))
((I2

E + I2
Q) + (Q2

E + Q2
Q))

Normalized early minus late envelope.

Highest computational load. For 1/2 chip

early-late spacing, it produces true track-

ing error within 0.5 chip of input error.

Becomes unstable at 1.5 chip input error.

42

the acquisition and tracking part. The main difficulty to implementing the real time soft-

ware receiver is the speed of the general processor. In order to understand the computation

complexity of the software receiver, we first examine how the hardware receiver works.

A modem hardware receiver always has 12 or even more channels. Figure 4.9 shows the

structure of a hardware channel from Zarlink GP 2021 [29]. Each channel is programmed

individually and contains blocks to generate data used for tracking satellites signals.

Figure 4.9: Tracking module block diagram

However, for a software receiver, the general purpose processor needs to perform all the

tasks of the 12 channels. So the software receiver must be computationally efficient enough

in order to operate in real time. An example is provided to show the rough estimation

of total computations involved in a 12-channel software receiver, assuming the sample

43

frequency of the incoming signal is 5MHz complex samples. For in-phase and quadrature

signal, the computations are summarized below:

1 Generation of sinusoid, 5M operations.

2 Generation of early, late and prompt codes, 3*5M operations.

3 Mixing between the incoming signal and the sinusoid, 5M operations.

4 Mixing with early, late and prompt code, 3*5M operations.

5 Summation of the mixing results, 3*5M operations.

These operations are performed by both in-phase and quadrature signals of 12 channels.

So the total computation for one second is:

12 × 2 × (11) × 5M = 1320M (4.57)

This huge computation burden limits the capability of a software receiver. In order to

speed up the correlation process, the software correlator is implemented using bit-wise

parallel correlation [1]. This correlation method achieves computational performance that

is 2 to 4 times better than brute-force fixed-point correlation. The basic principle of the bit-

wise parallel algorithm is to operate on bit-packed samples in a parallel fashion by using

EXCLUSIVE OR operations instead of fixed-point multiplication. This algorithm requires

a low number of quantization levels for the RF signal, carrier replicas, and code replicas.

The RF data are represented by two bits as shown in table 4.2. The sinusoids are sampled

with 4-level and 8-phases as shown in table 4.3 [29], which can also be represented by two

bit samples as in table 4.4. The PRN code samples are represented by one bit samples as in

44

Table 4.2: Sign and magnitude combinations of the input GPS signal.

Sign Mag Value

0 0 -1

0 1 -3

1 0 +1

1 1 +3

Table 4.3: 4-level, 8-phase Sample of sinusoids

Destination Arm Sequence

ILO -1+1+2+2+1-1-2-2

QLO +2+2+1-1-2-2-1+1

Table 4.4: Sign and magnitude combinations of the sinusoids

Sign Mag Value

0 0 -1

0 1 -2

1 0 +1

1 1 +2

table 4.5.

45

Table 4.5: Sample of Input Signal

Sign Mag

1 +1

0 -1

Table 4.6: Sign, high-magnitude, low-magnitude, and zero- mask combinations of the fully

mixed early-minus-late integrand.

Sign High Mag Low Mag Value

0 0 0 -1

0 0 1 -2

0 1 0 -3

0 1 1 -6

1 0 0 +1

1 0 1 +2

1 1 0 +3

1 1 1 +6

A simple EXCLUSIVE OR multiplication of sign bits and a redefinition of data bits

accomplishes base-band mixing. Multiplication of the RF front-end output representation

of Table 1 by the sine wave representation of Table 2 and the PRN code in table 1 yields a

result that can take on the values -6,-3,-2,-1,+1,+2,+3, and +6. These can be represented

by 3 bits according to the scheme in Table 3. The high magnitude bit of Table 3 is sim-

46

ply the magnitude bit of the RF front-end output from Table 1, and the low magnitude bit

of Table 3 is the magnitude bit of the base-band mixing sine wave from Table 2. Thus,

these two magnitude bits are available without the need for computation. So the fix-point

multiplication is replaced by the EXCLUSIVE OR multiplication. If all the sign bits are

packed into integers, one EXCLUSIVE OR operation can process 32 samples on a 32 bits

processor. As a result, the speed performance of the bit-wise parallel algorithm is improved

significantly compared to the traditional fix-point computation.

Figure 3 shows the block diagram of the bit-wise parallel correlator and the code and

carrier tracking loops. Code and carrier replicas are required for the code mixing and

base-band mixing stages of correlation. The possible code phases of the PRN code and the

Doppler shift frequencies are continuous values, so it is undesirable to store all possibilities

in the limited computer memory, nor is it practical to generate these signals in real time as

this process can be computationally expensive. Instead of storing all the possible values,

a finite set of code replicas with initial code phases of fractions of one chip are generated,

and carrier replicas covering a coarse grid of carrier Doppler shift frequencies about each

intermediate frequency with initial phase offsets of zero are pre-computed and stored into

tables in memory. An additional post-correlation fix-up is required because of the use of

carrier replicas that occupy coarse Doppler shift frequencies have initial phase offsets with

the incoming signals. The fix-up is to rotate the accumulation outputs. The detail of this

algorithm is detailed in the paper [1]. The use of the finite set of code and carrier replicas

causes a small, but negligible, loss in power.

47

Bit- packed PR code

Code phase I,Q(early ,late, prompt)

Bit-packed sin(t) & cos(t)

Doppler shift frequency

Input binary data
Pre-compute shifted
PR code arrays.
Pack into words

Pre-compute a grid of
Doppler shift
frequencies .
Sample and bit-pack
into words

DLL &
PLL or FLL

Carrier
replica table

PR code
Table

Rotate
functions

Software
correlator

Figure 4.10: Memory usage of the bit-wise parallel The sample of the sinusoid

48

Chapter 5

Navigation Data Processing

5.1 GLONASS Message Structure

The navigation message provides the user with requisite data for determining the satellite

positions, satellite clock offsets, satellite health, satellite time, etc. The algorithms to pro-

cess the GPS messages are describe in reference [6, 19], so this paper is going to emphasize

the processing of the GLONASS navigation message. The structure of the GLONASS nav-

igation message consists of super-frames, sub-frames, strings, and bits. The super-frame

has a duration and nominal repetition rate of 2.5 minutes. Each super-frame consists of five

subframes, where each subframe has a duration of 30 seconds. Each subframe consists of

15 strings each with a duration of two seconds. The first 1.7 seconds of the GLONASS

message string is 85 bits of navigation data encoded by a relative code (also called a dif-

ferential code), and the last 0.3 second is the 30-bit time mark, which is used to locate the

start of the next string, in a fashion similar to locating the preamble in a GPS navigation

message. The first four strings of the super-frame contain the immediate data. Immediate

49

data is GLONASS’s term for the satellite position, velocity, acceleration, and timing cor-

rections needed to compute the satellite positions at any time.

clock pulses)10(msT

1 1 1 1 1

0 0 0 0 0

meander)10(msTc

1 1 1

0 0

data bits in relative code)20(msTc

1

0

1 1 1 1

0 0 0 0

data bits bi-binary code)10(msTc

11 1 1 1

0 0 0 0

11 time mark bits)10(msTc 1 1

0.7s 0.3s

85 data bits in bi-binary code 30 bits of time mark

even seconds in satellite onboard time scale

Figure 5.1: Data Sequence Generation

The broadcast navigation message consists of data bits with apparent bit lengths of ten ms.

The navigation message in constructed via modulo-2 addition of the true data bit time his-

tory with a bit length of 20 ms and the meander code with a bit length of ten ms. The true

data bits and the meander code are phase locked so that the resulting navigation message

bits have a bit length of ten ms. The steps to decode the GLONASS navigation message

are in Figure 5.1. These steps are taken directly out of the GLONASS ICD. For additional

detail, please refer to the ICD [36].

50

Decode Navigation Messages

Convert the Differential code to Original code

Perform Parity Check

Remove the Meander Code

Find the Time Mark

Find the bit transition

Figure 5.2: Multi-step approach to decoding the navigation message

5.2 Computation of GLONASS Satellite Positions

Computation of the GLONASS satellite positions is a requisite component of the receiver’s

navigation algorithm. Computation of the satellite positions is undertaken using a proce-

dure that relies on numerical integration of first-order ordinary differential equations that

define the motion of the satellites. There are two necessary components for calculating the

satellite positions. The first is the initial conditions and the second is the numerical tech-

nique used to solve the differential equations.

The initial conditions are part of the broadcast GLONASS navigation message. The

initial conditions at time tb are the satellite position at time tb, the satellite velocity at time

tb, other parameters needed to compute the satellite acceleration at time tb, the satellite lock

51

offset and a relativistic correction. The satellite acceleration parameters contain the pertur-

bations due to the Earth’s gravitational force and the lunar and solar force on the satellite.

These initial conditions and parameters, as defined by the GLONASS ICD, are given in

Table 5.1 along with their units. These initial conditions are defined in the PZ-90 geodetic

coordinate system, which is the primary coordinate reference frame used by GLONASS.

The initial conditions and parameters are nominally updated every 30 minutes for each

satellite by the GLONASS control segment.

Table 5.1: Several important parameters in GLONASS message

Description Symbol Units

Reference time tb minutes

Relativistic correction γn dimensionless

Satellite clock offset τn(tb) seconds

Satellite position xn(tb), yn(tb), zn(tb) km

Satellite velocity ẋn(tb), ẏn(tb), żn(tb) km/s

Lunar and solar perturbations ẍn(tb), ÿn(tb) ,z̈n(tb) km/s2

Once the initial conditions and parameters are obtained via decoding the broadcast

navigation message, they are used in conjunction with a set of six first-order ordinary dif-

ferential equations to solve the satellite positions for any time. The same set of equations

is used to define the motion for each GLONASS satellite. Thus, only the broadcast initial

conditions are satellite dependent. The set of differential equations used to compute satel-

52

lite positions are as follows[12, 13]:

dx
dt
= Vx (5.1)

dy
dt
= Vy (5.2)

dz
dt
= Vz (5.3)

(dVx)
dt

= −
µ

r3 x −
3
2

J2
0

(µa2
e)

r5 x(1 −
(5z2)

r2) + ω2x + 2ωVy + ẍ (5.4)

(dVy)
dt

= −
µ

r3 y −
3
2

J2
0

(µa2
e)

r5 y(1 −
(5z2)

r2) + ω2y + 2ωVx + ÿ (5.5)

(dVz)
dt

= −
µ

r3 z −
3
2

J2
0

(µa2
e)

r5 z(3 −
(5z2)

r2) + z̈ (5.6)

r =
√

x2 + y2 + z2 (5.7)

where µ is gravitational constant, ae is the semi-major axis of Earth, J2
0 is the second

zonal harmonic of the geopotential, (x, y, z) is the initial satellite position at time tb,ω is the

Earth rotation rate, (Vx,Vy,Vz) is the initial satellite velocity at time tb, and (ẍn, ÿn, z̈n) is the

initial satellite acceleration due to the Earth’s gravitational acceleration and lunar and solar

perturbations at tb. It should be noted that the GLONASS ICD Version 5.0 [36] contains

two errors in the set of six differential equations. The equations provided here are corrected

equations and are consistent with those found in Ref [13].

Numerical integration is used to solve the six differential equations in order to compute

a satellite position for any desired time. The GLONASS ICD recommends using 4th-order

Runge-Kutta numerical integration [32]. This integration method has been implemented in

the receiver described in this paper.

53

During development of the GLONASS software receiver described here there was a

need to validate the computed satellite positions. This step would provide confidence that

the GLONASS navigation message had been decoded correctly and that the numerical in-

tegration technique had been coded correctly. Additionally, comparison of the computed

GLONASS satellite positions with a truth source would provide validation for the under-

standing of the time reference frame used by GLONASS.

Two methods have been used to gain confidence in the satellite position calculations.

The first relies on using two successive sets of initial conditions decoded from the naviga-

tion message for one satellite. Two successive sets are continuous in time and are nominally

separated by 30 minutes. Numerical integration forward in time for the earlier set and nu-

merical integration backward in time for the later set should provide satellite position time

histories that are continuous in time or nearly continuous, within the bounds on the accu-

racy of the initial conditions and satellite motion model defined in equations 8-14. Figure

8 shows the result of this test for SV GC719. At the midpoint time, which is precisely 15

minutes after tb for the first set of initial conditions and 15 minutes prior to tb in the second

set of initial conditions. One can see that the satellite positions are nominally the same and

the time histories are apparently continuous. Figure 10 shows a zoomed-in view of Figure

9, and although it is difficult to ascertain from this figure, the difference in the satellite po-

sitions at the midpoint time is 0.852 meters, which indicates that the satellite positions time

histories are being computed consistently using two continuous sets of navigation mes-

sages. The two noted errors in the differential equations reported in the GLONASS ICD

were uncovered during this test.

54

The second method used to gain confidence in the satellite position calculations is to

compare the computed satellite positions with positions from the GLONASS official web-

site, which provides satellite positions for each satellite every 15 minutes. The reason these

satellite positions can be used for comparison with computed satellite positions is that they

are defined at a time that is different than tb. The reported satellite positions, which are

denoted truth positions in Figures 5.3 and 5.4, are defined in GPS reference time. GPS

reference time and GLONASS reference time are related by the equation [36]:

TGPS − TGLO = ∆T + τGPS (5.8)

where ∆T is a bias which is 3 hours plus the current number of leap seconds used in GPS

to define the time difference between GPS time and UTC, and τGPS is the fractional offset

which is found in the GLONASS navigation message.

Truth satellite positions for every functional on-orbit GLONASS satellite are available

starting at GPS time equal to zero, at the beginning of the GPS week, at a cadence of 15

minutes.

55

-1000 -500 0 500 1000
-2.8

-2.7

-2.6

-2.5
x 10

6 Forward and Backward Integration of X

Time(s)
M

ag
ni

tu
de

(m
et

er
s)

-1000 -500 0 500 1000
-2.5

-2.45

-2.4

-2.35

-2.3
x 10

7 Forward and Backward Integration of Y

Time(s)

M
ag

ni
tu

de
(m

et
er

s)

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
4

6

8

10

12
x 10

6 Forward and Backward Integration of Z

Time(s)

M
ag

ni
tu

de
(m

et
er

s)

Figure 5.3: Satellite position time histories computed using backward and forward integra-

tion of the differential equations using two successive sets of initial conditions separated in

time by 30 minutes for one SV

56

-14 -12 -10 -8 -6 -4 -2 0 2 4
-2.68

-2.679

-2.678

-2.677
x 10

6 Forward and Backward Integration of X

Time(s)

M
ag

ni
tu

de
(m

et
er

s)

-14 -12 -10 -8 -6 -4 -2 0 2 4

-2.422

-2.4215

-2.421

-2.4205

-2.42

x 10
7 Forward and Backward Integration of Y

Time(s)

M
ag

ni
tu

de
(m

et
er

s)

-14 -12 -10 -8 -6 -4 -2 0 2 4
7.4

7.45

7.5

7.55
x 10

6 Forward and Backward Integration of Z

Time(s)

M
ag

ni
tu

de
(m

et
er

s)

Figure 5.4: Zoomed-in version of Figure 9 showing the satellite position time histories

The residual error between the computed satellite position for SV GC719 and the truth

position at time 20:30 GPS time on August 21, 2008 is 2.94 meters. Thus, the computed

satellite positions are proving to be reasonable and the error is within the stated error bud-

get for the GLONASS satellite position accuracy. This comparison suggests that both the

GLONASS satellite parameters in the navigation message are being decoded properly and

that the numerical integration technique is performing well.

57

5.3 pseudorange correction

As mentioned before, GLONASS is referenced to the UTC (SU), the Russian National

Etalon time scale. The equation to correct the GLONASS satellite time is given by this

equation [36]:

tUTC(S U) + ∆ = t + τc + τn(tb) − γn(tb)(t − tb) (5.9)

where t is the GLONASS satellite time, τc and τn(τb) are the correction factors to tUTC(S U),

γn is the relativistic correction, and ∆ is the constant 3-hour time offset between Russian

National Etalon time and UTC. The code arrival time is computed using the code track-

ing loop, and is represented in receiver time. The code transmit time is provided in the

GLONASS navigation message in GLONASS satellite time.

To compute the pseudorange measurement from the receiver to the satellite, the trans-

mit time needs to be corrected by equation 16. After the conversion of the message arrival

time and the transmit time into the same reference time system, the pseudorange of the

satellite can be computed by:

PR = c × (tarrival − ttransmit(UTC(S U))) (5.10)

where c is the speed of light, tarrival is the code arrival time in receiver time, and ttransmit the

code transmit time in UTC(SU) time.

58

Chapter 6

Design And Implementation of The Real

Time Software Receiver

6.1 Implementation Of The Real Time Software Receiver

The center part of the software receiver is the computer system with an Intel 1.8GHz CPU

and 2G memory. The operating system running on the computer is the Ubuntu Linux,

which is widely used and well maintained. GNUradio and QT 4.0 are necessary to be in-

stalled. GNUradio is an open source software development toolkit that provides the signal

processing runtime, which also provides the driver for the USRP board. The interface of

the software receiver is developed by using libraries of QT 4.0. The real time software re-

ceiver is developed in C++. Object oriented method is adopted in the design of the software

receiver to make the program easy to maintain and update. There are three major classes

defined in the software receiver: CChannel, CGPS and CGLONASS. CChannel class con-

tains the member functions for the bit-wise parallel correlation, frequency lock loops, phase

59

lock loops and delay lock loops with member variables which specify status of the current

channel (e.g., RPN number, code phase, carrier phase, Doppler shift frequency, code index,

etc.). The CGPS class provides the functions to process GPS messages. The CGLONASS

class is responsible to process GLONASS messages. The implementation of the real time

software receiver is shown in the Figure 6.1. Figure 6.2 shows more details about the cor-

relator.

12 Channel

correlator

Thread 1
Thread 2 Thread 3

Q Mag

Pipe
USRP

Re-

quantize

data to

-1,-3

+1,+3

Data buffer

I Sign

Q Sign

I Mag

User interface

Navigation

solution

Figure 6.1: Implementation of Real-time Software Receiver

60

For channel 1
to 12 loop:
case status

Get Satellite

Acquisition

Do
Acquisition

Update

Tracking

Do
tracking

Update

FFT initialization

Read

Dump

Output
User interface

Navigation
solution

12 Channel correlator

Figure 6.2: Detail of the Correlator

The software receiver program is a multiple thread program which contains three threads.

Thread one is responsible for continuously reading data from the RF front end (USRP).

The RF data are saved into a pipe, which is a data manage technique provided by Linux.

Thread two is responsible for re-quantization of the incoming RF data which is 16-bits in

length. As the input to the bit-wise correlator needs to be sign and bit integers, the RF data

are re-quantized into two bits. The magnitude bit is set to be one for the sample with ab-

solute value larger than the standard deviation. Otherwise,the magnitude is set to be zero.

The sign bits and magnitude bits of in-phase and quadrature signals are sent to four pipes

separately. After these preparations, The incoming data are fed to the real time correlator.

Thread three is the main thread of the program. It loops through all 12 channels to compute

the correlation of the incoming data between the local PRN codes and local carriers. The

local PRN codes and carriers are read from the pre-generated PRN code tables and carrier

tables. As the correlation data index for different channel are different from each other, a

61

circle data buffer of 500ms length of data is created. All channels share this data buffer. The

indices of the RF data in the data buffer, for different channels, are recorded and updated

after each correlation.

A more detailed picture about the correlator is given below: in Figure 6.3. The real

time software receiver is not only tracks the current satellites in view but also keeps search-

ing new satellites coming in. A background acquisition algorithm has been implemented

in the software receiver to acquire new satellites coming in. The background acquisition

is realized by serial search through all possible code shifts and Doppler frequency offsets.

There are three possible states for each channel: Getsatellite, Acquisition, and Tracking.

Getsatellite means the current channel is finding a satellite which is not in use by other

channels in all possible satellites array. Acquisition means the current channel is searching

for the existence of a satellite. If the correlation result between the incoming data and the

local replica is larger than the threshold, this channel will start the tracking loop. The com-

putation of the threshold is reference to [29]. Tracking states means this channel is tracking

a satellite. The states of all channels are initialized by a FFT acquisition. In the tracking

loop, a frequency lock loop is used before the more accurate phase lock loop.

62

Get Satellite

For 1 to 12 Channel

Acquisition

Tracking
Case

Status:

If used

Search from
channel 1 to 31

Search all
possible Doppler

shift

Once
larger than
threshold

Till Max
Doppler shift

Run FLL for 1
second

If carrier
locked

Run PLL

If carrier
locked

If 50 seconds
data

recorded

Record data
bits

Decode
ephem

Channel
synchronizatio

n

If 4 satellites
being tracked

Compute
receiver
position

Bit lock

Parity checkYes

No

Yes

Yes

No

No

No

Yes

Figure 6.3: Diagram of the Software Receiver

Figure 6.3 shows in detail how the real time software receiver works. The total CPU

usage of the software receiver is about 30 ∼ 40%of the Intel 1.8GHz CPU. The Linux

system and the RF data re-quantization thread use about 10 percent of the total CPU. The

12 real time correlators use about 30% percent of the total CPU. The memory requirement

63

is also important in software receiver design. The carrier replica table is generated with

100Hz frequency interval and maximum offset of 5000Hz. The total memory usage for the

code and carrier replicas is about 350K.

The acquisition, tracking results and interface of the software receiver are gaven below.

The algorithms of the software receiver are tested by Matlab first, then implemented by C.

Table 6.1 lists the setting of the RF data. As the bandwidth of the GLONASS signal is about

12MHz, the USRP is not a perfect RF front end to process GLONASS signals. Taking ac-

count that the current GLONASS system is not making use of its full bandwidth, the sample

frequency used in the software receiver is enough to process the available GLONASS sig-

nals. The acquisition results of the software receiver for GPS signals is verified by two

methods: one method is to compare with the results of the Cascade hardware receiver in-

stalled in the GPS lab; another method is to analyze the acquisition results. For GLONASS

signals, the official website is helpful to get the available satellites. In order to get better

acquisition results, two milliseconds of the data is used the in FFT based acquisition. The

setting of the RF data is concluded in table 6.1. The interface of the hardware receiver in

the GPS lab is gave in Figure 6.4. From the hardware receiver, the channel information and

Doppler frequency are provided. These information can be used to compare with the acqui-

sition results. Figure 6.5 shows the acquisition results of GLANASS channel 2. There is a

clear peak in the outputs which means the local generated code lines up with the incoming

signal. In order to further verify the acquisition results, the peak is plotted in the code phase

as shown in Figure 6.6. As the auto-correlation property of the PRN code, the peak should

look like a triangle and the length of the button is about 2 chips. The plot verifies that the

GLONASS signal is acquired. Figure 6.7 and 6.8 shows the acquisition results of the GPS

L1 signals.

64

Table 6.2 lists the setting of the FLL and PLL used in the software receiver. Figure 6.9

and Figure 6.10 plot the tracking results of the GLONASS and GPS signals. The integration

interval used in the FLL and PLL and both 1ms. FLL is used to lock the incoming signals

first, then the PLL is used to refine the frequency and phase. After the signals been tracking,

the software receiver will start to decode the navigation messages. As BPSK signals are

used in both GPS and GLONASS signals. We can see the energy of the output is mainly

contained in the In-phase beam. The Doppler shift frequency changed slowly and linearly

after been tracked. The phase transition can be clearly viewed in the In-phase output.

Figure 6.11 shows the position solution error of the software receiver in east, north and

up separately. The position of the antenna is known as follow:

1 WGS 84: [37.23107 -80.424233 630],

2 ECEF: [845901.844456496 -5014168.241999357 3838223.446543617].

The software receiver can provide position accuracy of 15 meters in most cases. Figure

6.12 shows the velocity errors. The amplitude of the speed errors is in centimeters. At

current situation, it quite difficult to acquire 4 GLONASS satellites in the same time. So a

two dimensional solution is computed and the solution residual error time history is given

in Figure 6.13. A sample screen-shot from the real time software receiver is provided

in Figure 6.14. This figure shows the interface of the software receiver with seven GPS

satellites being tracked and provides a position offset about 17 meters in altitude. Further

work still need to be done to improve the performance of the current software receiver. The

integration time in the software correlator is 1ms which is too short for weak signals. As

a result, only satellites with high elevation can be tracked by the current software receiver.

The total number of satellites in tracking is always two or three less than the hardware

65

receiver. Several major modifications of the bit-wise parallel corellator need to be done to

increase the integration interval. This is a part of the future work in the real-time software

receiver.

Table 6.1: RF data setting in the software receiver

Description GPS GLONASS

Sample frequency 4MHz 8MHz

Intermediate frequency 1MHz 1MHz

Sample length 2 bits 2 bits

Acquisition interval 2ms 2ms

Table 6.2: FLL and PLL setting in the software receiver

Description FLL PLL

Integration interval 1ms 1ms

Noise bandwitdh 10Hz 15Hz

Filter Order second second

discriminator actan [Ik−1,Qk−1] × [Ik,Qk]

66

Figure 6.4: Interface of The Cascade hard receiver in GPS lab

Figure 6.5: GLONASS signal acquisition results

67

198 199 200 201 202 203 204 205
0

2

4

6

8

10

12
x 10

5

Code Phase [chips]

I2 +
Q

2 A
cq

ui
si

tio
n

St
at

is
tic

GLONASS Channel 2 Correlation

Figure 6.6: View of acquisition results in code phase

Figure 6.7: GPS signal acquisition results

68

Figure 6.8: View of acquisition results in code phase

69

Figure 6.9: GLONASS Channel 2 Tracking Results

70

Figure 6.10: GPS Channel 22 Tracking Results

71

Figure 6.11: GPS Position Solution Error

72

Figure 6.12: GPS Velocity Solution Error

73

0 1 2 3 4 5 6
85

90

95

100

105

110

115

120

Time (s)

M
a

g
n

it
u

d
e
 (

m
e
te

r
s)

Figure 6.13: 2-dimensional residual navigation errors output from GLONASS software

receiver

74

Figure 6.14: Interface of software receiver

75

Chapter 7

Summary And Future Works

A 12 channel real time GNSS software receiver which utilize USRP as the RF front end

has been developed on a desktop with Intel 1.8GHz CPU. The software receiver has the

capability to process both GPS and GLONASS L1 signals, and provide a user solution ac-

curacy of 30 meters. The receiver can track up to 20 channels at 2-bit sampling rate of

4MHz complex samples for GPS L1 signals. Bit-wise parallel correlation is used in the

design of the software correlator. Object oriented approach is used to make the software

receiver flexible, readable, and maintainable.

Challenges: the sample frequency of the USRP board is not enough to process the

whole bandwidth of GLONASS L1 signals. From the tracking results of the software re-

ceiver, it is hard to find a time when four GLONASS satellites being tracked at the same

time. The accumulation interval of the software correlator is 1ms with 2-bit sinusoid sam-

ples. The accumulation interval needs to be increased in order to track satellites with low

elevation. The increase of the correlation length will cause the modification of the current

76

bit-wise parallel correlation algorithm. The reason is that the post-rotation in the bit-wise

parallel correlation only works for small angle offset.

Prospect: The background search of satellites is implemented by serial search through

all possible code phases and frequency offsets which slow down the performance of the

real time receiver. A more efficient FFT based acquisition method is going to be designed

for future applications. Anther improvement is to increase the accumulation interval to

improve the tracking performance of the software receiver. The USRP board is a multiple

input multiple output (MIMO) system, so a dual frequency receiver is possibly be imple-

mented.

77

Bibliography

[1] Ledvina, B.M., Psiaki, M.L., Powell, S.P., and Kintner, P.M., “Bit-Wise Parallel Algo-

rithms for Efficient Software Correlation Applied to a GPS Software Receiver,” IEEE

Transactions on Wireless Communications, Vol. 3, No. 5, Sept. 2004, pp. 1469-1473.

[2] Ledvina, B.M., Psiaki, M.L., Humphreys, T.E., Powell, S.P., and Kintner, P.M., “Real-

Time Software Receiver for the GPS and Galileo L1 Signals,” Proc. ION GNSS 2006,

Sept. 26-29, 2006, Fort Worth, TX.

[3] Pratap Misra and Per Eng “Global Positioning System: Signals, Measurements, and

Performance,” Ganga-Jamuna Press, Second Edition, 2006.

[4] Kaplan, E., Understanding GPS: Principles and Applications,Norwood, MA, Artech

House, 1990.

[5] Anonymous, “GLONASS Interface Control Document Version 5.0,” Moscow, 2002.

http://www.glonass-ianc.rsa.ru/.

[6] Kai, Borre., Dennis, M. Akos.,and Nicolaj Bertelsen., A Software- Defined GPS

and Galileo Receiver: A Single- Frequency Approach ISBN: 0817643907 Publisher:

Birkhauser 2005.

78

[7] Akos, D., A Software Radio Approach to Global Navigation Satellite System Receiver

Design, Ph. D. Dissertation, Ohio University, 1997.

[8] Ledvina, B.M., M. Psiaki, T.E. Humphreys, S.P. Powel, and P.N Kintner (2005) “A

Real- Time Software Receiver Tracking of GPS L2 Civilian Signals Using a Hardware

Simulator, in the Proceeding of Institute of Navigation GPS 2005, 13-16 September,

Long beach CA, pp.1598-1610.

[9] Humphreys, T.D., M. L. Psiaki, P.M. Kintner, Jr., and B.M. Ledvina (2006) “GNSS Re-

ceiver Implementation on a DSP: Status, Challenges, and Prospects, in the Proceedings

of Institute of Navigation GNSS, 26-29 September, Fort Worth TX, pp.2370- 2382.

[10] Akos, D.M., P.-L. Normark, P. Enge, A. Hansson, and A. Rosenlind., “Real-Time

GPS Software Radio Receiver,” Proc. of the Institute of Navigation National Technical

Meeting, Long Beach, CA, January 22-24, 2001, pp. 809-816.

[11] Senlin, Peng, Brent, Ledvina, A Real-Time Software Receiver for the GLONASS L1

Signal, Proc. ION GNSS 2008, Sept. 22-25, 2008, Savannah, GA.

[12] Mike, Stewart., and Maria, Tsakiri., “GLONASS Broadcast Orbit Computation,” GPS

Solutions, Vol. 2, No. 2, October, 1998, pp. 16-27.

[13] Lauri, Wirola., and Jari, Syrjarinne., “GLONASS Orbits in GPS/Galileo-style

Ephemeredes for Assisted GNSS,” Proc. ION NTM 2008, Jan. 28-30, 2008, San Diego,

California.

79

[14] Yuri A. Bazlov., Viktor F. Galazin., Boris L. Kaplan., Valery G. Maksimov., and Vlad-

mir P. Robot., “Propagating PZ 90 to WGS 84 Transformation Parameters,” GPS Solu-

tions, Vol. 3, No. 1, July, 1999, pp. 13-16.

[15] Anonymous, Novatel, http://novatel.com/Documents/Papers/GPS701-702GG.pdf/.

[16] Anonymous, “USRP Motherboard Data sheet,” Ettus Research LL-

C£http://www.ettus.com/Download.html.

[17] Anonymous, ”Agilent N5181A MXG Analog Signal Generator Data Sheet,” Agilent

Technologies, http://cp.Literature.agilent.com/litweb/pdf/5989-5311EN.pdf.

[18] Van Dierendonck, A.J., “GPS Receivers,” in Global Positioning System: Theory and

Applications, Vol.I, Parkinson, B.W. and Spilker, J.J. Jr., eds., American Institute of

Aeronautics and Astronautics, Washington, 1996, pp. 329-407.

[19] Bernhard, Hofman-Wellenhof., James, Collins., and Herbert Lichtenegger, “Global

Positioning System (GPS): Theory and Practice,” Springer-Verlag New York, LLC,

5th Edition, 2001.

[20] Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T., Estimation with Applications to

Tracking and Navigation, J. Wiley and Sons, (New York, 2001), pp. 200-232.

[21] Bao, J. and Y. Tsui (2000b) Fundamentals of Global Positioning System Receivers: a

Software Approach, John Wiley & Sons, Inc., pp. 133.

[22] Bong-Young, Chung., Charles, Chien., Henry, Samueli., and Rajeev, Jain., “Perfor-

mance Analysis of an All-Digital BPSK Direct- Sequence Spread-Spectrum IF Re-

80

ceiver Architecture,” IEEE JOURNAL ON SELECTED AREAS IN COMMUNICA-

TIONS, VOL. 11, NO. 7, SEPTEMBER 1993,pp. 1096-1107.

[23] Lindsey, W. C. and Chie, C. M., “A Survey of Digital Phase- Locked Loops, Proc.

IEEE, Vol. 69, No. 4, 1981, pp. 410C431.

[24] Best, Roland E., Phase Locked Loops: Design,Simulation, and Applications, 3rd Ed.,

McGraw Hill, ISBN: 0070060517,1997.

[25] Spilker, J.J.Jr., “Dlay-Lock Tacking of Binary Signals,” IEEE Transactions on Space

Electronics and Telemetry, Vol. SET-9, March 1963, pp. 1-8.

[26] Oppenheim, Alan V. and Ronald W. Schafer, Discrete-Time Signal Processing, Pren-

tice Hall,ISBN: 0137549202,2rd Ed., 1999.

[27] Proakis, J. G., Digital Communications, McGraw-Hill, 3rd ed., 2001.

[28] Psiaki, M.L.,“Block Acquisition of Weak GPS Signals in a Software Receiver,” Proc.

ION GPS 2001, Salt Lake City, Utah, Sept. 11-14, 2001, pp. 2838-2850.

[29] Zarlink, (2001). GP2021 Data Sheet, http://www.zarlink.com

[30] R. Jaffe and E. Rechtin, “Design and Performance of Phase-Locked Circuits Capable

of Near-Optimum Performance Over a Wide Range of Input Signals (and Noise) Lev-

els”, Information Theory, IRE Transactions on Volume 1, Issue 1, March 1955, pp.66

- 76.

[31] Francis, D. Natali., ”AFC Tracking Algorithm,” IEEE Transactions on Communica-

tions, Vol. Com-32, No. 8, August 1984, pp. 935-947.

81

[32] Walter Gautschi., Numerical Analysis,Cambridge, ISBN:0817638954, 1997.

[33] Chi-Tsong, Chen., Linear System Theory and Design, Oxford University Press,

ISBN: 0195115953, 2000.

[34] Floyd, M. Gardner., PHASELOCK TECHNIQUES, Wiley-Interscience, ISBN:

0471042943, 2005.

[35] Michael, L. Workman., Gene F. Franklin., J. David Powell., Digital Control of Dy-

namic Systems,3rd Ed, Prentice Hall, ISBN:0201820544, 1997.

[36] GPS Joint Program Office, 1997. ICD-GPS-200: GPS Interface Control Document.

ARINC Research. Available on line from the United States Coast Guard Navigation

Center.

82

