Implementation of Turbo
Product Codes in the FEC-API

Kiran Karra
Tech

Agenda

* Introduction

* Turbo Product Code — Encoding Overview
* Turbo Product Code — Decoding Overview
* Implementation in C++

* BER Performance

 Computational Performance

* Using FEC-API TPC Blocks in GNURadio

Introduction to Turbo Product Codes

e Turbo Codes are a class of high-performance forward error correcting (FEC)
codes.

* First practical codes to reach Shannon channel capacity limit.

 Different flavors of Turbo Codes exist:
e Turbo Convolutional Code
e Turbo Product Code
 Enhanced Turbo Product Code

* Now used in multiple commercial standards including:
« UMTS, CDMA2000, LTE, DVB-RCS, WiMAX

e Turbo Product Codes (a form of parallel concatenated codes) are the focus
of this talk.

Turbo Product Codes — Encoding Overview

e Algorithm for encoding:
1.) READ k, x k, bits
2.) Place data into k,, x k, matrix

3.) ENCODE each row by (n,,k,) systematic code - >
4.) ENCODE each column by (n,k) systematic code A A
5.) TRANSMIT n, x n, code bits .
6) GOTO Step 1 ny, Checks |
Information Bits
, Y
Checks
Checks on
Y Checks

*Information on this slide copied Reference [1] x

Turbo Product Codes — Encoding Overview
(cont.)

Block shortening is also sometimes performed, to conform to other
PHY layer constraints, such as OFDM symbol size.

Define k_per_col = (k,— 1)

Define k_per_row = (k —1,)

Algorithm to allow for shortened blocks:
1.) READ k_per_row x k_per_col bits
2.) PREPAD with B+Q zeros
3.) Place data into k_per_row x k_per_col matrix
4.) ENCODE each row by (n.-l,, k_per_row) systematic code
5.) ENCODE each column by (n
6.) DELETE B zeros
7.) TRANSMIT (n,-1,)* (n,-l,) — B data bits
8.) GOTO Step 1

,~l,k_per_col) systematic code

- .

A oo TTTrr g
! «-tB > —

n,, : Checks

! Information Bits
: Checks
! Checks on

Yy | Checks

A~

k

35

Turbo Product Codes — Encoding Overview

(cont.)

 Parameters such as B, Q, k

X? Ix'

k

yl

y

and the systematic code
polynomials to encode the rows and columns all need to be picked
carefully to ensure proper operation

‘ Code bytes ‘ Data bytes ‘ grows ‘ gcols ‘ k_per_row ‘ k_per_col ‘ B ‘ Q ‘
12 6 gl g6 3 18 0 6
12 9 gl gl 9) 4 5
24 12 gl a5 17 6 6 0
24 20 gl gl 13 13 4 5
36 18 gl a5 26 6 9 3
36 25 gl o7 5 41 0 5
48 23 g6 a5 22 9 8 6
48 35 g6 gl 26 11 0 6
60 31 g6 o6 16 16 4 4
72 40 g6 o6 18 18 0 4
Generator polynomial Generator vector | Shorthand

1+ X [11] gl

1+ X2+ X4+ X° (101011] g5

1+ X+ X2+ X3+ X°+ X6 [1111011] g6

1+ X%+ X%+ X7 [10100011] g7

*Information on this slide from Reference [1]

Turbo Product Codes — Decoding Overview

* Turbo decoding is an iterative process
* Each encoder must be “undone” using the appropriate decoder.

* Decoders exchange information, and hence are required to operate on soft inputs
and produce soft outputs.

» Different than Viterbi decoding

 MAP algorithm makes decisions based on most likely bit, rather than most likely sequence as
in Viterbi decoding

 Basic building block of Turbo decoding is the SISO (Soft Input Soft Output)

decoder
(> ()

~—_~ SISO N

r(ey) . Decoder n' {:::il

Turbo Product Codes — Decoding Overview

* SISO Decoding Overview

* Forward Sweep o~
* Sweep through trellis. At each node, update metric instead i %)
of ADD/COMPARE/SELECT
V5, x
. = IMax:* (& -+ Yilk) s . + ik g
(0 70) (0 + 1) .
* Backward Sweep N
* Sweep through trellis. At each node, update metric instead N N
of ADD/COMPARE/SELECT. l'\ﬁk/“u———-*yk, AR)
Br = maxx* (53 +vi), (535 + k)]
N
Ik, 3
Update LLR | | | | 7
N(u) = maxx {A(i — j)} — maxx {A(i — j)} .

1—7:u=1 1—7:u=0

*Information on this slide from Reference [1]

Turbo Product Codes — Decoding Overview

* Block Diagram of overall decoder is shown below.

Outer
Siso
Decoder

L (Cy)

Deinterl.

e

Inner
Siso
Decoder

Interl.

\J/

C++ Implementation

* Implementation drawn heavily from code provided by the Coded Modulation Library
(CML). https://code.google.com/p/iscml/

RSCEncode and SISODecode functions were implemented in C in the CML.
* RSCEncode and SISODecode are the core functions which enable encoding and decoding.

* They were copied directly from CML into GNURadio as static functions (with small function
argument changes, and some code optimizations).

BTCEncode and BTCDecode functions were implemented in Matlab in the CML.

* The BTCEncode and BTCDecode handled the row/column processing of the block’s, essentially
repeatedly calling the RSCEncode or SISODecode functions described above on the appropriate
row/col.

* Matlab code was ported to separate GNURadio blocks.

* TPCEncoder encompasses functionality of BTCEncode Matlab function.

* TPCDecoder encompasses functionality of BTCDecode Matlab function.

* GNU Scientific Library’s (GSL) matrix functionality was NOT used in implementation.
* Perhaps one path to optimizing the code even further?

In order to increase performance, early exit algorithm was added to Turbo Decoder

https://code.google.com/p/iscml/

C++ Implementation (cont.)

 Early Exit Algorithm

* The signs of the LLRs at the input and the output of the SISO module are
compared.

* Decoder is stopped if signs agree.

* Higher SNR environment leads to less iterations of decoder because there is a
higher likelihood that the LLRs will agree between input and output.

BER Performance

EER of multiple encoderideceder configurations, MaxTurbolters=6

10
! | | ‘—x— tKrow=26,KcoI=6,BI£3,Q=3 LinsarLoghap)
_ : : e (K ow=26,K_ol-8,B-8,0-3 MaxLogMag]
1 VI tKrow=26,KcoI=6,B£,O=3 ConstantLoghap) I
—— [K ow=26 K ol=6E=5,0=3 LogMapLLIT)
-4
10

Bit Error Rate (BER)
=

tKrow=26,Kco|=6,B=9,0=3 LogMhap) H

-10
T S N —
RES |
10
1) 1 2 3 4 5 B g =] 10
E, MM, (SMFY
SAwerage Mumber of Turbe lterations for each SMR Level
£] N | | | '
e Log Map
I tax Log Map
51— [constant Leg Map H
[Log Map LUT
Log Map
w
S -
d
I —
2
53— —
i
©
[
-1
. —
=
1= —
0 || || || ||
1.0dB 2.0dB 3.0dB 4.0dB 5.0dB 6.0dB 7.0dB g.0dB 2.0dB 10.0dB

12

Computational

Options
1D: top_block
Generate Options: OT GUI

Random Source
Minimum: 0
Maximum: 2
Num Samples: 28.8k
Repeat: Yes

Performance

Variable Variable Variable
I1D: samp_rate ID: num_samps_per_block ID: num_blocks in Multiply Const o]
Value: 10M Value: 144 Value: 2 Constant: 5 =
Standard Encoder Interface
Encoder Objects: ok Multiply Const
ncoder jecs-u:-_ e n ultiply Con ot -
Threading Type: Capillary Constant: 2 Subtract B
Puncture Pattern: 11 = ubtr =
in

—E UChar To Float

A |:In Throttle
Sample Rate: 10M

Constant Source
Constant: 1

out

CtriPort Monitor
Enabled: True

Probe Rate
Min Update Time (ms): 500
Update Alpha: 150m

Annihilator: None

Standard Decoder Interface
ID: variable_...r_interface 0

A |:in Decoder Objects: ok
Threading Type: Capillary

Puncture Pattern: 11

QT GUI Time Sink
Name: FEC INPUT
in | Number of Points: 288
Sample Rate: 10M
Autoscale: No

TPC Encoder Definition
ID: variable_...encoder_def 0
Threading Dimensions: 1
Dimension 1: 1
Row Encoder Polynomials: 3

K Row: 26
K Col: &
B:9

Q:3

Column Encoder Polynomials: 43

—bﬁ Number of Points: 288

QT GUI Time Sink
Name: DECODER_INPUT

Sample Rate: 10M
Autoscale: No

inl

UChar To Float |out

in0

TPC Decoder Definition
ID: variable_...decoder_def 0
Threading Dimensions: 1
Dimension 1: 1
Row Encoder Polynomials: 3
Column Encoder Polynomials: 43
K Row: 26
K Col: 6
B:9
Q:3
NUM Turbe lterations: 2
Decoder Type: MAX LOG-MAP

out| Subtract

QT GUI Time Sink
Name: FEC IO DIFF
in | Number of Points: 288
Sample Rate: 10M
Autoscale: No

13

Computational Performance

Log-MAP C

Number of Max Log-MAP Constant Log- Linear Log- Log-MAP
Decoder MAP MAP LUT
Iterations

6 72 kbits/sec 56 kbits/sec 53 kbits/sec 47
kbits/sec
5 87 kbits/sec 67 kbits/sec 64 kbits/sec 56
kbits/sec
4 107 kbits/sec 85 kbits/sec 80 kbits/sec 70
kbits/sec
3 144 kbits/sec 114 kbits/sec 106 kbits/sec 91
kbits/sec
2 216 kbits/sec 169 kbits/sec 157 kbits/sec 139
kbits/sec

8 kbits/sec

10
kbits/sec

13
kbits/sec

17
kbits/sec

26
kbits/aec

Using

-EC-API TPC Blocks

Options
1D: top_block
Generate Options: OT GUI

Variable Variable
1D: samp_rate ID: num_samps_per_block
Value: 10M Value: 144

Random Source
Minimum: 0
Maximum: 2
Num Samples: 28.8k
Repeat: Yes

Standard Encoder Interface
Encoder Objects: ck
Threading Type: Capillary
Puncture Pattern: 11

——

—@ UChar To Float

e ol
™| sample Rate: 10M

Throttle

Variable
ID: num_blocks in Multiply Const
Value: 7 Constant: 5
Multiply Const
B constant: 2 = no
Subtract
inl

Constant Source
Constant: 1

g

CtriPort Monitor
Enabled: True

e

Probe Rate
Min Update Time (ms): 500
Update Alpha: 150m

Decoder Objects: ck

Annihilator: None
Puncture Pattern: 11

Standard Decoder Interface
I1D: variable_...r_interface_0

Threading Type: Capillary

QT GUI Time Sink
Name: FEC INPUT
Number of Points: 288
Sample Rate: 10M
Autoscale: No

TPC Encoder Definition
ID: variable_...encoder_def 0
Threading Dimensions: 1
Dimension 1: 1
Row Encoder Polynomials: 3
Column Encoder Polynomials: 43
K Row: 26
K Col: &
B:9

Q:3 y

QT GUI Time Sink
Name: DECODER_INPUT
Number of Points: 288
Sample Rate: 10M
Autoscale: No

r TPC Decoder Definition \
ID: variable_...decoder_def 0
Threading Dimensions: 1
Dimension 1: 1

Row Encoder Polynomials: 3
Column Encoder Pelynomials: 43
K Row: 26

K Col: &

B: 9

Q:3

NUM Turbe Iterations: 2
Decoder Type: MAX LOG-MAP

.

inl]

o

in | UChar To Float |out

out| Subtract

QT GUI Time Sink
Mame: FEC IO DIFF
Number of Points: 288
Sample Rate: 10M
Autoscale: No

15

References

* M.C. Valenti, “Channel coding for IEEE 802.16e mobile WiMAX,” a
tutorial presented at International Conference on Communications
(ICC) (Dresden, Germany), June 18, 2009.

* |terative Solutions Coded Modulation Library
(https://code.google.com/p/iscml)

* Boutillon, Emmanuel et. al, “Iterative Decoding of Concatenated
Convolutional Codes: Implementation Issues,” Proceedings of the IEEE
2007

https://code.google.com/p/iscml

