
Implementation of Turbo
Product Codes in the FEC-API

Kiran Karra

Virginia Tech

Agenda

• Introduction

• Turbo Product Code – Encoding Overview

• Turbo Product Code – Decoding Overview

• Implementation in C++

• BER Performance

• Computational Performance

• Using FEC-API TPC Blocks in GNURadio

2

Introduction to Turbo Product Codes

• Turbo Codes are a class of high-performance forward error correcting (FEC)
codes.

• First practical codes to reach Shannon channel capacity limit.

• Different flavors of Turbo Codes exist:
• Turbo Convolutional Code
• Turbo Product Code
• Enhanced Turbo Product Code

• Now used in multiple commercial standards including:
• UMTS, CDMA2000, LTE, DVB-RCS, WiMAX

• Turbo Product Codes (a form of parallel concatenated codes) are the focus
of this talk.

3

Turbo Product Codes – Encoding Overview

• Algorithm for encoding:

1.) READ ky x kx bits

2.) Place data into ky x kx matrix

3.) ENCODE each row by (nx,kx) systematic code

4.) ENCODE each column by (ny,ky) systematic code

5.) TRANSMIT nx x ny code bits

6.) GOTO Step 1

*Information on this slide copied Reference [1]
4

Turbo Product Codes – Encoding Overview
(cont.)
• Block shortening is also sometimes performed, to conform to other

PHY layer constraints, such as OFDM symbol size.

• Define k_per_col = (ky – Iy)

• Define k_per_row = (kx – Ix)

• Algorithm to allow for shortened blocks:

1.) READ k_per_row x k_per_col bits

2.) PREPAD with B+Q zeros

3.) Place data into k_per_row x k_per_col matrix

4.) ENCODE each row by (nx-Ix, k_per_row) systematic code

5.) ENCODE each column by (ny-Iy,k_per_col) systematic code

6.) DELETE B zeros

7.) TRANSMIT (nx-Ix)* (ny-Iy) – B data bits

8.) GOTO Step 1
5

Turbo Product Codes – Encoding Overview
(cont.)
• Parameters such as B, Q, kx, Ix, ky, Iy and the systematic code

polynomials to encode the rows and columns all need to be picked
carefully to ensure proper operation

*Information on this slide from Reference [1]
6

Turbo Product Codes – Decoding Overview

• Turbo decoding is an iterative process

• Each encoder must be “undone” using the appropriate decoder.

• Decoders exchange information, and hence are required to operate on soft inputs
and produce soft outputs.
• Different than Viterbi decoding

• MAP algorithm makes decisions based on most likely bit, rather than most likely sequence as
in Viterbi decoding

• Basic building block of Turbo decoding is the SISO (Soft Input Soft Output)
decoder

7

Turbo Product Codes – Decoding Overview

• SISO Decoding Overview
• Forward Sweep

• Sweep through trellis. At each node, update metric instead
of ADD/COMPARE/SELECT

• Backward Sweep
• Sweep through trellis. At each node, update metric instead

of ADD/COMPARE/SELECT.

• Update LLR

*Information on this slide from Reference [1]
8

Turbo Product Codes – Decoding Overview

• Block Diagram of overall decoder is shown below.

9

C++ Implementation

• Implementation drawn heavily from code provided by the Coded Modulation Library
(CML). https://code.google.com/p/iscml/

• RSCEncode and SISODecode functions were implemented in C in the CML.
• RSCEncode and SISODecode are the core functions which enable encoding and decoding.
• They were copied directly from CML into GNURadio as static functions (with small function

argument changes, and some code optimizations).

• BTCEncode and BTCDecode functions were implemented in Matlab in the CML.
• The BTCEncode and BTCDecode handled the row/column processing of the block’s, essentially

repeatedly calling the RSCEncode or SISODecode functions described above on the appropriate
row/col.

• Matlab code was ported to separate GNURadio blocks.
• TPCEncoder encompasses functionality of BTCEncode Matlab function.
• TPCDecoder encompasses functionality of BTCDecode Matlab function.
• GNU Scientific Library’s (GSL) matrix functionality was NOT used in implementation.

• Perhaps one path to optimizing the code even further?

• In order to increase performance, early exit algorithm was added to Turbo Decoder

10

https://code.google.com/p/iscml/

C++ Implementation (cont.)

• Early Exit Algorithm
• The signs of the LLRs at the input and the output of the SISO module are

compared.

• Decoder is stopped if signs agree.

• Higher SNR environment leads to less iterations of decoder because there is a
higher likelihood that the LLRs will agree between input and output.

11

BER Performance

12

Computational Performance

13

Computational Performance

Number of
Decoder

Iterations

Max Log-MAP Constant Log-
MAP

Linear Log-
MAP

Log-MAP
LUT

Log-MAP C

6 72 kbits/sec 56 kbits/sec 53 kbits/sec 47
kbits/sec

8 kbits/sec

5 87 kbits/sec 67 kbits/sec 64 kbits/sec 56
kbits/sec

10
kbits/sec

4 107 kbits/sec 85 kbits/sec 80 kbits/sec 70
kbits/sec

13
kbits/sec

3 144 kbits/sec 114 kbits/sec 106 kbits/sec 91
kbits/sec

17
kbits/sec

2 216 kbits/sec 169 kbits/sec 157 kbits/sec 139
kbits/sec

26
kbits/sec

14

Using FEC-API TPC Blocks

15

References

• M.C. Valenti, “Channel coding for IEEE 802.16e mobile WiMAX,” a
tutorial presented at International Conference on Communications
(ICC) (Dresden, Germany), June 18, 2009.

• Iterative Solutions Coded Modulation Library
(https://code.google.com/p/iscml)

• Boutillon, Emmanuel et. al, “Iterative Decoding of Concatenated
Convolutional Codes: Implementation Issues,” Proceedings of the IEEE
2007

16

https://code.google.com/p/iscml

