

Implementing a NoSQL Strategy

White Paper
BY DATASTAX CORPORATION

JULY 2013

2

Table of Contents

Abstract 3

Introduction 3

What is Driving NoSQL Adoption in the Enterprise? 3
The Need for Speed 3
The Need for Scale 4
The Need for Continuous Availability 4
The Need for Location Independence 5
The Need for Managing All Types of Data 5
The Need for Cost Reduction 5

Inhibitors to NoSQL Adoption in the Enterprise 6
Technical Inhibitors 6
Non-Technical Inhibitors 7

But is NoSQL for You? 7

Choosing a NoSQL Database 9
Key Selection Criteria 9
Enterprise Selection Checklist 10

Cloud Considerations for NoSQL Databases 11

Making the Move to NoSQL 11
Migrating Data to NoSQL Databases 12

Conclusion 12

About DataStax 13

Abstract
NoSQL database market is expected to grow at a rate three times faster than that of the SQL
market during the next few years, understandably making newcomers to big data technology
eager to understand why and how it fits into their organizations. The needs for speed, scale,
continuous availability, location independence, ability to manage all types of data, and cost
reduction are driving this increasing adoption. Barriers to adoption have certainly existed, from
the technical to the non-technical, and it’s important to examine those along with improvements
that have developed in the NoSQL ecosystem. Furthermore, use cases are gaining speed as
important indicators of when and how organization should use NoSQL technologies. This paper
examines these topics and provides practical implementation strategy tips, including a selection
checklist and migration pointers.

Introduction
Describing the current and expected growth of NoSQL technology, a 2013 article in Silicon Angle
stated: “According to analysis by Wikibon’s David Floyer (and highlighted in the Wall Street
Journal), the NoSQL database market is expected to grow at a compound annual growth rate of
nearly 60% between 2011 and 2017. The SQL slice of the Big Data market, in contrast, will grow
at just a 26% CAGR during that same time period.”1

With major enterprises now putting NoSQL solutions in key line of business applications that
power major aspects of their company, many IT leaders not using NoSQL are interested in
understanding why and how they can use the technology in their organizations.

This paper provides a general enterprise implementation strategy for NoSQL by exploring the
key reasons why enterprises are turning to NoSQL solutions and providing examples of how
modern businesses are using the technology today. It also discusses what inhibitors companies
have faced in implementing NoSQL, provides advice on how to select a NoSQL database, and
discusses practical ways for implementing NoSQL solutions in various application scenarios.

What is Driving NoSQL Adoption in the
Enterprise?
In determining how to implement a NoSQL strategy for your business, it’s helpful to first
examine the top reasons why successful modern enterprises have turned to NoSQL solutions
and see if those needs are present in your organization as well. Although certainly not
exhaustive, the following represent the key motivations for why companies have implemented
NoSQL databases in their critical line of business applications.

The Need for Speed
Nearly everyone acknowledges the fact that improving response times for external facing
systems can directly impact customer satisfaction and revenue. For example, Amazon found

1 “Oracle is in Big Trouble: Big Data is to Blame”, by Maria Deutscher, Silicon Angle, March 2013:
http://goo.gl/ODA7g.

4

that every 100ms reduction in site response time netted them 1% more in revenue; Yahoo states
that they have seen site traffic increase 9% for every 400ms speedup in performance.2
Database professionals have always dreamed of setting the universal “fast=true” database
parameter and having their database run blindingly fast at all times. Although no such
configuration setting exists, what is real is the fact that fast database response times have
never been more important than today with businesses having countless competitors just a
click away.

Because they don’t adhere to many of the encumbrances of relational databases (RDBMS’s),
NoSQL databases can deliver faster performance for many use cases. A hallmark of NoSQL
solutions like Apache Cassandra has been the ability to write data much faster than an RDBMS
as well as deliver just as fast query speeds across large volumes of data.

eBay utilizes DataStax Enterprise, which is powered by Apache Cassandra, for this very reason.
Citing the fact that legacy relational engines were too slow for key parts of their external
applications, eBay replaced their traditional databases with DataStax Enterprise and now meets
their response time SLA’s servicing 6 billion writes and 5 billion reads per day, while also
managing 250TB of data in Cassandra.3

The Need for Scale
Scalability and performance go hand in hand, with companies needing to maintain fast response
times while accommodating increasing numbers of users and data volumes in their line of
business applications. Traditional scale up architectures have proven unsuccessful at “future
proofing” the scalability of such systems.

However, NoSQL databases like Apache Cassandra provide a scale out, divide-and-conquer
architecture that affords proven linear scalability4 with the addition of new nodes that can be
added online and without business interruption.

One company that exemplifies this approach is Ooyala, which serves as a video distributor and
data analysis provider for companies like ESPN and Rolling Stone. Ooyala tracks and analyzes
literally one-quarter of all online video views each day on the Web, with that translating into
billions of events that are streamed through their scale-out DataStax Enterprise / Cassandra
database clusters. Ooyala says that the scale and performance they needed could not be met
with a legacy scale-up database implementation, so they choose Cassandra instead.

The Need for Continuous Availability
While slow performance can drive customers away, nothing is worse than downtime. IT industry
expert Gartner Group states that downtime serves as a bigger risk to companies than security
breaches.5 In terms of lost revenue, predictions range up to $6.5 million per hour for financial
institutions, with the average across all industries being $5,600/minute or over $300,000/hr.6

There is a difference between the failover-styled high availability approach that RDBMS’s offer
with their master-slave architectures than the continuous availability that NoSQL databases like
Apache Cassandra provide. Because of its scale-out, masterless design, and multi-data center

2 http://www.strangeloopnetworks.com/assets/images/infographic2.jpg
3 “EBay Leveraging Cassandra to Support Growing Multistructured Data Volumes” by Jeff Kelly, May 9,
2013, Wikibon: http://goo.gl/tLHkB.
4 “Benchmarking Cassandra Scalability on AWS” by Adrian CockCroft, November 2011:
http://goo.gl/G8NUa.
5 “Gartner's state of cloud security: Outages are bigger risk than breaches” by Brandon Butler, November
14. 2012: http://goo.gl/mpnm3.
6 “Confronting System Downtime”, Evolven: http://goo.gl/jWQty.

5

and cloud availability zone support, Cassandra ensures no downtime with redundant copies of
data and function being spread throughout a cluster across multiple locations.
Netflix, which has been christened as the largest cloud application in the world7, uses Cassandra
to ensure zero downtime for its customers, storing 95% of its data in Cassandra. When Amazon
experienced a major outage in 2012, Netflix never missed a beat noting: “We didn't need to do
anything. Cassandra routed requests around the unavailable zone and when it recovered, the
ring was repaired.”8

The Need for Location Independence
Because nearly all successful businesses have a global reach, the ability to serve data quickly to
multiple locations is critical. Because of their foundational master-slave design, legacy
RDBMS’s struggle with providing fast reads across many locations, and they simply cannot do a
key thing that many enterprises need which is allow for write-anywhere capability.

NoSQL databases like Cassandra can easily spread data across multiple data centers and cloud
availability zones. Further, because of its peer-to-peer architecture, Cassandra allows for both
read and write anywhere capability and thus delivers true location independence where data is
concerned.

Companies like Adobe appreciate this capability in Cassandra. For its marketing cloud
application, Adobe runs its DataStax Enterprise / Cassandra database cluster between two data
centers to ensure its customers can both read and write data fast no matter where they’re
located.

The Need for Managing All Types of Data
The variety of today’s data types has proven to be a challenge for traditional relational
databases and is one of the primary reasons enterprises have turned to NoSQL solutions for
help. NoSQL databases like Cassandra offer a much more flexible data model that easily
accommodates structured, semi-structured, and unstructured data and does so in a way that is
performant and efficient from a storage perspective.

NASA uses Cassandra for security applications that track all hardware and software patches
around the globe for the agency, and deals with data that is both structured and unstructured.
NASA found that the flexible data model of Cassandra allowed them to insert data much more
naturally than their prior RDBMS, plus query response times were reduced for retrieving the data
as well.

The Need for Cost Reduction
One final driver of NoSQL adoption in the enterprise is cost reduction. Price sticker-shock is still
very common for RDBMS’s, especially for some of the new mainframe scale-up appliances that
have been introduced. NoSQL solutions like DataStax Enterprise typically cost 70-80% less than
legacy relational systems and are designed to run on cost-efficient commodity hardware.

Constant Contact, a company the serves the marketing needs of many small businesses,
discovered huge cost savings when it turned to DataStax two years ago. Needing to scale their
systems, but unable to afford the high costs of their previous RDBMS vendor to do so, the
company chose a scale-out design and DataStax Enterprise, and ended up implementing the
changed system in 1/3 less the time than estimated with their old RDBMS and at 90% less cost
than their prior database.

7 “The biggest cloud app of all: Netflix”, by Steven J. Vaughan-Nichols, ZDnet, April 2013:
http://goo.gl/KQRKr.
8 “Post-mortem of October 22,2012 AWS degradation”, Netflix Tech Blog, October 2012: http://goo.gl/X20sp.

6

Further, even though Constant Contact runs hundreds of DataStax Enterprise nodes, they found
they required no dedicated admin to manage the database clusters, but instead have personnel
that tend to the database part time each week along with other systems.

While there are certainly other motives companies have for implementing NoSQL in their IT
infrastructure, the above reasons are the ones most cited by DataStax customers. The next
question to consider when mapping out a NoSQL strategy is what roadblocks might you
encounter when moving to NoSQL.

Inhibitors to NoSQL Adoption in the
Enterprise
Although NoSQL solutions contain much promise for many different use cases, those who are
successful with NoSQL admit there are things IT professionals should consider upfront before
embarking on an enterprise rollout of the technology. Such inhibitors can be broken out into
technical and non-technical categories.

Technical Inhibitors
Some of the top technical constraints that successful companies have wrestled with where
NoSQL is concerned are the following:

• Data Model Differences: It cannot be emphasized enough that the number one NoSQL
technical issue that companies have struggled with is making the mental switch from
the relational to the NoSQL data model. Projects can be made or broken on whether the
IT team has correctly modeled the data for the NoSQL database to maximize its
capabilities. This being true, it is crucial that database professionals be trained and
become thoroughly acquainted with the new NoSQL data model in the database they
choose.

• Lack of Security: In 2012, InformationWeek ran a special story entitled “NoSQL Equals
No Security”.9 In the article, the author cited the lack of security features in NoSQL
databases that could negate their use in environments that necessitate strong data
protection policies. However, it should be noted that while security capabilities are
absent in some NoSQL databases, DataStax Enterprise does contain enterprise-class
security features that meet the vast majority of enterprise security requirements.10

• ACID Transaction Support: The fact that most NoSQL databases do not support ACID-
level transactions troubles some IT professionals. It is true that if your target application
requires complex, nested transactions that necessitate rollbacks and savepoints then a
NoSQL database may not be right for that particular situation. However, it should be
noted that a NoSQL database like Cassandra does offer atomicity, durability, and
isolation (AID), with consistency (C) being tunable: either eventual or strong depending

9 “Why NoSQL Equals No Security”, by Michael Davis, InformationWeek, March 2012: http://goo.gl/4E5Ac.
10 See: “What’s New in DataStax Enterprise 3.0?”, http://goo.gl/GW1vb.

7

on what the application or particular operation needs, with transaction support for
batches also being available.

Non-Technical Inhibitors
The primary non-technical issues that companies have dealt with in implementing NoSQL
systems include:

• Finding Experienced Personnel: Fortunately, this problem is becoming less of an issue
these days due to NoSQL having been deployed in many more companies than it was a
few years ago, and the many training classes offered by NoSQL vendors. For employees
transitioning to NoSQL, the learning curve will differ depending on the chosen
technology. Some NoSQL databases like Cassandra help reduce the learning curve
problem because the primary language interface is nearly identical to SQL.

• Technical “Religious” Warfare: Many corporations have IT groups that wage a type of
religious war where technology is concerned. Alliances around certain technologies
form and any attempt to bring in something new is met with resistance and an
insistence that the old technology is still able to handle any job thrown at it. Overcoming
this problem comes down to a data-driven methodology that includes both tech and
non-tech analysis, which is submitted to impartial IT managers for review.

• Vendor Viability Concerns: IT executives making a long term commitment to any
technology want the assurance that the provider(s) of that technology will be around for
the long haul. Small startups with few customers will naturally raise eyebrows and
concerns, whereas companies with a meaningful and growing customer base who are
equipped with a proven support organization will supply the peace of mind that IT
leaders are looking for.

But is NoSQL for You?
With an understanding of why enterprises are adopting NoSQL technology and what issues
companies that have implemented the technology have wrestled with now out of the way, let’s
turn to an important question: How do you determine if NoSQL technology is right for you? A
good place to start is by examining the opportunity for NoSQL in your business by industry and
then by application use case.

From a global industry perspective, Gartner group produced the following grid that supplies an
interesting view of how well various industries can be served by NoSQL technology given the
key characteristics that define Big Data (velocity, variety, volume, complexity, etc.):

8

 Figure 1 – Industry Heat Map for Big Data by Gartner Group

When it comes to looking at possible application use cases where NoSQL technology may be a
fit, the broad use case categories of online, analytic, and search applications should first be
brought into focus (with the understanding, of course, that a single application could involve a
mix of all three).

Although not exhaustive, the following use cases are being supported today with NoSQL
technology like Apache Cassandra, Hadoop, and Solr:

 Online applications:
• Time series feeds (financial or other time-based data)
• Device/sensor/data “exhaust” systems
• Distributed transactional applications
• Media streaming
• Online web retail (e.g., transactional, shopping carts)
• Real-time data analytics
• Social media capture and analysis
• Web clickstream analysis
• Write-intensive transactional systems

Analytic applications:
• Buyer behavior analytics

9

• Compliance/regulatory analysis
• Customer recommendation output
• Fraud detection
• Risk analysis
• Sales program campaign analysis
• Supply chain analytics
• Batch web clickstream analysis

Enterprise search applications:
• General web search
• Web retail-faceted (categorization) search
• Search/hit prioritization and highlighting
• Application log search and analysis
• Document (e.g., PDF, MS Word) search and analysis
• Geospatial search
• Real estate location and property search
• Social media matchups

Choosing a NoSQL Database
The website nosql-database.org currently lists over 150 different NoSQL databases. How do you
go about whittling down such a list into candidates that may be a fit for your application use
cases?

Key Selection Criteria
There are many different features and functions that separate the different NoSQL databases,
but the following criterion helps narrow the field for specific deployments:

• The data model: the primary consideration involves the type of data you need to store
and its starting/ending format. NoSQL databases differ greatly in the data model used
(e.g. wide row stores, document, graph, etc.) and a mismatch with a NoSQL solution’s
data model and the target application can make or break the success of a project.

• The data scale expectations: the next question involves how large an application is
expected to grow and the data scale support that will be needed. Some NoSQL
databases are main memory and do not scale out across multiple machines, whereas
others like Cassandra scale linearly across many machines.

• The data distribution model: consideration should be given to how widely data needs to
be distributed, whether to support multiple geographic regions, for disaster recovery
purposes, or something else. Further, questions should be asked if both reads and
writes will need to be supported in distributed locations. Some NoSQL databases use
master-slave architectures (although they may term them “primary/secondary”), which

10

can only somewhat scale read operations vs. peer-to-peer architectures that can scale
both reads and writes.

Enterprise Selection Checklist
A more detailed enterprise-ready checklist for NoSQL databases is below, and contains both
technical as well as business considerations for determining the right match of a NoSQL
database and an intended application use case.

Technical Considerations

• Can the NoSQL database serve as the primary data source for the intended online
application?

• Can the NoSQL database operate as an analytic data source and/or easily interface with
and support Hadoop operations?

• Can the NoSQL database handle or seamlessly integrate with enterprise search
software?

• Can the NoSQL database provide workload isolation between online, analytic, and
search operations in a single application?

• How safe is the NoSQL database where the possibility of losing critical data is
concerned? Are writes durable in nature such that data is safe?

• Does the NoSQL database provide a robust security feature set?
• Is the NoSQL database fault tolerant (i.e., has no single point of failure) and does it

provide continuous availability?
• Can the NoSQL database easily replicate data between the same and multiple data

centers, as well as different cloud availability zones?
• Does the NoSQL database offer read/write anywhere capabilities?
• Does the NoSQL database require or remove the need for special caching layers?
• Is the NoSQL database capable of managing “big data” and delivering high performance

results regardless of data size?
• Does the NoSQL database offer linear scalability where adding new nodes is concerned?
• Can new nodes be added and removed online (i.e. without business impact)?
• Does the NoSQL database support key platforms/developer languages?
• Can the NoSQL database run on commodity hardware with no special hardware

requirements?
• Is the NoSQL database easy to implement and maintain for large deployments?

Business Requirements
• Is the NoSQL solution backed by a commercial entity?
• Does the commercial entity provide enterprise 24x7 support and services?
• Does the NoSQL solution have professional online documentation?
• Does the NoSQL solution have referenceable customers across a wide range of

industries?
• Does the NoSQL database have an attractive cost/pricing structure?
• If open source, does the NoSQL database have a thriving open source community?

11

Cloud Considerations for NoSQL
Databases
The amount of information that currently resides only in the cloud is small, but that’s about to
change. A recent study by IT industry analyst group IDC estimates that cloud computing
accounts for less than 2 percent of IT spending today, but by 2015, nearly 20 percent of all
information will be “touched” (stored or processed) in a cloud.11 Moreover, IDC predicts that by
that same year, as much as 10 percent of all data will be maintained in a cloud.12

The cloud promises many things: transparent elasticity and scale, higher availability, simplified
data distribution, easier manageability and more. However, it should be noted that while many
database vendors claim their database is “cloud ready”, what that oftentimes means is that you
can easily install and run an instance of their database on a cloud provider. The bigger question
to ask is, does the database exploit all or most of the supposed benefits of running a database
in the cloud?

Whether it’s a legacy RDBMS or a NoSQL database, the checklist items for truly realizing
benefits from cloud computing are similar. The following are a suggested set of questions to
ask any NoSQL database provider being considered for the cloud:

• Does the database provide transparent elasticity with expansion or contraction being
possible without downtime?

• Can extra capacity be realized from scaling out in the cloud, and if so, how much
benefit will be obtained?

• Can the database easily make use of a cloud provider’s multiple availability zones so
that continuous availability can be achieved in the event of one or more zone’s failure?

• Does the database offer security features that protect data in the cloud?
• Does the NoSQL vendor provide management tools for managing and monitoring the

database on the cloud provider?
• What is the 3-5 year cost difference in running the targeted NoSQL database on

premise vs. the cloud?

Making the Move to NoSQL
From a practical perspective, how do you go about actually moving to NoSQL and implementing
your first application? In general, there are three ways to go about implementing a NoSQL
database:

1. New applications: many begin with NoSQL by choosing a new application and starting
from the ground up. Such an approach mitigates the issues of application rewrites, data
migrations, etc.

2. Augmentation: some choose to augment an existing system by adding a NoSQL
component to it. This oftentimes happens with applications that have outgrown an

11 “Extracting Value from Chaos”, by John Gantz and David Reinsel, IDC, June 2011, http://idcdocserv.com/1142.
12 Ibid.

12

RDBMS due to scale problems, the need for better availability, or other issues. Parts of
the existing system continue to use the existing RDBMS whereas other components of
the application are modified to utilize the NoSQL database.

3. Full Rip-Replace: for systems that simply are proving too costly from an RDBMS
perspective to keep, or are breaking in major ways due to increases of user concurrency,
data velocity, or data volume, a full replacement is done with a NoSQL database.

Migrating Data to NoSQL Databases
For either augmentation or rip-replace scenarios, migration of the data from the existing RDBMS
to the new NoSQL database is required. Choosing how to migrate the legacy data depends on
the amount of data needing to be moved:

• Flat file loads: most every RDBMS allows data to be exported from tables out to flat files
that are delimited in some way. NoSQL databases like Cassandra have flat file loaders
that take such files and load them directly into tables/column families.

• Sqoop: Sqoop is a utility used in Hadoop to move data from legacy databases into
Hadoop. Cassandra also supports sqoop so a developer can connect to an existing
RDBMS and Cassandra, and pump data straight into the new database.

• ETL Tools: If more sophistication is needed for a data migration, then any number of
extract-transform-load (ETL) solutions can be used. Many tools from Jaspersoft,
Pentaho, and Talend provide excellent transformation routines that allow source data to
be manipulated in literally any way needed and then loaded into a NoSQL target. They
also supply many other features such as visual, point-and-click interfaces, scheduling
engines, and more. Finally, many are free to download and use.

Conclusion
Implementing an enterprise NoSQL strategy involves having a solid understanding of why
successful companies are using NoSQL and deciding if those or other key characteristics of the
technology can make an impact in your business. Once you have concluded that NoSQL is right
for you, then it becomes a matter of smartly understanding what pitfalls to avoid, what criteria is
needed to select the right NoSQL database(s) for your application use cases, and what strategy
to use for rolling out the technology.

DataStax provides enterprise-class software, services, and strategies that ensure your success
with NoSQL technology. With its proven and secure DataStax Enterprise solution – powered by
Apache Cassandra – along with around-the-clock support, consulting, and training, the experts
at DataStax can make sure your move to NoSQL is a positive and rewarding experience.

To find out more about Apache Cassandra and DataStax, and to obtain downloads of Cassandra
and DataStax Enterprise software, please visit www.datastax.com or send an email to
info@datastax.com. Note that DataStax Enterprise Edition is completely free to use in
development environments, while production deployments require a software subscription to be
purchased.

13

About DataStax
DataStax	
 powers the big data applications that transform business for more than 300 customers,
including startups and 20 of the Fortune 100. DataStax delivers a massively scalable, flexible
and continuously available big data platform built on Apache Cassandra™. DataStax integrates
enterprise-ready Cassandra, Apache Hadoop™ for analytics and Apache Solr™ for search across
multi-data centers and in the cloud.

Companies such as Adobe, Healthcare Anytime, eBay and Netflix rely on DataStax to transform
their businesses. Based in San Mateo, Calif., DataStax is backed by industry-leading investors:
Lightspeed Venture Partners, Crosslink Capital and Meritech Capital Partners. For more
information, visit DataStax.com	
 or follow us	
 @DataStax.

