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Abstract

Implementing a Preconditioned Iterative Linear Solver Using Massively Parallel

Graphics Processing Units

Amirhassan Asgari Kamiabad

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2011

The research conducted in this thesis provides a robust implementation of a precondi-

tioned iterative linear solver on programmable graphic processing units (GPUs), appro-

priately designed to be used in electric power system analysis. Solving a large, sparse

linear system is the most computationally demanding part of many widely used power

system analysis, such as power flow and transient stability. This thesis presents a de-

tailed study of iterative linear solvers with a focus on Krylov-based methods. Since the

ill-conditioned nature of power system matrices typically requires substantial precon-

ditioning to ensure robustness of Krylov-based methods, a polynomial preconditioning

technique is also studied in this thesis. Programmable GPUs currently offer the best

ratio of floating point computational throughput to price for commodity processors,

outdistancing same-generation CPUs by an order of magnitude. This has led to the

widespread adoption of GPUs within a variety of computationally demanding fields such

as electromagnetics and image processing. Implementation of the Chebyshev polynomial

preconditioner and biconjugate gradient solver on a programmable GPU are presented

and discussed in detail. Evaluation of the performance of the GPU-based preconditioner

and linear solver on a variety of sparse matrices, ranging in size from 30 x 30 to 3948 x

3948, shows significant computational savings relative to a CPU-based implementation

of the same preconditioner and commonly used direct methods.
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Chapter 1

Introduction

1.1 Statement of Problem

The computational demands associated with power system simulations have been steadily

increasing in recent decades. One of the primary factors leading to huge computational

demand is an increased focus on wide-area system behavior, due in large part to the

recommendations of the August 2003 blackout report [3]. On August 14, 2003, approx-

imately 63 GW of electrical load was interrupted in the midwestern and northeastern

portions of the United States and southern Ontario, Canada. The blackout was due in

large part to the result of cascading outages of transmission and generation units, failures

on the energy management system (EMS) software at several control centers, and an in-

ability to manage the stability of the system after multiple, unanticipated contingencies.

Analysis of the wide-area system behavior and taking appropriate actions at early stage

could potentially have prevented the cascading effect; however, at the time neither the

wide area measurement data was available to all control centers nor was sufficient com-

puting power dedicated to wide-area system analysis. Since 2003, many efforts have been

made to share the wide area measurement data [4]. A reliable and fast analysis of the

wide-area measurements can help prevent cascading outages in large power grids; how-
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Chapter 1. Introduction 2

ever, the ability to run the complex analysis of this considerable amount of data online

is still an unsolved challenge [5]. For instance, deployment of advanced metering systems

such as phasor measurement units (PMU) has provided the power system control centers

with a considerable amount of real time data. Modern PMU units are able to provide

accurately measured data at 60Hz frequency with better than 1µs accuracy. However,

more efficient software algorithms and faster hardware platforms should be employed to

gain full advantage of this huge amount of data.

Over the past three decades, power industries have experienced a profound restruc-

turing [6]. Power system restructuring has added another level of complexity to the

massive interconnected power grid. The introduction of competition in restructured elec-

tricity market was intended to result in better service with cheaper cost for electricity

customers. However, additional optimization and control tasks should be performed

by independent power companies [6]. Besides, a global optimization should guarantee

that all participants will benefit in the restructured system [6]. Complex market design

and advanced reliability and stability analyses require powerful parallel hardware and

dependable mathematical algorithms.

The integration of renewable resources of energy in the power system, particularly

wind power, has increased dramatically in recent years. The current wind power gener-

ation in Ontario borders on 1200MW while the total wind power generation of Canada

reaches 3500MW [7]. In Europe, the adoption levels are in the range of 5 − 20% of the

total annual demand. In the U.S., a 20% adoption level is expected by year 2030 [8].

The uncertainty associated with wind power generation adds to the complexity of the

power system. The fluctuation in weather and climate change may cause the output of

a wind unit to change within a great range [9]. Therefore, more sophisticated algorithms

accounting for the stochastic nature of wind generation must be employed to analyze the

power system and ensure the security of the system with a large penetration of these

renewable resources.
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Real-time or faster-than-real-time power system analyses will create greater controlla-

bility over the power network and support decision making at the time of the disturbance,

which will improve the reliability of the power grid. For example, contingency analysis

is a fundamental component of the security analysis performed by control centers. The

N − 1 security criterion is generally used in evaluation of the reliability of the system.

The N − 1 security criterion corresponds to only one possible event (i.e., contingency)

among the N components of the power system. The N − k security criteria, in which k

corresponds to the number of multiple events occurring at the same time, is rarely used

in control centers due to computational complexity and relative likelihood of occurrence.

For instance, evaluating the reliability of a system with L transmission lines using the

N − 1 security criterion requires the solution of L power flow problems. If the N − 2

security criterion is used,
(
L
2

)
power flow problems have to be solved. For N − k security

criterion, the number of required power flow problems is
(
L
k

)
. Since multiple-element

events may lead to cascading outages, rigorous evaluation of such events can enhance the

security and reliability of the power system. Since multi-element contingency analysis re-

quires many more computations than single-element contingency analysis, online analysis

of N − k security needs faster algorithms and hardware. The numerical studies, software

implementation, and parallel hardware employed in this research would be beneficial to

all of the computational problems described above. Accordingly, the fast linear solver

developed in this research will improve the online analysis capabilities for large intercon-

nected power systems and mitigate many of the challenges posed by wide-area system

analysis, restructured market algorithms and integration of renewable energy resources

in power systems.
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1.2 Thesis Objective

The main focus of this research is to develop a fast and reliable linear solver in order

to accelerate power system analysis. To keep up with new computational challenges in

power system analysis, it is imperative that power system simulation software is capable

of taking advantage of the latest advances in computer hardware. Since 2003, the increase

of clock frequency and the productive computation in each clock cycle within a single

CPU has slowed down. The main reason is the frequency limit in single core CPUs due to

power consumption issues [2]. As a result, there has been a general trend in the computer

hardware industry from single-processor CPU architectures to architectures that can use

anywhere from two to hundreds of processors.

Programmable graphics processing units (GPUs), which in some cases have hundreds

of individual cores, have become an increasingly attractive alternative to both multi-

core CPUs and high-end supercomputing hardware in areas where high computational

throughput is needed, particularly due to their high floating point operations per second

(flops) to price ratio. Research into the utilization of GPUs for simulations in a variety

of fields, including power systems, is primarily motivated by a widening gap between the

computational throughput of same-generation and same-price GPUs and CPUs.

In power system analysis tools ranging from dc power flow to transient stability, so-

lution of the linear systems arising from the Newton-Raphson algorithm (and its deriva-

tives) is often the most computationally demanding component [10–12]. Two broad

classes of solvers have been brought to bear on this problem within the power systems

area—direct solvers (of which the standard LU decomposition is the most prevalent) and

iterative solvers. Within the class of linear system iterative solvers, techniques include

Gauss-Jacobi, Gauss-Seidel [13], and Krylov subspace methods such as the conjugate gra-

dient (CG) and generalized minimum residual (GMRES) techniques. Krylov subspace

methods have been used extensively in other disciplines where large, sparse linear sys-

tems are solved in parallel [14] and can enable power system applications to fully utilize
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the current and next generation of parallel processors. While there has already been

considerable research within the power systems community on Krylov subspace methods

[15, 16], their widespread use in the power systems field has been limited by the highly

ill-conditioned nature of the linear systems that arise in power system simulations [17].

To combat this problem, recent research efforts have aimed at developing suitable pre-

conditioners for power system matrices in order to improve the performance of Krylov

subspace methods [18–20].

This thesis presents the first preconditioned iterative linear solver for use in power

system applications that is designed for the massively parallel hardware architecture of

modern GPUs. Several attempts have been made to utilize GPUs within the power sys-

tems field in the past few years, for both visualization [21] and simulation purposes [22].

In [22], a dc power flow solver based on the Gauss-Jacobi and Gauss-Seidel algorithms

was implemented on an NVIDIA 7800 GTX chip using OpenGL (an API designed pri-

marily for graphics rendering) to carry out the iterations on the GPU. The Gauss-Seidel

and Gauss-Jacobi algorithms are rarely used in modern power system software due to

their inability to converge in many situations (e.g., for heavily loaded systems, systems

with negative reactances, and systems with poorly placed slack buses [23]), which limits

this solver’s utility. Implementations of more general linear solvers on GPUs have been

developed [24, 25], yet these solvers either fail to account for ill-conditioned coefficient

matrices or fail to take advantage of matrix sparsity. In [26], a transient stability analysis

is performed using the CUDA and new generation of NVIDIA’s graphics processing. The

author has used the LU factorization method to solve the linear systems encountered in

transient stability analysis. The sparsity of the linear systems is ignored in that paper,

resulting in poor computation time in comparison to a standard CPU implementation.

In out implementation, we use the iterative algorithms which are more suitable to the

GPU’s architecture. In addition, the sparsity of the matrices are taken into consideration

in order to save both computational time and memory space. The organization of the
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thesis is described in the next section.

1.3 Thesis Overview

In the second chapter, an overview of some computationally demanding power system

analyses are described and it is specifically clarified how the linear solver is used in these

algorithms. The third chapter presents an overview of various linear solvers in use. The

theoretical background of the iterative linear solver implemented in this research is cov-

ered in this chapter. The importance of the preconditioning methods for the iterative

linear solvers is also discussed in Chapter 3. Chapter 4 discusses general computing on

the GPU, with specific details given regarding NVIDIA’s CUDA computing architecture.

Chapter 5 presents the implementation details of the iterative linear solver and the poly-

nomial preconditioner on the GPU. The numerical evaluation of the preconditioner and

the linear solver on the GPU and discussion of the results are presented in Chapter 6.

Chapter 7 offers conclusions and avenues for future work related to the broader use of

GPUs for power system simulation.



Chapter 2

Computational Challenges in Power

System Analysis

In this chapter, a few examples of commonly used power system analyses are discussed.

The purpose of this study is to show how the linear solver will improve the performance

of power system analysis software. Each analysis is broken down to multiple steps and

the computational load of the linear solver step is specified and compared to the other

parts of the algorithm.

2.1 Power Flow

The power flow solver is one of the most common analysis tools used in industry for

off-line and on-line studies. The solution of the power flow problem with the Newton-

Raphson method dates back to the late 1960s [23]. The power flow problem tries to find

the system bus voltages and line flows given system loads, generator terminal conditions

and network configuration [27]. The basic power flow analysis is performed by solving

the system of non-linear equations shown in (2.1) and (2.2), known as the power flow

7
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equations.

0 = ∆Pi = P inj
i − Vi

Nbus∑
j=1

VjYij cos(δi − δj − φij) (2.1)

0 = ∆Qi = Qinj
i − Vi

Nbus∑
j=1

VjYij sin(δi − δj − φij) (2.2)

i = 1, ..., Nbus (2.3)

In these equations,P inj
i and Qinj

i are the active and reactive power injected at bus i, Vi

is the voltage magnitude at bus i and δi is the voltage phasor angles at bus i. Yij and

φij are the magnitude and phasor angle of the (ij)th element of the network admittance

matrix [27, 28]. The value Nbus is the total number of buses minus one.

The prevailing option for solving the power flow equations is the Newton-Raphson

method. The Newton-Raphson method starts with an initial guess for voltage magnitudes

and phase angles and iteratively improves the solution by driving the mismatch power,

∆Pi and ∆Qi in (2.1) and (2.2), to zero. When the power mismatch is driven to zero, the

injected power at the bus and the calculated power from the voltages and phase angles is

equal. The voltage and phase angle updates in every iteration k of the Newton-Raphson

algorithm are calculated by solving the linear system in (2.4).

 J
(k)
1 J

(k)
2

J
(k)
3 J

(k)
4





∆δ
(k)
1

∆δ
(k)
2

...

∆δ
(k)
Nbus

∆V
(k)

1

∆V
(k)

2

...

∆V
(k)
Nbus



= −



∆P
(k)
1

∆P
(k)
2

...

∆P
(k)
Nbus

∆Q
(k)
1

∆Q
(k)
2

...

∆Qk
Nbus



(2.4)

The Jacobian matrix in (2.4) is calculated by differentiating the power flow equations



Chapter 2. Computational Challenges in Power System Analysis 9

and has the form  J
(k)
1 J

(k)
2

J
(k)
3 J

(k)
4

 =

 ∂∆P
∂δ

∂∆P
∂V

∂∆Q
∂δ

∂∆Q
∂V


δ=δ(k),V=V (k)

(2.5)

δ =

[
δ1 δ2 . . . δNbus

]
, V =

[
V1 V2 . . . VNbus

]
(2.6)

J1 to J4 sub-matrices are the partial derivatives of the power flow equations with respect

to voltage magnitudes and phase angles. After solving the linear system in (2.4) the

voltage magnitudes and phase angles are updated as

δ
(k+1)
i = δ

(k)
i + ∆δ

(k)
i (2.7)

V
(k+1)
i = V

(k)
i + ∆V

(k)
i (2.8)

The δ
(k)
i and V

(k)
i are the power flow solutions for bus i in the kth iteration, ∆δ

(k)
i and

∆V
(k)
i are the updates calculated from (2.4).

The Newton-Raphson method transforms the solution of non-linear power flow equa-

tions into a sequence of linear systems. The linear solver is the most computationally

expensive part of the whole procedure [29, 30]; therefore, any speed-up in this part will

result in considerable speed-up in the whole process.

2.1.1 Fast Decoupled and Dc Power flow

Decoupled power flow equations [31] can be obtained by simplifying the Jacobian in (2.5).

By neglecting the J
(k)
1 and J

(k)
3 sub-matrices in (2.5) [28], the power flow equations reduce

to

J
(k)
1 ∆δ(k) = ∆P (k) (2.9)

J
(k)
4 ∆V (k) = ∆Q(k) (2.10)

The decoupled power flow can be solved in much shorter time than the standard power

flow; therefore, it is often used for contingency analysis where short computation time is
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desirable. In online applications, it is used to to compute approximate power flow changes

when specific generator outage or transmission line outage occurs. Further simplification

to (2.9) can be obtained by assuming that all voltage magnitudes are close to one per

unit and voltage angles across lines are small:

V (k) ≈ 1.0 (2.11)

(δi − δj) ≈ 0 (2.12)

cos(δi − δj) ≈ 1.0 (2.13)

sin(δi − δj) ≈ (δi − δj) (2.14)

In addition, it is assumed that changes in voltage magnitude have little effect on real

power and changes in voltage angles have little effect on reactive power [32], i.e.,

∂∆P

∂V
≈ 0 (2.15)

∂∆Q

∂δ
≈ 0 (2.16)

With these assumptions, the J1 and J4 matrices become constant and it is not necessary

to update then in every iteration [28]. These equations are known as the Fast Decoupled

Power Flow (FDPF) equations.

J1∆δ(k) = ∆P (k) (2.17)

J4∆V (k) = ∆Q(k) (2.18)

In dc power flow, it is assumed that all voltage magnitudes are equal to one per unit,

lines resistances are negligible and shunt reactances to ground are eliminated. In addition,

all shunts to ground which arise from auto-transformers are eliminated [32]. Equation

(2.18) can be neglected and the power balance equation (2.17) can be described as a

non-iterative, linear equation set

−Bδ = P (2.19)

The B matrix can be obtained by extracting the imaginary part of the Ybus matrix when

line resistances are neglected and the slack bus row and column are dropped from the
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equations set [27]. The dc power flow is a commonly used technique to calculate an

approximate real power flow over transmission lines. Further discussions on the fast

decoupled and dc power flow are available in [27, 28, 32].

2.2 Transient Stability

Traditionally, power system transient stability analysis has been performed off-line to un-

derstand the system’s ability to withstand specific disturbances and the systems response

characteristics as the system returns to steady-state operation. If a transient stability

program is run in real-time or faster than real time, then the power system control room

operators can be provided with a detailed view of the transition between steady-state

operating conditions. This view could assist an operator in understanding the impact

of contingencies and facilitate more appropriate decisions that take into account the

dynamic behavior of the system.

For transient stability analysis, the power system is modeled by a set of differential

and algebraic equations (DAEs). These equations can be described as

ẋ = f(x, y) (2.20)

0 = g(x, y) (2.21)

where x is a vector of generator state variables which describe the machine dynamics

and y is chosen to be one of the network’s variables, which is commonly chosen to be

the bus voltage phasors in transient stability analysis. Equation (2.20) is a set of dif-

ferential equations, used to describe the dynamic behavior of synchronous machines and

excitor systems, governors and various types of controllers installed within them [10].

A synchronous machine can be modeled with as few as two and with as many as forty

differential equations [33]. The detailed modeling of synchronous machine and a discus-

sion of the differential-algebraic equations describing these machines are available in [34].
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The algebraic part of the transient stability equations, (2.21), contains the power net-

work equations describing the relation between the currents and voltages in the network.

Equations (2.20) and (2.21) form a system of DAEs that must be solved simultaneously.

DAEs are solved over a specific time period, typically several seconds following a power

disturbance to ensure that generators will remain in synchronism and voltage stability is

maintained. The common approach to solving the DAE equations of transient stability

analysis is to discretize the differential part over several time steps and use a numeri-

cal integration method to transform them to a set of algebraic equations. The use of

integration schemes to change the differential equations to algebraic equations is known

as direct discretization [35]. A commonly used form of one-step direct discretization is

shown below

dx

dt
= f(x, y) (2.22)

xn+1 = xn + h [θf(tn+1, xn+1, yn+1)− (1− θ)f(tn, xn, yn)] (2.23)

In this method, xn and yn are the solution vectors at time step tn and f(tn, xn, yn) is

the evaluation of the function f for these solution vectors at time step tn. If the solution

vectors for time step tn are known, (2.23) establishes a set of non-differential, nonlinear

equations to find the solution vectors at time step tn+1. The variable h is the time step

of the numerical integration. Small time steps will generally result in smaller errors and

more accurate solutions [35]. The variable θ defines the various types of integration

methods. The θ = 1 case will result in the Backward Euler method [36] and in case of

θ = 1
2

the Trapezoidal method [37] is obtained. Detailed discussion of various integration

methods is available in [27, 35]. The Trapezoidal and the Backward Euler methods are

commonly used to solve transient stability problems due to their robust performance

and simple implementation. A comparison of commonly used discretization methods in

power systems is provided in [38].
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The Backward Euler method reduces (2.20) and (2.21) to the following forms:

xn+1 = xn + hf(tn+1, xn+1, yn+1) (2.24)

0 = g(xn+1, yn+1) (2.25)

where xn+1 and yn+1 are unknown. All the nonlinear algebraic equations in (2.24) and

(2.25) can be described in a compact form:

G(xn+1, yn+1) = 0 (2.26)

The nonlinear set of equations described in (2.26) can be solved by using the Newton-

Raphson algorithm. As described earlier in this chapter, the Newton-Raphson algorithm

transforms the solution of a nonlinear set of equations into a sequence of linear system

solutions; therefore, the solution of a linear system of equations is a critical part of

transient stability analysis. This thesis tries to develop a high performance linear solver

in order to achieve speed-up in power systems analyses such as power flow and transient

stability. The next chapter will discuss commonly used algorithms for solving linear

systems and will describe the specific algorithms implemented in this research.



Chapter 3

Methods for Solving Systems of

Linear Equations

Solution of a linear system is usually the most computationally expensive step in various

power system analyses such as power flow and transient stability analysis. In general, a

linear system is described as

Ax = b (3.1)



a1,1 a1,2 a1,3 . . . a1,n

a2,1 a2,2 a2,3 . . . a2,n

...
...

...
. . .

...

an,1 an,2 an,3 . . . an,n





x1

x2

...

xn


=



b1

b2

...

bn


(3.2)

where A is a N ×N square matrix known as the coefficient matrix, b is a N × 1 vector

known as the “right-hand-side” (RHS) vector and x is a N × 1 vector known as the

“unknown” vector. One method of solving the linear system is to explicitly calculate the

inverse of the coefficient matrix and multiply it by the RHS vector

x = A−1b (3.3)

14



Chapter 3. Methods for Solving Systems of Linear Equations 15

For large, sparse matrices, such as those encountered in power systems, calculating the

inverse of the coefficient matrix introduces unnecessary computations. In addition, stor-

ing the inverse of a sparse matrix usually requires unnecessarily large amount of memory

space; thus, various methods have been developed to solve a system of linear equations

without explicitly calculating the inverse of the linear system.

Methods of solving linear systems fall into two general categories: direct methods

and indirect methods. Each category may be appropriate for linear systems arising from

specific fields of science or specific computer platforms on which the linear system is

implemented. This chapter discusses the direct and indirect methods most commonly

used in power system analyses and discusses their benefits and shortcomings. The specific

method implemented in this research is also studied in detail in this chapter.

3.1 Direct methods: LU Decomposition

The direct methods result in the solution of the linear system in a single iteration. The-

oretically, direct methods can find the exact solution of the linear system by performing

a finite number of operations [27].

The most common direct methods for solving the linear systems are based on Gaussian

elimination. The first step in the Gaussian elimination algorithm is to find the first

unknown based on other unknowns from the first equation. Then, the first unknown

is eliminated from the remaining equation using the first equation, resulting in N − 1

equations for x2...xN unknowns.

a1,1x1+ a1,2x2+ a1,3x3+ . . . a1,NxN = b1

a
(1)
2,2x2+ a

(1)
2,3x3+ . . . a

(1)
2,NxN = b

(1)
2

a
(1)
3,2x2+ a

(1)
3,3x3+ . . . a

(1)
3,NxN = b

(1)
3

...
...

...
...

a
(1)
N,2x2+ a

(1)
N,3x3+ . . . a

(1)
N,NxN = b

(1)
N

(3.4)
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The superscript (1) denotes the coefficients of the linear system after the first step

of Gaussian elimination. The next step is to eliminated the second unknown from the

N − 1 equations. This process is repeated until the last equation consist of only the last

unknown:

a1,1x1+ a1,2x2+ a1,3x3+ . . . a1,NxN = b1

a
(1)
2,2x2+ a

(1)
2,3x3+ . . . a

(1)
2,NxN = b

(1)
2

a
(2)
3,3x3+ . . . a

(2)
3,NxN = b

(2)
3

...

a
(N−1)
N,N xN = b

(N−1)
N

(3.5)

This single-unknown equation immediately gives the value of the last unknown. When

the value of the last unknown is found, it is replaced in the previous equation to find the

value of xN−1. This process is repeated until all unknown values are found.

The LU decomposition method is a common algorithm for solving linear systems

which is based on Gaussian elimination. In LU factorization, the coefficient matrix is

factorized into a lower triangular and an upper triangular matrix.

A = LU (3.6)

a1,1 a1,2 a1,3 . . . a1,N

a2,1 a2,2 a2,3 . . . a2,N

...
...

...
. . .

...

aN,1 aN,2 aN,3 . . . aN,N


=



l1,1 0 0 . . . 0

l2,1 l2,2 0 . . . 0

...
...

...
. . .

...

lN,1 lN,2 lN,3 . . . lN,N





u1,2 u1,2 u1,3 . . . u1,N

0 u2,2 u2,3 . . . u2,N

...
...

...
. . .

...

0 0 0 . . . uN,N


(3.7)

Then the linear system of (3.1) becomes

LUx = b (3.8)

The vector resulting from multiplying x by U is defined as z

Ux = z (3.9)
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Then (3.8) can be written as

Lz = b (3.10)

The solution of the linear system in (3.10) is straightforward. The first equation consist

of only the first unknown, The second equation has first and second unknown and the

kth equation has the first k unknowns. This system is solved by a procedure known as

forward substitution. In this procedure the first unknown is calculated from first equation

since the first equation has nonzero coefficients for only the first unknown. Then, the

first unknown is eliminated from the remaining equations and this process is repeated

for all unknowns until all the unknown values are calculated. This procedure is similar

to Gaussian elimination; however, since the coefficient matrix is in lower triangular form,

the unknown values are calculated as the variables are eliminated from equations below.

When the z vector is known, the unknown vector x is calculated from (3.9). The system

(3.9) is solved by a procedure known as backward substitution. The last unknown is

calculated from the the last equation, since this equation only has a nonzero coefficient

for the last unknown. Then the last unknown is eliminated from the rest of the equations

and the process is repeated until all unknowns are calculated.

There are several decomposition methods to calculate the L and U matrices from

coefficient matrix A. Crout factorization, Doolittle factorization and Cholesky factoriza-

tion are among the most commonly used algorithms for LU factorization [35]. The key

idea behind all these factorization methods is to write the relation between the entries

of the coefficient matrix and the entries of the L and U matrices, as it is done in (3.11).

Calculating the first column of the coefficient matrix from (3.7) we have:

l1,1u1,1 = a1,1

l2,1u1,1 = a2,1

l3,1u1,1 = a3,1

...

(3.11)
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In the Crout factorization method, it is assumed that ui,i entries are equal to one.

Then, according to (3.11), l1,1 to lN,1 would be equal to a1,1 to aN,1 respectively and

the first column of L matrix in known. The second step is to write the first row of the

coefficient matrix based on L and U entries:

l1,1u1,2 = a1,2

l1,1u1,3 = a1,3

l1,1u1,4 = a1,4

...

(3.12)

Since l1,1 is already calculated, the first row of U matrix would be calculated from (3.12).

This process is repeated for all the columns of L matrix and row of U matrix. The Crout

method is summarized in Algorithm 1.

Algorithm 1 Crout LU factorization method

1: Load A into L and U storage locations

2: for j = 2 to N do

3: u1,i = ai,1/l1,1

4: end for

5: for k = 2 to N do

6: for i = k to N do

7: li,k = li,k −
∑k−1

j=1 li,j × uj,k

8: end for

9: for i = k + 1 to N do

10: uk,i = (uk,i −
∑k−1

j=1 lk,j × uj,i)/lk,k

11: end for

12: end for

The factorization order in the Crout method is shown in Figure 3.1. The odd columns

of the L matrix are calculated in odd steps and rows of U matrix are calculated in
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1

2

4

4

6

5
factorization

Figure 3.1: Crout LU factorization process

even steps. It is important to note that entries calculated in previous steps are needed

to process the current step. Therefore parallelizing this method will face limitations

because of the serial nature of the algorithm. Figure 3.1 shows that the length of the

calculated L and U factors reduces as the process continues; therefore the computational

load of calculating the rows and columns of L and U factors reduces as the process

continues. This will usually cause unbalanced load over parallel processors and will

result in inefficient parallel implementation of the Crout method.

The Doolittle method assumes that all li,i entries are equal to one. The Doolittle

algorithm is shown in Algorithm 2. The factorization order in the Doolittle method is

shown in Figure 3.2. Note that the Doolittle method process one row of the coefficient

matrix in each step; however, the L and U entries which are calculated in each step

require the factorization results in the same step. This will lead to large amounts of

inter-core data transfer in fine grain parallel processing and the memory latency will

increase the computation time.

The Cholesky factorization is a special LU factorization technique which decomposes

the coefficient matrix into LLt. If the coefficient matrix is symmetric positive definite,

the li,i entries are real, otherwise they are complex [14]. For symmetric positive definite
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Algorithm 2 Doolittle LU factorization method

1: Load A into L and U storage locations

2: for k = 2 to N do

3: for i = 1 to k − 1 do

4: lk,i = (lk,i −
∑k−1

j=1 lk,j × uj,i)/ui,i

5: end for

6: for i = k to N do

7: uk,i = uk,i −
∑k−1

j=1 lk,j × uj,i

8: end for

9: end for

1

2

3

factorization

4

Figure 3.2: Doolittle LU factorization process

matrices, Cholesky factorization needs less computation and memory space, since only

the L matrix is calculated and saved. This Cholesky method is rarely used for power

systems analyses due to the prevalence of asymmetric, non-positive definite matrices.

The Cholesky algorithm is shown in Algorithm 3.
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Algorithm 3 Cholesky factorization method

1: Load A into L and Lt storage locations

2: for i = 1 to N do

3: li,i =
√

(li,i −
∑i−1

k=1 l
2
i,k)

4: for j = i+ 1 to N do

5: lj,i = (lj,i −
∑i−1

k=1 li,k × lj,k)/li,i

6: end for

7: end for

3.2 Indirect Methods

The indirect (or iterative) methods start with an approximation to the solution of (3.1)

and improve this approximate solution in each iteration. The approximate solution may

converge to the exact solution in a finite or infinite number of iterations. The iterative

method can be stopped whenever the desired accuracy in the solution is obtained. In

other words, the solution is stopped when improvement in the approximate solution is

less than a pre-specified tolerance.

Two simple iterative methods, Gauss-Seidel (G-S) and Gauss-Jacobi (G-J) methods

are included in the appendix to introduce the basics of iterative methods, without deal-

ing with complex iterative algorithms. G-S and G-J are included in most undergraduate

textbooks because of their simplicity; however, their applications are limited due to the

lack of robustness [23]. Another class of widely used and efficient iterative solvers are

Krylov subspace methods. These methods are employed in various scientific fields in-

cluding power systems [15, 16]. The most commonly used Krylov based method is the

conjugate gradient (CG) method [14]. CG is an efficient algorithm for solving symmetric

positive linear systems. Moreover, CG is well-suited to parallel platforms since the math-

ematical operations used in the the CG algorithm, such as matrix-vector multiplication

and vector inner products, are efficiently implemented on parallel platforms. The CG
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method is guaranteed to converge only if the coefficient matrix is symmetric positive def-

inite. The other Krylov based solver discussed here is the bi-conjugate gradient (BiCG)

algorithm. The advantage of the BiCG algorithm over the CG algorithm is that BiCG

is suitable for both symmetric and nonsymmetric systems. The detailed specification of

CG and BiCG are discussed in the following subsections.

3.2.1 Conjugate Gradient

There are various descriptions for the CG method available in the literature. One of the

most precise descriptions of the CG method is available in [39]. The CG method was

originally developed to minimize the quadratic function

f(x) =
1

2
xTAx− bTx+ c (3.13)

where A is a symmetric matrix of size N , b and x are N × 1 vectors and c is a scalar.

The gradient of function f(x) is defined as

f ′(x) ,



∂f(x)
∂x1

∂f(x)
∂x2

...

∂f(x)
∂xN


(3.14)

For a given vector x, the gradient vector points in the direction of the maximum increase

of the function f(x). The gradient of the quadratic function presented in (3.13) is

f ′(x) =
1

2
ATx+

1

2
Ax− b (3.15)

Since A is a symmetric matrix, AT = A and (3.15) reduces to

f ′(x) = Ax− b (3.16)

Therefore, setting the gradient vector to zero and finding the critical point of f(x) is

equal to solving the linear system Ax = b. It is proven in [39] that for an arbitrary vector
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p the quadratic function can be reformed as

f(p) = f(x) +
1

2
(p− x)TA(p− x) (3.17)

According to the definition of the positive definite matrix, (p− x)TA(p− x) is positive if

p 6= x; therefore, If A is symmetric positive definite, the solution of linear system Ax = b

is the global minimum of the function f , (3.13). In fact, the CG method originated from

the steepest descent method, an optimization method developed to find the minimum of

the quadratic form. The steepest descent method starts at an arbitrary initial solution

x(0), and moves in the opposite direction of the gradient vector in each iteration, until it

is close enough to the solution x. As stated previously, the gradient vector f ′(x) points

in the direction of the greatest increase of f(x); therefore, moving along −f ′(x) will

decrease f most quickly. In the kth iteration, the steepest descent method will move in

−f ′(x(k)) direction.

−f ′(x(k)) = b− Ax(k) = r(k) (3.18)

The vector r(k) is called the “residual” at the kth iteration. Therefore, the steepest

descent method moves in the direction of the residual in every iteration. The steepest

descent update at the (k + 1)th iteration is

x(k+1) = x(k) + α(k)r(k) (3.19)

in which α(k) is the step size in kth iteration. In order to minimize f with respect to α,

the derivative d
dα
f(x(k)) is set to zero. Using the chain rule results in

d

dα
f(x(k)) = f ′(x(k))T

d

dα
(x(k)) = f ′(x(k))T r(k−1) = 0 (3.20)

If f ′(x(k))T r(k−1) = 0, the residual and gradient vectors are orthogonal. (3.18) shows that

f ′(x(k)) = −r(k); as a result

r(k)T r(k−1) = 0 (3.21)
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In order to find an explicit formula for α, the following equations are used:

r(k)T r(k−1) = 0

(b− Ax(k))T r(k−1) = 0

(b− A(x(k−1) + α(k)r(k−1)))T r(k−1) = 0

(b− Ax(k−1))T r(k−1) − α(k)(Ar(k−1))T r(k−1) = 0

(b− Ax(k−1))T r(k−1) = α(k)(Ar(k−1))T r(k−1)

r(k−1)T r(k−1) = α(k)r(k−1)T (Ar(k−1))

α(k) =
r(k−1)T r(k−1)

r(k−1)TAr(k−1)
(3.22)

The steepest descent method is shown in Algorithm 4.

Algorithm 4 Steepest Descent method

1: Choose an initial solution x(0), Set k=0

2: while not converged do

3: r(k) = b− Ax(k)

4: α(k) = r(k−1)T r(k−1)

r(k−1)TAr(k−1)

5: x(k+1) = x(k) + α(k)r(k)

6: Stop if ‖r(k)‖ ≤ ε, increase k

7: end while

One drawback of the steepest descent algorithm is that it usually takes steps in the

same direction as earlier steps [39]. If the steps in the same directions are combined in a

single iteration, the number of iterations decreases and the algorithm converges in fewer

iterations. This problem is solved if the update directions are forced to be orthogonal.

x(k+1) = x(k) + α(k)d(k) (3.23)

∀i, j = 1 . . . n, dTi dj = 0 (3.24)

Because orthogonality is required by (3.24), equation (3.22) cannot be used; Therefore,

the search directions are chosen to be A-orthogonal instead of orthogonal [39]. Two
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vectors di and dj are A-orthogonal if:

dTi Adj = 0 (3.25)

Two A-orthogonal vectors are also known as “conjugate” vectors. In order to find a

set of conjugate vectors, the Conjugate Gram-Schmidt process is used. The Conju-

gate Gram-Schmidt process starts with an arbitrary set of linearly independent vectors

u0, u1, . . . , uN−1. To construct A-orthogonal vector di, it is written as the sum of ui and

multiples of the previous conjugate directions:

d0 = u0

di = ui +
i−1∑
k=0

βikdk (3.26)

In order to find βik, the A-orthogonality characteristic is used:

0 = dTi Adj = uTi Auj +
i−1∑
k=0

βikd
T
i Adj

βij = −u
T
i Adj
dTi Adj

(3.27)

Once βik is known for k = 0...i− 1; (3.26) can be solved for di.

The method of conjugate gradient combines steepest descent and the Conjugate

Gram-Schmidt method. In the CG method, the search directions are constructed by

conjugation of residuals. i.e., by setting ui = r(i). The method of conjugate gradient is

summarized in Algorithm 5.

The error vector in each iteration is defined as:

e(i) , x(k) − x (3.28)

in which x is the final solution. Then

r(k+1) = −Ae(k+1) = −A(e(k) + α(k)d(k)) = r(k) − α(k)Ad(k) (3.29)

Equation (3.29) shows that each new residual r(i−1) is a linear combination of the previous

residual ri and Ad(i−1); therefore, the new search direction in the ith iteration belongs
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Algorithm 5 Conjugate Gradient method

1: Choose an initial solution x(0), Set k=0

2: d(0) = r(0) = b− Ax(0)

3: repeat

4: α(k) = r(k)T r(k)

d(k)TAd(k)

5: x(k+1) = x(k) + α(k)d(k)

6: r(k+1) = r(k) − α(k)d(k)

7: β(k+1) = r(k+1)T r(k+1)

r(k)T r(k)

8: d(k+1) = r(k+1) + β(k+1)d(k)

9: k = k + 1

10: until ‖r(k+1)‖ ≤ ε

to the following subspace:

K(A, d(0)) = span{d(0), Ad(0), A2d(0), . . . , Ai−1d(0)} (3.30)

The subspace shown in (3.30) is known as a Krylov subspace [14] and the CG method and

similar methods such as BiCG-STAB [40] and GMRES [41] are called Krylov subspace

methods because they find an approximate solution to the linear system by searching the

Krylov subspace [14].

The CG method only works with symmetric positive definite systems. A way to use

conjugate gradient with non-symmetric systems is to multiply the linear system by the

transpose of the coefficient matrix.

ATAx = AT b (3.31)

Since ATA is always symmetric, the method of conjugate gradient would be suitable

again. However, the stability and the convergence rate of this method is not usually good

[14]. Therefore, other methods have been developed to solve non-symmetric systems. The

bi-conjugate gradient (BiCG) algorithm is a commonly used iterative method for solving



Chapter 3. Methods for Solving Systems of Linear Equations 27

Algorithm 6 BiCG method

1: Choose an initial solution x(0), Set k = 1

2: r(0) = b− Ax(0)

3: Choose r̃(0) (for example, r̃(0) = r(0))

4: repeat

5: z(k−1) = M−1r(k−1)

6: z̃(k−1) = M−1r̃(k−1)

7: ρ(k−1) = z(k−1)T r̃(k−1)

8: β(k−1) = ρ(k−1)

ρ(k−2)

9: p(k) = z(k−1) + β(k−1)p(k−1)

10: p̃(k) = z̃(k−1) + β(k−1)p̃(k−1)

11: q(k−1) = Ap(k)

12: q̃(k−1) = AT p̃(k)

13: α(k) = ρ(k−1)

p̃(k)T q(k)

14: x(k) = x(k−1) + α(k)p(k)

15: r(k) = r(k−1) − α(k)q(k)

16: r̃(k) = r̃(k−1) − α(k)q̃(k)

17: increase k

18: until ‖r(k)‖ ≤ ε

non-symmetric systems. The BiCG method develops two set of mutually orthogonal

sequences based on A and AT . The two sequences of residuals are:

r(i) = r(i−1) − α(i)Ap(i), r̃(i) = r̃(i−1) − α(i)AT p̃(i) (3.32)

and the two sequences of search directions are:

p(i) = r(i−1) + β(i−1)p(i−1), p̃(i) = r̃(i−1) + β(i−1)p̃(i−1) (3.33)

The BiCG algorithm is given in Algorithm 6. The BiCG method can suffer from a

slow rate of convergence. In addition, the BiCG method may fail to converge to the
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correct solution [42]. Due to these shortcomings, the BiCG-STAB method, a variant of

the BiCG method, is often used instead due to its improved convergence and stability

characteristics in comparison to the BiCG method [40]. The convergence analysis of

BiCG-STAB is available in [14, 40, 42]. The BiCG-STAB algorithm with preconditioner

is given in Algorithm 7.

Algorithm 7 BiCG-STAB method

1: Choose an initial solution x(0), Set k = 1

2: r(0) = b− Ax(0)

3: Choose r̃ (for example, r̃ = r(0))

4: repeat

5: ρk−1 = r̃T r(k−1)

6: β(k−1) = ρ(k−1)/ρ(k−2)

α(k−1)/ω(k−1)

7: p(k) = r(k−1) + β(k−1)(p(k−1) − ω(k−1)v(k−1))

8: p̂ = M−1p(k)

9: v(k) = Ap̂

10: α(k) = ρ(k−1)

r̃T v(k)

11: s = r(k−1) − α(k)v(k)

12: if ‖s‖ ≤ ε1 stop and set x(k) = x(k−1) + α(k)p̂

13: ŝ = M−1s

14: t = Aŝ

15: ω(k) = tT s
tT t

16: x(k) = x(k−1) + α(k)p̂+ ω(k)ŝ

17: r(k) = s− ω(k)t

18: until ‖r(k)‖ ≤ ε2
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3.3 Preconditioning Methods

The major drawback of iterative solvers is their lack of robustness compared to direct

solvers. In particular, the Krylov subspace methods have a strong dependence on the

distribution of the eigenvalues of the coefficient matrix [43]. The condition number of the

matrix is often used to quantify the eigenvalue spread of a matrix, and it is defined as the

ratio of the maximum and minimum eigenvalues of the matrix [44]. This ratio is shown

in (3.34), in which κ denotes the condition number, λmax is the maximum eigenvalue and

λmin is the minimum eigenvalue.

κ =
λmax(A)

λmin(A)
(3.34)

If the condition number is considerably more than unity, the eigenvalues of the coefficient

matrix are widespread and the system is said to be ill-conditioned. On the other hand,

if the condition number is close or equal to one, the matrix’s eigenvalues are clustered

tightly together and the system is well-conditioned. If the condition number is equal

to one, the coefficient matrix is equal to a scalar multiple of the identity matrix and

many iterative linear solvers can then converge in a single iteration [43]. While there

has been considerable research within the power systems community on Krylov subspace

methods [15, 16], their widespread use in the power systems field has been limited by

the highly ill-conditioned nature of the linear systems that arise in power system simu-

lations [45]. To combat this problem, recent research efforts have aimed at developing

suitable preconditioners for power system matrices in order to improve the performance

of Krylov subspace methods [18–20, 46]. Preconditioning is a method of transforming a

linear system into another system with the same solution but a better condition number

[14, 43]. When dealing with Krylov subspace iterative solvers, this transformation is often

performed by multiplying the coefficient matrix by another matrix known as the precon-

ditioner matrix. The rate of convergence of Krylov subspace solvers such as CG and

BiCG is very dependent on the distribution of the eigenvalues of the coefficient matrix
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as will be shown in Chapter 6; therefore, preconditioning is critical to their success.

A commonly used class of preconditioners, known as the incomplete LU (ILU) fac-

torization, are based on Gaussian elimination. The key idea is to discard some fill-ins

which takes place during the factorization. In this way, the L and U factors are easier

to calculate since they have a fewer number of non-zero elements. ILU methods are

known to be highly efficient and flexible algorithms [14]. Another class of effective pre-

conditioning techniques are polynomial preconditioners [42]. These methods calculate a

series of matrix-valued polynomials and apply them to the coefficient matrix. Polynomial

preconditioning techniques are usually more amenable to parallel computing than ILU

preconditioning. The details of various preconditioning techniques are discussed in this

section.

3.3.1 Diagonal Scaling

The simplest method of preconditioning is diagonal scaling of the coefficient matrix. The

preconditioner matrix corresponding to diagonal scaling is:

M =



a−1
1,1 0 0 . . . 0

0 a−1
2,2 0 . . . 0

0 0 a−1
3,3 . . . 0

... 0 0
. . .

...

0 0 0 . . . a−1
N,N


(3.35)

Since the scaling process needs only one multiplication by a diagonal matrix, it does not

add a significant increase in computation; however, it can increase the clustering of the

eigenvalues of the coefficient matrix [44]. This effect is studied in the evaluation chapter.
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3.3.2 ILU Preconditioning

The L and U factors of the coefficient matrix are generally less sparse than the original

matrix [43]. Pivoting algorithms have been developed to preserve the sparsity pattern of

the original matrix after LU factorization and reduce the number of fill-ins [47], yet large

linear systems often have L and U factors with many more non-zeros than the original

matrix [35]. If any non-zero entries in the L and U factors outside the sparsity pattern

of the coefficient matrix are discarded, an incomplete L and U factors will be obtained:

M = L̄Ū (3.36)

The L̄ and Ū factors in (3.36) cannot be used to solve the linear system directly; however,

they form a powerful preconditioner for iterative linear solvers. The sparsity pattern of

the a matrix A is defined as

PA = {(i, j)|a(i,j) 6= 0} (3.37)

in which a(i,j) is the (i, j)th element of matrix A. If all the fill-ins in the L and U factors

are discarded, the ILU(0) algorithm is obtained. A detailed description of this algorithm

is provided as Algorithm 8.

Algorithm 8 ILU(0)

1: for i = 2 to N do

2: for k = 1 to i− 1 and (i, k) ∈ PA do

3: Compute a(i,k) =
a(i,k)
a(k,k)

4: for j = k + 1 to n and (i, j) ∈ PA do

5: Compute a(i,j) = a(i,j) − a(i,k)a(k,j)

6: end for

7: end for

8: end for

In order to improve the efficiency of the ILU preconditioner, special schemes for
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discarding the fill-ins has been developed [14]. Fill-ins are discarded based on different

criteria, such as position, value, or a combination of the two [43].

One choice is to discard the fill-ins based on a concept known as fill-in level. The

initial level of fill of the (i, j)th element of matrix A is defined as:

levi,j =


0, if a(i,j) 6= 0 or i = j

∞, otherwise
(3.38)

Each time an element is modified in line 5 of Algorithm 8, its level of fill is updated

according to:

levi,j = min{levi,j, levi,k + levk,j + 1} (3.39)

Based on this definition, an improved version of ILU, known as ILU(p) is developed. In

ILU(p), all fill-in elements whose level of fill does not exceed p are kept in the final L̄ and

Ū factors. The algorithm for ILU(p) is described in Algorithm 9, in which a(i,∗) denotes

the ith row of the matrix.

Algorithm 9 ILU(p)

1: set initial values of levi,j

2: for i = 2 to N do

3: for k = 1 to i− 1 and levi,k ≤ p do

4: Compute a(i,k) =
a(i,k)
a(k,k)

5: Compute a(i,∗) = a(i,∗) − a(i,k)a(k,∗)

6: Update the levels of fill of the nonzero elements a(i,∗)

7: end for

8: Replace any element in row i with levij > p by zero

9: end for

Another choice of discarding the fill-ins is a threshold strategy. The threshold strategy

defines a set of rules to drop small fill-ins. A positive number τ is chosen as the drop

tolerance and fill-ins are accepted only if greater than τ in absolute value [43]. The
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optimal value of the drop tolerance is problem dependant and is usually chosen by a

trial-and-error approach. The threshold strategy is unable to predict the number of non-

zeros in final L and U factors. Therefore, the amount of storage needed to save the

incomplete factors is not known beforehand. Also, a threshold strategy may perform

poorly if the matrix is badly scaled (i.e., the magnitudes of the matrix entries vary over

a large range) [14]. More sophisticated preconditioning techniques can be obtained by

combining the threshold strategy, fill-in levels and scaling techniques [14, 43].

3.3.3 Polynomial Preconditioning: Chebyshev Preconditioner

The key idea of polynomial preconditioning is the approximation of the inverse of the

coefficient matrix using a matrix polynomial. The simplest polynomial preconditioner is

based on the inverse approximation using the Neumann Series [48].

A−1 =
∞∑
k=1

Nk (3.40)

N is a matrix with same size as matrix A. The Neumann series (3.40) results in an exact

representation of the matrix A, if A = I −N and the spectral radius of the matrix N is

less than one [42]. The corresponding preconditioner matrix can be obtained by adding

only a finite number of terms from (3.40):

Mr =
r∑

k=1

Nk (3.41)

in which r is the number of polynomial terms used to calculate the preconditioner.

The Chebyshev algorithm is an iterative method originally developed for approximat-

ing the inverse of a scalar number [45]. Studies performed in [45] have shown that the

matrix-valued Chebyshev method can be used as an alternative preconditioning tech-

nique. In this method, Chebyshev polynomials are recursively calculated with the coef-

ficient matrix of the linear system taken as the argument. As the number of iterations is

increased, the linear combination of Chebyshev polynomials converges to the inverse of

the coefficient matrix [45].
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The first step in Chebyshev preconditioning process is the creation of Z (3.42) which

shifts the eigenvalues of the diagonally-scaled A matrix into the range [−1, 1], provided

that α and β are the minimum and maximum eigenvalues of the scaled A matrix.

Z =
2

β − α
AD−1 − I (3.42)

As described in [45] and [49], an estimate of β can be determined via the power method

[14], and α is assigned based on typical performance of the Chebyshev preconditioner.

Reference [45] recommends setting α = β
5

if r < 3 and α = β
(b r

2
c×5)

if r ≥ 3, where bxc

is a function that returns the largest integer less than x. If the coefficient matrix has

known spectral characteristics, then the power method calculation can be omitted and

an approximate β can be used instead [45]. The Chebyshev polynomials are calculated

according to the following equations

T0 = I, T1 = Z (3.43)

Tk = 2ZTk−1 − Tk−2 (3.44)

M0 = c0I (3.45)

Mk = Mk−1 + ckTk (3.46)

in which Tk denotes the kth Chebyshev polynomial. The initial value for M is given

in (3.45), leading to the recursive definition of the Chebyshev preconditioner matrix

(3.46). The preconditioner matrix, M , is a linear combination of Chebyshev polynomials

calculated in (3.43) and (3.44). The coefficients of this linear combination are calculated

below:

ck =
1√
αβ

(−q)k (3.47)

q =
1−

√
α
β

1 +
√

α
β

(3.48)

If r Chebyshev polynomials are used to calculate the Chebyshev preconditioner, the

resulting preconditioner matrix, Mr, can be described as in (3.49). The preconditioner
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matrix calculated in this way is an approximation of the inverse of the coefficient matrix.

Mr =
c0

2
I +

r∑
k=1

ckTk ≈ A−1 (3.49)

The scalar r used as the upper bound of the summation in (3.49) denotes the number

of Chebyshev iterations. The selection of r is described in more detail in the evaluation

chapter, including discussion of the sensitivity of the preconditioner effectiveness to r

and the computational and storage costs associated with increasing r.

In contrast to preconditioning methods based on Gaussian elimination, such as ILU,

the Chebyshev method only uses matrix-matrix and matrix-vector multiplication and

addition. Most parallel processing architectures, in particular GPUs, handle these op-

erations very efficiently [50]. The linear solver implemented in this thesis consists of

Chebyshev polynomial preconditioner and BiCG-STAB solver. A brief description of

GPU architecture and programming are given in the next chapter and the implementa-

tion of the linear solver on GPU is described in Chapter 5.



Chapter 4

General Purpose GPU Programming

Since 2003, the increase of clock frequency and the productive computation in each clock

cycle within a single CPU have slowed down. The “power wall”, which refers to a limit

on clock frequencies due to an inability to handle the increase in leakage heat, is the

primary reason for the stall in processor clock speeds and represents a practical limit on

serial computation [2]. In order to increase computational throughput despite an inability

to increase clock speeds, chip manufacturers have focused on bundling several processors

together into one chip. In some cases, the number of cores put onto a single chip has been

quite modest (e.g., the Intel Core2 Duo has only two processors on-chip), yet in other

cases, most prominently in modern graphics processing units (GPUs), the trend has been

towards an ever-increasing number of cores. By putting hundreds of processors within a

single chip, GPU manufacturers (in particular, NVIDIA and AMD/ATI) have managed to

move beyond the “power wall” and reach computational speeds that are well beyond those

of same-generation CPUs. The latest GPUs are capable of processing over 1 teraflops

(i.e., 1 trillion floating point operations per second) on chips costing less than $500,

whereas a similarly priced two- or four-core CPU has peak computational throughput of

approximately 80 Gflops. Research into the utilization of GPUs for simulation in a variety

of fields, including power systems, has been driven largely by the large, steadily increasing

36



Chapter 4. General Purpose GPU Programming 37

 

Figure 4.1: Enlarging Performance Gap Between GPUs and CPUs [2]

gap between the peak computational throughput of CPUs and GPUs. Figure 4.1 shows

the enlarging performance gap between GPU and CPU in recent years [2]. The gap

between the computational throughput of CPU and GPU is mainly due to different design

philosophies of the two types of processors. CPUs are designed and optimized to deliver

their peak performance for sequential codes. In the CPU architectures, considerable

chip area is dedicated to large cache memories [2] to reduce the latency of the repeated

data and instruction access in complex applications. GPUs, on the other hand, are

designed to use massive number of parallel cores to perform a large amount of floating

point operations per video frame in advanced graphical applications such as video games.

Therefore, most of the chip area is reserved for hundreds of parallel cores to get peak

performance in numeric computations.

In order to develop an optimized software on either the CPU or GPU architecture,

programmers should be aware of the underlying design philosophies of each platform. An

algorithm can and often should be adapted to the CPU or GPU architecture in consid-

erably different ways to produce the best result. Since the CPU architecture has been
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available for a much longer time than the GPU architecture, programmers are more ac-

customed to CPU architectures and more sophisticated development environments and

compilers are available. As a result, a large portion of scientific software still uses se-

quential algorithms. As multicore CPUs has become more prevalent, programmers have

had to adapt sequential algorithms to new parallel platforms in order to improve per-

formance; however, the number of parallel cores in multicore CPUs is usually limited to

2 to 16 CPU cores. Therefore, the sequential algorithms divided among computational

cores and each core followed the same sequential algorithm used with earlier single core

CPUs. Special relaxation methods have been developed to divide sequential algorithms

onto multiple CPUs [51, 52]. Since the introduction of computational GPU architectures,

programmers could access hundreds of parallel cores which can communicate with low

latency. Because compilers only perform rudimentary optimization (although this is an

active area of research [53, 54]), deep understanding of the GPU architecture is needed.

In this chapter, the computational architecture of NVIDIA’s latest programmable GPUs

is described.

4.1 Architecture of Modern NVIDIA GPUs

Figure 4.2 shows the architecture of the NVIDIA GTX 280 processor used in this research.

This GPU include 240 individual processors, referred to as streaming processors (SP).

SPs are organized into 30 streaming multiprocessors (SMs). Each SM consists of a cluster

of 8 SPs which run a program in a single-instruction-multiple-data (SIMD) architecture,

which means that each SP within a given SM is always running the same instruction, but

the data that is used as the input to each instruction may (and often does) vary amongst

the individual SPs. The use of a SIMD architecture is the fundamental difference between

GPU and CPU design.

An illustrated example will be used to explain SIMD operations. Consider a group
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Figure 4.2: NVIDIA GTX 280 hardware architecture [2]

of 32 SPs assigned to run the following code:

if (data[i]==0) output[i]=a; else output[i]=b;

Figure 4.3 illustrates how the SIMD architecture performs. The vertical dashed lines

demonstrate the SPs’ statuses during the execution time. In the first step, the data

is loaded to all SPs. According to the SIMD structure, the SPs can perform the same

operation in parallel and if a single SP (or a set of SPs) tries to perform a different

operation, its operation will be serialized, which means all SPs will remain idle until the

diverging SP (i.e., the SPs performing a different operation) is executed. In Figure 4.3,

the statement (data[i]==0) is true only for a subset of SPs; therefore, some SPs will

remain idle while the processing of the output[i]=a statement is completed. In the next

step, output[i]=b will be executed on the remaining SPs. This example shows how the

SIMD architecture faces some limitations when algorithms include conditional branching.

Notice that during the execution of the program, a portion of SPs remain idle and the

GPU’s computational power is only partially used. In order to avoid serialized execution

on the GPU, programmers should focus more on data parallel algorithms rather than
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data[i]==0
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idle idle idleoutput[i]=b

Synchronization

Time

SP1 SP32
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Figure 4.3: 32 SPs executing single instruction on multiple data

task parallel algorithms. The data parallelism focuses on distributing the data across the

parallel computing cores and executing a single set of instructions on different processors.

Since all parallel cores execute the same instruction, there would be no divergence in

execution of the algorithm. In contrast, task parallelism is achieved by executing different

instructions on parallel computing cores which will cause serial execution on GPU’s SIMD

architecture.

A detailed view of a single SM is shown in Figure 4.4. Each SM in the GTX 280

is equipped with one double precision (DP) unit for double-precision operations and

two special function units (SFUs) for transcendentals. Both SPs and DP can execute

multiply-add (MAD) functions. Therefore the peak performance of GTX 280 in single
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Figure 4.4: Streaming Multiprocessor Overview

precision mode is:

peak performance of GTX 280 =

MAD function flops× number of SPs in an SM×

number of SMs on chip×maximum clock frequency (4.1)

however the peak performance in double precision is considerably lower since there is only

1 DP unit in an SM; therefore, on the current generation of NVIDIA’s GPUS, the single

precision computations have higher performance than double precision computations.

NVIDIA’s GTX 280 GPU has several types of memory [2]. Each SP within a SM

has access to 64KB of register space and 16KB of low-latency memory that is local to

the SM and functions similarly to the L1 cache of CPUs. SPs can also access the much

larger space of global memory (e.g. 1GB) but with a potential increase to latency. For

the GTX 280, the latency in accessing global memory is approximately 500 clock cycles

and less than 3 clock cycles for the per-SM shared memory.

In our experiments, the host (i.e., CPU) memory and GPU memory were connected

through a PCIe 16x link. The theoretical peak bandwidth of the PCIe 16x link is rated
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at 8GB/s. The global memory bandwidth of the GPU is much higher and is rated at 141

GB/s.

4.2 CUDA Programming Model [1]

Until 2006, programmers were forced to use graphics APIs such as OpenGL [55] and

DirectX [2], combined with custom fragment and vertex shaders written in proprietary

languages such as Cg and GLSL, in order to carry out general computing tasks on GPUs.

With the introduction of NVIDIA’s CUDA [1], ATI’s Stream [56], and the cross-platform

OpenCL [57] languages, programming GPUs has become increasingly similar to tradi-

tional C programming, where GPU functionality is accessed via API calls and prepro-

cessor directives. This increased ease of programming GPUs has played a large part in

elevating GPUs as one of the main parallel platforms used for high performance scientific

computing. The CUDA programming language used in this research is a set of extensions

of the C language that includes a set of compiler directives and API calls that enable

the programming of NVDIA’s CUDA-capable GPUs. The CUDA programming model

consists of host (i.e., CPU) and device (i.e., GPU) executables. A high-level view of the

CUDA programming model is illustrated in Figure 4.5. In applications where the GPU

does most of the computations, the host code is primarily used to initialize the GPU,

copy data to and from GPU memory, and initiate execution of kernels on the GPU.

In the CUDA programming model, executable code which runs on the device is known

as a “kernel”. Kernels are usually functions or algorithm designed to run in parallel on

multiple SMs of the GPU. The host side is in charge of issuing execution commands for

each kernel whereas the kernel instructions are performed on the GPU.

Kernels typically create a large number of “threads” to execute a parallel task.

Threads are the smallest units of processing that can be scheduled to run on SPs in

parallel. All threads associated with a particular kernel (e.g., Kernel 1 in Figure 4.5) are
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Figure 4.5: NVIDIA’s CUDA programming model

allocated to a thread pool, known as a “grid” in CUDA nomenclature. The grid is sub-

divided into a set of “thread blocks”, where each block has the same number of threads.

Grids can be one- or two-dimensional with a maximum of 65535 blocks in each dimen-

sion. Each block within the grid is composed of up to 512 threads. These threads can be

organized as a one-, two- or three-dimensional arrays with a maximum of 512 threads in

the 1st and 2nd dimensions and a maximum of 64 threads in the 3rd dimension. Two-

or three-dimensional blocks are typically used to simplify the memory addressing when

processing multidimensional data.

The organization of the thread blocks is a key design choice, since all thread blocks

must be able to run completely independently of one another. By enforcing strict separa-

tion in both instruction and data between the thread blocks, the GPU’s thread scheduler

has complete flexibility in dispatching threads in order to maximize the utilization of the

individual processor cores (SPs). Execution of each thread block is scheduled opportunis-

tically on available SMs on the GPU, with the guarantee that all threads within a thread
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block will execute on the same SM. In the GTX 280 GPU, when a block of threads is

assigned to a SM, the block is then divided into 32-thread units known as “warps”. A

single warp can execute on a SM at the execution time. Because threads in a given block

execute within the same SM, all threads in a given thread block have access to the same

shared, low-latency memory. In addition, all threads within a thread block are allowed

to synchronize with one another through a barrier synchronization function, which can

be used to ensure all threads within the block reach the same point in the set of kernel

instructions before continuing with execution. Efficient use of synchronization calls and

shared memory are two of the key challenges in programming GPUs, since the per-block

shared memory has a much lower access time than global memory and excessive synchro-

nization calls can result in wasted time where the SPs are waiting rather than working.

Once all the threads in all thread blocks have finished executing, the host can then copy

any results from GPU memory to host memory and begin execution of a different kernel.

GPU’s shared memory is divided into several memory banks. Accesses to a single

data element within the same bank by multiple threads in a warp will cause a bank

conflict [58]. Bank conflict will result in serialization of the multiple accesses to the

same data and increases the total memory access latency. In order to achieve maximum

performance in GPU computing, bank conflicts should be avoided as much as possible.

Further discussion of bank conflicts is provided with the description of sparse matrix

multiplication in Chapter 5.

An important technique in CUDA programming which will result in optimal global

memory access is memory coalescing. Consecutive threads within a half warp (16 threads)

can coalesce their global memory access reads and writes. If threads in a half warp access

the global memory in order, the memory access will be issued simultaneously and the

access time will be reduced considerably. This feature is helpful with implementing

algorithms that requires manipulating large matrices on the GPU and is taken into

consideration in the kernels presented in Chapter 5.
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Figure 4.6: SP scheduling to reduce the impact of memory latency

One important aspect of programming for the GPU is that full utilization of the GPU

requires the number of thread blocks to be much larger than the number of processors,

since this provides the GPU’s scheduler with greater flexibility in hiding memory access

latencies. This is significantly different from the methods used to hide latencies in CPUs,

where complex look-ahead caching is used to predict the future needs of the processor(s)

and avoid the full cost of a main memory access. Reduction of effective memory latency

on a GPU is accomplished by continually reassigning SPs stuck in a synchronization or

memory access wait state to other threads that can use the SP to perform computations.

Consider the case shown in Figure 4.6, where an SP has been executing Thread 1 and,

to continue, must retrieve some data from global memory. If the SP is left idle while

the memory access is performed (as shown in the top of Figure 4.6), then potentially

useful clock cycles are wasted. To avoid this problem, the GPU thread scheduler will

do it’s best to switch the context of the SP so that it can perform useful instructions

for a different thread (as shown in the bottom of Figure 4.6). This method of masking

memory latency assumes that the bottleneck for tasks assigned to the GPU is the number
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of computations, not the number of input-output or synchronization operations. If an

algorithm is assigned to the GPU in which memory access and synchronization wait

times are generally larger than the time spent doing computations, then eventually the

thread scheduler will run out of non-blocking threads to switch in when an SP is idle (i.e.,

there would be no Thread 2 to occupy the SP in Figure 4.6). Accordingly, developing

programs that create a large number of compute-intensive threads is a key to ensuring

that the individual processors on the GPU are fully utilized. One other reason that

switching between threads works well in hiding latencies for GPUs is that the hardware

architecture is designed such that switching between threads incurs zero overhead [1].

The brief description of the GPU architecture given in this chapter will facilitate

the understanding of the implementation of the Chebyshev preconditioner and BiCG-

STAB solver on GPU which are presented in Chapter 5. Further information on GPU

architecture is available in [2] and [1].



Chapter 5

GPU Implementation of

Preconditioned Iterative Solver

This chapter provides the implementation details of the Chebyshev preconditioner and

BiCG-STAB iterative linear solver. Power system matrices are usually stored in sparse

data structures, such as compressed sparse row (CSR) or compressed sparse column

(CSC) format in order to take advantage of sparsity. We will mention some basic details

of the sparse matrices in the following section 5.1. Section 5.2 describes the impor-

tant kernels used in the implementation of the preconditioner and solver. Section 5.3

walks through the implementation of the Chebyshev preconditioner, and section 5.4 pro-

vides implementation details for the BiCG-STAB solver and describes how the complete

Chebyshev preconditioner and BiCG-STAB solver have been implemented.

5.1 Sparse Matrices and Storage Schemes

A matrix is defined as sparse if the majority of its element are zero [35]. There is no

strict boundary on the ratio of the non-zero to zero elements in defining a sparse matrix;

however, for square matrices the number of non-zeros in a sparse matrix is usually on

the order of N (the number of rows and columns of the matrix). The location of the

47
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non-zero elements in a sparse matrix is known as the sparsity pattern. In order to take

advantage of the significant number of zero entries within sparse matrices, sparse storage

schemes have been developed. These storage schemes only store the non-zero elements

and their indices, resulting in considerable reduction in the memory space required to

store the matrix. Sparse storage schemes are very popular in various fields of scientific

computation such as electromagnetics, circuit simulation and molecular dynamics. In

power system analysis, large, sparse matrices appear due to the low branching factor of

power systems [27] and commercial power system matrices manipulate these matrices

using data structures that account for sparsity. Some of the widely used structures in

the literature are listed below.

5.1.1 Coordinate Format

The coordinate (COO) format is a simple and easy to create sparse format. This storage

scheme is the default format used by MATLAB to manipulate sparse matrices [59]. All

the non-zero elements are saved in a data vector and the corresponding column and row

indices are stored in separate vectors. The size of these three vectors is equal to the

number of non-zeros. Despite its easy implementation, the COO format is not the most

efficient way to store sparse matrices since similar formats are able to save sparse matrices

with a lower amount of required memory space. An example of the COO sparse matrix

format is shown below:
A 0 B

0 C 0

D 0 E

⇒
data [A D C B E]

row indice [0 0 1 2 2]

col indice [0 2 1 0 2]

(5.1)

5.1.2 Compressed Sparse Row Format

The compressed sparse row (CSR) is a popular sparse matrix format in various fields of

scientific computation. CSR format is more efficient than COO format since it consumes
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less memory space. Similar to the COO format, the non-zero elements are stored in a

data vector. The column number corresponding to each non-zero elements is also stored

in a vector usually known as “indices”. A vector of size N + 1 known as the “pointer”

(ptr) vector completes the CSR format [60]. The first element of the ptr vector is zero.

The (k + 1)th element of the vector is equal to the number of nonzero elements in the

first k rows of the sparse matrix; therefore, the last element in the vector equals the total

number of non-zeros in the sparse matrix. The number of non-zeros in row i can be

readily computed as ptr(i+ 1)− ptr(i). An example of the CSR sparse matrix format is

shown below: 
A 0 B

0 C 0

D 0 E

⇒
data [A B C D E]

indices [0 2 1 0 2]

ptr [0 2 3 5]

(5.2)

5.1.3 Compressed Sparse Column Format

The compressed sparse column (CSC) is similar to CSR format. In CSC format the row

number corresponding to each non-zero element is stored in the indices vector. Also,

the elements of the ptr vector hold the number of non-zero elements in columns of the

sparse matrix. It is useful to note that if a sparse matrix is symmetric, the CSC and CSR

representation of the matric would be the same. An example of the CSR sparse matrix

format is shown below:
A 0 B

0 C 0

D 0 E

⇒
data [A D C B E]

indice [0 2 1 0 2]

ptr [0 2 3 5]

(5.3)

In this example, if the matrix is symmetric (i.e. B = D), the CSR and CSC formats

would have the same representations.
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5.2 GPU Kernels

In this section, the primary kernels used in the implementation of the Chebyshev pre-

conditioner and BiCG-STAB solver are explained. The kernels represented here perform

mathematical operations used in the preconditioner and solver algorithms. Some of these

parallel matrix operations are implemented similarly to the vector operations available in

the the CUBLAS library [61], a library of linear algebra functions provided by NVIDIA.

However, the most computationally expensive kernels, sparse matrix-matrix multiplica-

tion and dense to sparse conversion, are not currently available in the CUBLAS library.

The discussion of these two kernels is provided in section 5.3, along with implementation

issues related specifically to the Chebyshev preconditioner.

5.2.1 Vector and Matrix Scaling and Addition

Vector and matrix update includes scaling and addition of two or more vectors. In this

kernel, matrices are manipulated in vector forms (i.e., an N × N matrix is saved and

manipulated as N consecutive vectors). This is largely due to the memory structure of

GPUs, since the GPU memory is ultimately stored in a one dimensional array. Because

of this characteristic of GPU memory, both vectors and matrices are denoted by capital

letters during the implementation chapter. Each GPU thread takes care of updating

a single element. The kernel has data parallel characteristics and is suitable to GPU

computing.

5.2.2 Prefix Sum

The prefix sum is an operation on vectors in which each element in the output vector

is the summation of all elements in the input vector up to its index. The prefix sum

operation is shown in (5.4) and (5.5):

Operand vector A =

[
a1, a2, a3, . . . aN

]
(5.4)
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Result of prefix sum =

[
a1, a1 + a2, a1 + a2 + a3, . . . a1 + . . .+ aN

]
(5.5)

The implementation and evaluations details of this kernel is available in [62]. A highly

optimized prefix sum kernel is included in the CUDA libraries [1]. We developed our own

kernels similar to the kernels included in CUDA libraries.

5.2.3 Vector Inner Product and Vector Norm

The vector inner product (or Dot product) is an operation which takes two equal length

vectors and returns a single scaler as an output. The output of inner product is calculated

by multiplying corresponding entries in two vectors and adding up those two vectors:

A =

[
a1, a2, a3, . . . aN

]
(5.6)

B =

[
b1, b2, b3, . . . bN

]
(5.7)

v =
N∑
i=1

aibi (5.8)

The inner product kernel consists of two steps. The first step is to multiply the cor-

responding elements, which is performed similar to B. The second step is to add up

all the multiplication results, which is done with a similar to the prefix sum algorithm

[62]. The CUDA libraries include kernels for vector inner products (cublasSdot()) and

vector summation (cublasSasum()) [61]. The vector norm kernel is a simplified case of

the vector inner products kernel, where both input vectors are equal.

5.3 Chebyshev Preconditioner Implementation

The Chebyshev preconditioning algorithm is divided into multiple steps as shown in

Figure 5.1. In step 1, the host (i.e., CPU) reads the coefficient matrix A from memory

and if necessary converts it to CSR format. In step 2, A is copied from host memory

to the GPU’s global memory. As mentioned in Chapter 4, the data transfer is carried
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Load the coefficient matrix 
1

Copy coefficient matrix to 

GPU memory
2

Build Z matrix, set k = 1
3

Multiply Tk-1 by Z
4

Build the kth Chebyshev 

polynomial, Tk, and update 

the preconditioner 5

Copy the preconditioner 

matrix to the CPU

7

Convert intermediate, dense 

vectors (matrices) into sparse 

vectors (matrices) and store 

the sparse data in memory 6

Repeat r 

times, 

incrementing 

k each time

Figure 5.1: Block diagram of the Chebyshev preconditioner implementation

out via PCIe 16x link in our implementation. Before sending the coefficient matrix to

the GPU, an appropriately sized location must be allocated in the GPU’s global memory

to store the input and output data. The memory allocation for the coefficient matrix is

straight-forward, since the number of the non-zero elements of the coefficient matrix is

known. However, the size of the output matrix (the preconditioner) is not known before

the execution of the code. In general, when two sparse matrices are multiplied together,

the number of the non-zero elements of the product matrix is unknown; therefore; it is

impossible to determine the exact memory space required to store the output matrices

beforehand. In our implementation, we allocate an arbitrarily large memory space (e.g

10 times larger than the memory space required to store the coefficient matrix) to be

able to store the result matrices. However, this is not a reliable solution for this problem
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and more efficient algorithms would be explored in future works.

In step 3, the linear transformation described in (3.42) is performed on the GPU.

The implementation of (3.42) requires scaling Z by a matrix and then subtracting values

from its diagonal entries. In steps 4 to step 6, GPU kernels perform the operations

given in (3.46) to (3.49) to iteratively build the Chebyshev preconditioner. The most

computationally expensive kernel is the matrix-matrix multiplication performed in step

4 (Z × T(k−1)). Because matrix-matrix multiplication can be decomposed into a set of

dot products, an efficient sparse vector-vector dot product kernel is needed.

XY = P (5.9)
X1Y1 · · · X1YN

...
. . .

...

XNY1 · · · XNYN

 =


P1

...

PN

 (5.10)

pi,k = XiYk =
∑

v∈{1,2,...,N},xi,v 6=0,yv,k 6=0

xi,vyv,k (5.11)

Optimized matrix-vector kernels already exist for sparse matrices multiplying dense

vectors [60], but these kernels result in wasteful multiplications, additions, and memory

accesses due to the explicit calculations done on zero elements of the vector (e.g., in [60],

the summation in (5.11) is carried out without considering which entries in Yk are non-

zero). As indicated in the summation index given in (5.11), our calculation of an element

in the product matrix, pi,k, is carried out only if there is a non-zero element in row i and

column j of the multiplicands. This explicit consideration of the matrix sparsity results

in fewer multiply and add operations and fewer memory writes.

In the GPU implementation of (3.46) to (3.49), 16 threads are assigned to each thread

block, and each block is in charge of multiplying a single row of the sparse matrix X

with the corresponding sparse columns of Y (i.e., each 16-thread block is responsible

for computing one row of the product matrix, Pi). Therefore, each thread can access

the shared 16 banks in the shared memory without bank conflicts. Consecutive threads
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within a half warp (16 threads) can coalesce global memory reads and writes. If threads

in a half warp access the global memory in order, the memory access will be issued

simultaneously and the access time will reduce considerably. If the number of non-zero

entries in each row of the sparse matrix is larger than 16, the number of threads assigned

to multiplying each row should be increased; however, for sparse matrices encountered in

power system analysis, the maximum number of non-zero entries in each row is usually

in the range of 3 to 5 [27].

To carry out the summation in (5.10), each thread reads in the appropriate columns

of Y from global memory. This kernel is executed for all N rows in the multiplier matrix,

so there are as many as N thread blocks pending execution at any given time. For power

system matrices, where it is very common for N to be much larger than the number

of SMs in the GPU, the ratio of executable blocks to SMs is sufficient for the GPU’s

thread scheduler to mask the global memory access and synchronization latencies by

zero-overhead switching between thread blocks, as shown in Figure 4.6.

When step 4 is completed, each row of the product matrix is stored in shared memory

as a dense N -element vector, as shown at the top of Figure 5.2. Dense storage is used

within each block so that each thread within the block can write to the product row

without having to synchronize with any other threads. The standard data structures used

in power system software, single- and double-linked lists, would require synchronization

on each read and write operation in order to ensure that the linked list integrity is

maintained; this in turn would lead to an increase in the amount of per-thread idle time.

Although each row of the product matrix is stored in shared memory as a dense vector,

the row data is reduced to a sparse format before it is written to global memory. More

details on the dense to sparse vector conversion are provided below in the description of

step 6.

Upon completion of step 4, step 5 is carried out by determining the constant ck, as

given in equation (3.47), and performing the matrix updates given in (3.44) and (3.49).
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The input vector I arrives at step 6 in a

dense format:

I = 0 0 0 A 0 0 B C 0 0 D

An intermediate vector Ptr is then con-

structed according to the following rule:

Ptrj = 1 if Ij 6= 0, otherwise Ptrj = 0.

Ptr = 0 0 0 1 0 0 1 1 0 0 1

A prefix sum is then applied to the pointer

vector, with entries given by: PSj =∑j
i=0 Ptri.

PS = 0 0 0 1 1 1 2 3 3 3 4

The sparse data structure, consisting of

a vector of values V and a vector of in-

dices into the dense vector, Ix, is then

constructed based on the following opera-

tions:

For k = 1, 2, . . . , N

If PSk − PSk−1 = 1

VPSk−1 = Ik

IxPSk−1 = k

Resulting in the final sparse representa-

tion of I as:

V = A B C D Ix = 3 6 7 10

Figure 5.2: Conversion of the matrix row vectors from dense to sparse formats in step 6

of the algorithm
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The kernel in step 6 then converts the dense row vector of the Chebyshev polynomial, Tk,

and preconditioner matrices, Mr, into a vector with CSR or CSC structure. The need

for this reduction is threefold: first, it reduces the number of high-cost global memory

writes that must be performed at the end of each iteration; secondly, it limits the amount

of global memory that must be allocated for storage of matrices between iterations; and

thirdly, it reduces the number of global memory reads that must be performed in step 4

in the subsequent iteration. The basic algorithm for this kernel is illustrated in Figure

5.2. An example of a dense vector that is obtained as the output of step 5 is shown at

the top of Figure 5.2. This vector has 4 non-zero elements, shown by the letters A to

D, at columns 3, 6, 7, and 10, respectively, with the convention that the first element of

the vector is indexed as 0. The first step in the conversion to a sparse vector is to create

an intermediate “pointer vector”, Ptr, based on which entries are non-zero in the input

vector. The elements of Ptr are set to 1 for any non-zero entries in the input vector I

and zero otherwise, as illustrated in Figure 5.2. The next step in the conversion is to

perform a prefix sum [50] on the pointer vector. To perform the prefix sum, a highly

optimized kernel included in the CUDA libraries [1] is used. The output of the prefix sum,

PS, is described and illustrated in Figure 5.2. Within the PS vector, every incremental

step between columns corresponds to the existence of a non-zero element in the input

vector (e.g., an increment occurs between PS2 and PS3 in the example of Figure 5.2,

indicating there is a non-zero entry in column 3 of the input vector). The final step

of the conversion is to use the entries in PS to first allocate the sparse data structure

(note that the last entry of PS contains the number of nonzero entries to be stored in

the sparse data structure) and populate it with the appropriate values. Vector V will be

used to update the data vector in sparse data structure, vector Ix will be used to update

the index vector and the last entry of PS will update the ptr vector. Simplified code for

this final operation, along with the resulting sparse vector data structure, is shown at

the bottom of Figure 5.2.
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Steps 4 to 6 are repeated r times and generate r Chebyshev polynomials in order to

carry out the summation in (3.49). At each iteration, the matrices are stored in the CSR

format. If the iterative solver is implemented on the GPU, this matrix can be read from

global memory within the solver kernel(s); otherwise, the preconditioner matrix can be

sent back to the host as indicated in step 7 of Figure 5.1.

5.4 BiCG-STAB Solver Implementation

Algorithm 10 shows the steps in the BiCG-STAB solver implementation. In the first

step, the host side loads the coefficient matrix A, the preconditioner M−1, the right hand

side vector b and the initial estimate of the solution x0. If A and M−1 matrices are

not in CSR format, they are converted to CSR format on the host side. In step 2, the

matrices A and M−1 and the vectors b and x0 are copied to GPU’s global memory. If the

solver code is executed immediately after the preconditioner, the A and M−1 matrices

are already available on GPU’s global memory and no extra copy is needed. If the initial

guess x0 is not provided, the solver assumes x(0) is a vector with all zero elements. In

step 3, the initial residual is calculated as r(0) = b − Ax(0). The Ax(0) multiplication is

performed by sparse matrix vector multiplication and the result is subtracted from b in

the same kernel. In step 4, the p(1) and r̃ vectors are updated by copying r(0) into global

memory. Steps 5 through 18 are repeated until the method has converged or the number

of iterations is the size of the coefficient matrix. Step 6, 13 and 14 are performed by

using the inner product kernel. The sparse matrix vector multiplication kernel, defined

in section 5.3, is used in step 7, 8, 11 and 12. In step 10, 15 and 16, the vector update

kernel is used. In step 10, the norm of vector s is calculated and the result is sent back

to host memory. This norm is compared to a pre-specified tolerance (e.g. 10−3) and it is

decided whether to continue the execution or not. The same procedure is performed in

step 16 for vector r(i). The final solution is sent to host memory in step 19.
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Algorithm 10 Preconditioned biconjugate gradient implementation on GPU

1: Load coefficient matrix, preconditioner matrix, rhs vector and initial guess

2: Copy coefficient matrix, preconditioner matrix, rhs vector and initial guess to GPU

memory

3: Calculate the residual r(0) = b− Ax(0), Set i = 1

4: Set p(1) and r̃ equal to r(0)

5: while not converged and i ≤ N do

6: Calculate ρi−1 = r̃ri−1

7: Multiply p(i) by M and update p̂

8: Multiply p̂ by A and update v(i)

9: Calculate r̃Tv(i) and update αi

10: Update s, Calculate norm of s, stop if converged

11: Multiply s by M and update ŝ

12: Multiply ŝ by A and update t

13: Calculate tT s

14: Calculate tT t

15: Update x

16: Update r(i), Calculate norm of r(i), stop if converged,

17: Increment i

18: end while

19: Copy solution vector to host memory

The choice of the initial solution affects the performance of the iterative linear solver.

If the initial estimate of the solution is close to the exact solution of the linear system, the

iterative linear solver will converge in a relatively small number of iterations. In contrast,

if the initial solution is not close to the exact solution of the linear system, the iterative

linear solver may take a large number of iterations to converge. In our implementation,

it is possible to specify the initial solution vector. If the initial solution vector is not
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specified, the solver starts with an initial solution which has zeros for all its entries (“flat

start”). In the evaluation chapter, we always used flat start to measure the performance

of the iterative linear solver.

In our implementation of the BiCG-STAB solver, the linear solver will stop iterating

if the norm of the residual vector (‖r(i)‖ = ‖b−Ax(i)‖) becomes less than a pre-specified

value (“tolerance”). In general, for smaller tolerances, the iterative linear solver takes

more iterations to converge. It is possible to adjust this tolerance in our implementation

of the BiCG-STAB solver. The results presented in the evaluation chapter are based on

a tolerance of 10−3.

Finally, the GTX 280 GPU used in this research offers its maximum computational

power in 32-bit floating point (single precision) arithmetic operations. The support for

64-bit floating point (double precision) arithmetic is very limited in this generation of

NVIDIA GPUs and the double precision performance is considerably lower than the

single precision performance; therefore, the preconditioner and iterative linear solver

implemented in this research only support single-precision data.



Chapter 6

Evaluation and Results

The evaluation results of our GPU-based preconditioner and linear solver are studied in

this chapter. The testing platform and various test cases are described first. The GPU-

based Chebyshev preconditioner is applied to various test matrices and its efficiency

is studied in detail. The execution time of the GPU-based Chebyshev preconditioner

is compared to the sequential version implemented on a CPU. The execution time and

efficiency of the GPU-based Chebyshev preconditioner is also compared to the commonly

used ILU preconditioners. The GPU-based linear solver is also compared to a sequential

CPU version to measure the performance of the GPU versus CPU solution of sparse

linear systems. Finally, the performance of the preconditioned iterative solver on the

GPU is compared to state-of-the-art direct linear solvers on the CPU.

6.1 Testing Platform

The experiments were performed on a NVIDIA GTX 280-based graphics card. This

graphics card has 240 streaming processors running at a 602 MHz core clock speed. The

graphics processor has access to 1GB of global memory at peak bandwidth of 155.52

GB/s. The host side is a dual core Intel processor running with a core clock speed of

2.66GHz and 3MB of L2 cache. The serial code would be running on a single CPU core.

60
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The connection between host memory and GPU memory is through a PCIe 16x link.

CUDA SDK version 2.0 [1] was used for programming the GPU.

6.2 Test Cases and Test Matrices

The GPU-based preconditioner and solver were tested with several sparse matrices to

determine if it is a viable alternative to a CPU-based solver. The first set of matrices

studied were the dc power flow matrices associated with the IEEE 30-, 57-, 118-, and

300-bus test cases [63]. To examine the performance on a practically-sized system, the

performance of the algorithm was also tested using the dc power flow matrix of a 1243-

bus European case [64]. Additional test matrices were obtained from the NIST Matrix

Market [65], including two matrices from the PSADMIT set (with N values of 494 and

685) and two matrices from the Harwell-Boeing Sparse Matrix Collection (with N values

of 1801 and 3948) since these two matrices are often used in the literature to evaluate

preconditioning algorithms [43]. The dc power flow matrices and matrices obtained from

NIST Matrix market are symmetric.

The right-hand-side vectors for IEEE test cases and the European case are extracted

from PowerWorld simulator, by calculating the net real power injection to each bus. For

the matrices selected from the Matrix Market collection, the entries of the right-hand-

side vectors are all equal to one. The initial solution vector for iterative solvers is equal

to zero.

6.3 Evaluation of the Chebyshev Preconditioner

One important parameter of the Chebyshev preconditioner is r, the number of Chebyshev

polynomials used to calculate the preconditioner matrix. This parameter determines the

number of times the inner loop of the Chebyshev preconditioner algorithm is traversed. At

one extreme, if the number of the Chebyshev iterations is taken to be a very large number
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Figure 6.1: Condition number of the preconditioned coefficient matrix versus number

iterations in Chebyshev method

(e.g., close to the dimensions of the coefficient matrix), the preconditioner calculations

would result in a very close approximation to the coefficient matrix inverse. A high-

r preconditioner would then bring the condition number of the coefficient matrix near

unity and provide a steep reduction in the number of iterations of the subsequent iterative

solver. Such a steep reduction in the solver iterations would come at a price—the number

of calculations that must be performed in the preconditioning step would increase, and

storage of the full, non-sparse inverse on the GPU could exhaust its memory capacity.

On the other hand, choosing a value of r that is too small can result in an ineffectual

preconditioner that provides no benefit to the iterative solver. For a given linear system,

it is possible to find the optimal value of r that minimizes the total time spent in both

the preconditioner and the iterative solver. This would require repeated solution of

the linear system, which runs contrary to the goal of accelerating the solution of these

systems. To settle upon a value of r for practical implementation of the preconditioner,
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Figure 6.2: Number of BiCG-STAB iterations to solve the preconditioned system versus

number iterations in Chebyshev method

sensitivity analyses were carried out in which changes in r were compared with the

resulting changes in the condition number of the coefficient matrix. For example, Figure

6.1 shows the trend in the condition number of the test matrices as r is increased. The first

step shows the reduction in condition number by scaling the coefficient matrix with the

inverse of its main diagonal, (3.35); this is separated from the Chebyshev preconditioner

effects because it is an extremely simple preconditioner and, as a result, serves as a

good baseline for evaluation. As shown in the figure, the diagonal scaling results in a

half-decade reduction in the condition number, and the Chebyshev iterations result in

another decade of reduction for values of r up to 3. Afterwards, the benefit of increasing

r is much less pronounced, indicating that the greatest gain of using the preconditioner

comes from the first few iterations. This effect is also shown in Figure 6.2 which gives the

number of BiCG-STAB iterations for solving the preconditioned linear system versus the

number of Chebyshev iterations for various test cases. Because this same phenomenon
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was observed for the other matrices under study, it was concluded that the number of

Chebyshev iterations should be kept between two and four. After running the sensitivity

studies, the preconditioner was optimized for r values in this range as it seems to strike

a good balance between a reduction in the condition number, computational effort and

memory limits.

To understand the impact of increasing r on the size of the preconditioner matrix,

the Chebyshev polynomials are rewritten in terms of Z:

T0 = I, T1 = Z

T2 = 2ZT1 − T0 = 2Z2 − I

T3 = 2ZT2 − T1 = 4Z3 − 3Z

...

Tk ∝ Zk

(6.1)

therefore, in each Chebyshev iteration, the sparsity structure of Tk and the associated

preconditioner matrix are determined by the structure of Zk. The coefficient matrices

associated with power system analysis (e.g., from dc power flow analyses) have a sparsity

structure that is closely tied to the network topology of the study system. Based on

equation (3.42), Z has the same sparsity structure as the coefficient matrix. One way to

analyze the behavior of Zk, then, is to consider the effect of raising the adjacency matrix,

defined element-wise as

Adjm,n =


1 if Ym,n 6= 0

0 otherwise

(6.2)

to successive powers of k. From graph theory, it is known that taking the kth power

of the adjacency matrix introduces a non-zero entry at row m and column n if buses

m and n are reachable by traversing k or fewer edges (i.e., lm,n ≤ k, where lm,n is the

minimum path length between buses m and n). The diameter of the adjacency matrix,

Diam (Adj), is defined as the maximum value of lm,n over all possible row and column
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combinations:

Diam (Adj) = max

m∈{1,2,...,N}×n∈{1,2,...,N}

lm,n (6.3)

Returning to (6.1), this suggests that any value of r equal to or greater than the diameter

of a given power network will result in a matrix that is fully dense. For many real-world

power systems, such as the Western North America, Northern China, and Central China

power grids, the diameter is significantly lower than the number of system buses [66];

therefore, a small value of r is needed to ensure the resulting preconditioner matrix is

kept sparse.

The effect of the Chebyshev preconditioner on each of the test matrices is provided

in Table 6.1.

Table 6.1: Impact of the 3rd order Chebyshev Preconditioner on the Condition Number

and BiCG-STAB Iteration Count

Matrix Size Cond# Cond# BiCG# BiCG#

Name (r = 0) (r = 3) (r = 0) (r = 3)

30-Bus 30 913.23 71.80 37 8.5

57-Bus 57 1.6×103 147.14 57nc 13

118-Bus 118 3.9×103 288.47 112 24

300-Bus 300 1.5×105 5732.5 300nc 59

494-Bus 494 3.9×106 32855.1 494nc 202

685-Bus 685 5.3×105 3542.51 685nc 82

EU case 1243 3.2×105 14244.3 1243nc 76

bcsstk14 1806 1.3×1010 1.1×105 1806nc 42

bcsstk15 3948 7.9×109 8.9×105 3948nc 232

The data reported in the table are the size of the matrices (for a N ×N matrix, the

“size” of the matrix is N), the condition number (“Cond#”) and the number of itera-

tions it took to solve a system with the given coefficient matrix to a tolerance of 10−3
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(“BiCG#”). The columns containing the condition number and iterative solver’s perfor-

mance data for the original, non-preconditioned matrix are labeled “r = 0”. The columns

labeled “r = 3” contain the performance data obtained after applying the Chebyshev pre-

conditioner with three iterations.

The most significant result shown in the table is that all of the cases with more than

300 buses resulted in non-convergence of the iterative solver (indicated by a superscript

“nc” in the corresponding table entries). Application of the Chebyshev preconditioner

with r = 3 resulted in a significant reduction in the condition number of all nine matrices

and, most importantly, was able to adjust the spectral properties sufficiently to get

convergence in the iterative solver. The bi-conjugate gradient stabilized (BiCG-STAB)

method was used to test the iterative solver performance, which was executed on the

host using the bicgstab function in MATLAB.

A sequential version of the Chebyshev preconditioner was also implemented in MAT-

LAB for comparison of parallel GPU and serial CPU implementations. The CPU code

accepts sparse matrices in CSR, CSC and sparse coordinate storage formats. The current

version of MATLAB does not support single precision sparse storage and computation

and the CPU computations are performed on double precision data. Table 6.2 presents

the process time of the GPU implementation versus the CPU implementation and the

speed-up ratio. The results indicate that the speed-up increases as the matrix size

increases, up to a maximum speed-up of 8.93x for the largest matrix tested. The rela-

tionship between matrix size and speed-up is especially important if the GPU is used as

a coprocessor for large power system matrices, since it indicates that the GPU imple-

mentation scales appropriately for the large linear systems that are likely to appear in

power systems applications.

The parallel Chebyshev preconditioner was also compared with the commonly used

ILU preconditioner. In order to compare the Chebyshev preconditioner on the GPU to

direct preconditioners on the CPU, the MATLAB implementation of sparse ILU factor-
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Table 6.2: A Comparison of the Processing Time of the GPU-Based and CPU-Based

Chebyshev Preconditioners

Matrix Chebyshev Chebyshev Speed-Up

Name Time CPU(ms) Time GPU(ms) GPU vs CPU

30-Bus 0.27 0.47 0.57

57-Bus 0.68 1.25 0.54

118-Bus 1.55 2.30 0.67

300-Bus 7.69 6.47 1.18

494-Bus 19.7 8.06 1.83

685-Bus 44.1 13.72 3.21

EU case 124.2 21.03 5.91

bcsstk14 262.2 33.46 7.85

bcsstk15 591.1 66.18 8.93

ization was used. This method performs a LU factorization on the system; however, if

an element is encountered during the factorization that is less than a specified thresh-

old, that value is discarded [44]. By increasing this threshold, the ILU becomes less

incomplete and more like a full LU factorization. Each system was preconditioned with

both ILU and the three-iteration Chebyshev preconditioner then solved with the BiCG-

STAB solver. ILU preconditioner (executed on the CPU) and Chebyshev preconditioner

(executed on the GPU) computation times are given in Table 6.3.

For each test case, the ILU threshold was set such that the number of BiCG-STAB

iterations used to solve the ILU preconditioned system was same as the Chebyshev-

preconditioned system. For small system sizes, the GPU-based Chebyshev preconditioner

uses more calculation time than ILU. In these cases, the amount of computation is not

large enough to outweigh the overhead of the GPU execution, such as the time spent

to allocate the executable kernels on the GPU. In addition, for smaller matrices, the
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Table 6.3: A Comparison of the Processing Time of the GPU-Based Chebyshev Precon-

ditioner and CPU-Based ILU Preconditioner

Matrix ILU Chebyshev Speed-Up

Name Time CPU(ms) Time GPU(ms) GPU vs CPU

30-Bus 0.331 0.47 0.70

57-Bus 0.383 1.25 0.31

118-Bus 0.519 2.30 0.23

300-Bus 2.64 6.47 0.41

494-Bus 8.91 8.06 1.11

685-Bus 25.17 13.72 1.83

EU case 46.18 21.03 2.20

bcsstk14 93.62 33.46 2.80

bcsstk15 552.11 66.18 8.34

computational resources of the GPU are not saturated by the preconditioner calculations.

As the number of calculations increases, any fixed setup overhead is amortized over more

calculations and there are more opportunities for latency masking; therefore, there should

be a relative increase in performance for larger matrices. Table 6.3 confirms that as the

matrix size increases, the GPU-based Chebyshev preconditioner requires less computation

time relative to the ILU preconditioner.

Besides the time spent on calculation in the preconditioning process, the number

of non-zeros of the preconditioned matrix is an important factor in evaluation of the

preconditioning technique. The sparsity of the preconditioned matrix has a great effect on

the computation time and memory requirements for the rest of the linear solver process.

As shown in Table 6.4, the iterative preconditioner results in a lower number of nonzero

entries for larger matrices when compared to a similarly-performing ILU preconditioner.
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Table 6.4: A Comparison of the Number of the Non-Zero Elements of the Chebyshev

Preconditioner and the ILU Preconditioner

Matrix ILU Chebyshev

Name nnz drop tol. nnz nnz

30-Bus 108 6×10−2 178 258

57-Bus 205 5×10−2 321 461

118-Bus 464 4×10−2 844 1198

300-Bus 1121 5×10−4 7113 2890

494-Bus 1080 4×10−4 6635 4062

685-Bus 1967 4×10−3 18956 9337

EU case 4872 1×10−3 24826 13873

bcsstk14 32630 5×10−6 301851 195654

bcsstk15 60882 3×10−6 1105488 527666

6.4 Evaluation of the BiCG-STAB Iterative Solver

The iterative linear solver is compared with the serial, CPU implementation of the same

algorithm in MATLAB. Table 6.5 presents the process time of the GPU and CPU im-

plementation of the BiCG-STAB linear solver. Table 6.6 presents the process time of

the GPU and CPU implementation of the Chebyshev preconditioned BiCG-STAB lin-

ear solver. The speed-up is calculated based on the complete preconditioner and linear

solver. For the largest matrix tested, a 9.53x speed-up is achieved. As anticipated based

on the GPU architecture, the speed-up increases as the matrix size increases.

Direct solvers, especially LU factorization, are the predominant option in most power

system software. MATLAB uses a highly optimized LU factorization library, UMFPACK,

to solve large, sparse, linear systems [67]. In order to compare our developed algorithm

and implementation with the state-of-art direct linear solvers, the process time of the

MATLAB linear solver is given in Table 6.7. The process time of the GPU algorithm
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Table 6.5: A Comparison of the Processing Time of the GPU-Based and CPU-Based

BiCG-STAB solver

Matrix BiCG BiCG Speed-up

Name Time CPU(ms) Time GPU(ms) GPU vs CPU

30-Bus 1.6 1.9 0.84

57-Bus 7.1 5.3 1.34

118-Bus 12.3 11.6 1.06

300-Bus 26.8 25.4 1.06

494-Bus 44.8 35.1 1.28

685-Bus 44.13 33.8 1.31

EU case 136.6 101.9 1.34

bcsstk14 345.3 193.1 1.79

bcsstk15 2553.1 263.7 9.68

Table 6.6: A Comparison of the Processing Time of the GPU-Based and CPU-Based

Linear Solver (Chebyshev Preconditioned BiCG-STAB solver)

Matrix Solver Solver Speed-up

Name Time CPU(ms) Time GPU(ms) GPU vs CPU

30-Bus 1.87 2.37 0.79

57-Bus 7.78 6.55 1.18

118-Bus 13.85 13.9 0.99

300-Bus 34.49 31.87 1.08

494-Bus 64.5 43.16 1.49

685-Bus 88.23 47.52 1.85

EU case 260.8 122.93 2.19

bcsstk14 607.5 226.56 2.68

bcsstk15 3144.2 329.88 9.53
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is included for comparison, including both the Chebyshev and BiCG-STAB calculations.

For larger systems, the process time of the GPU is comparable to the highly optimized

direct solver on the CPU which proves the GPU is capable of accelerating computationally

demanding power system analyses. Also, GPU code does not have to be re-optimized

as more SPs are added, provided the system remains large enough to allow for global

memory accesses to be hidden.

Table 6.7: Comparison of MATLAB’s Direct Linear Solver on CPU and Iterative Linear

Solver on GPU

Matrix Size GPU MATLAB

Name Solver (ms) Solver (ms)

30-Bus 30 2.37 0.33

57-Bus 57 6.55 0.67

118-Bus 118 13.9 1.61

300-Bus 300 31.87 4.94

494-Bus 494 43.16 7.74

685-Bus 685 47.52 19.68

EU case 1243 122.93 89.13

bcsstk14 1806 226.56 205.72

bcsstk15 3948 329.88 537.04

6.5 Data Transfer Between CPU and GPU

The GPU can only process the data which is available on the GPU’s global memory. If

the input data is initially in CPU memory, it must first be copied to the GPU’s global

memory. In the same way, the results of GPU processing are initially available in the

GPU’s global memory. To use this result in CPU software, it is necessary to transfer it

to the CPU. The matrices are copied in CSR sparse format; therefore, only the non-zero
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elements, pointer vector, and index vector are transferred for each matrix. As mentioned

in Chapter 4, state-of-the-art GPUs and CPU are connected through a PCIe link. The

transfer time for each matrix used in the evaluation was calculated and the results are

shown in Table 6.8 and Table 6.9.

Table 6.8: Memory Transfer Time: CPU to GPU

Matrix Time Percent of Percent of

Name CPUtoGPU (ms) Chebyshev Time BiCG Time

30-Bus 0.026 5.53 1.36

57-Bus 0.028 2.24 0.52

118-Bus 0.028 1.21 0.24

300-Bus 0.038 0.58 0.14

494-Bus 0.039 0.48 0.11

685-Bus 0.043 0.31 0.12

EU case 0.053 0.25 0.05

bcsstk14 0.235 0.70 0.12

bcsstk15 0.395 0.59 0.14

Table 6.8 shows the transfer time required to copy each of the test matrices from

CPU memory to GPU memory. In the same way, Table 6.9 shows the transfer time

required to copy each of the test matrices from CPU memory to GPU memory. Also,

these transfer timings are compared to the process time of the Chebyshev preconditioner

and BiCG-STAB solver on GPU.

The transfer time is not included when calculating the speed-up in previous sections,

as the focus was on computation time. On the other hand, in many power system anal-

yses, the input data would remain on the GPU while computations are repeated. For

instance, in some variations of the Newton-Raphson method, e.g., FDLF or dc contin-

gency analysis, the coefficient matrix remains the same while the rhs vector is updated
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Table 6.9: Memory Transfer Time: GPU to GPU

Matrix Time Percent of Percent of

Name GPUtoCPU (ms) Chebyshev Time BiCG Time

30-Bus 0.031 6.59 1.63

57-Bus 0.034 2.72 0.64

118-Bus 0.034 1.47 0.29

300-Bus 0.041 0.63 0.16

494-Bus 0.045 0.59 0.13

685-Bus 0.048 0.34 0.14

EU case 0.058 0.27 0.05

bcsstk14 0.255 0.76 0.13

bcsstk15 0.442 0.66 0.16

in each iteration.

The memory transfer timings in Tables 6.8 and 6.9 show that the data-copy portion

of the Chebyshev preconditioner implementation is at most 6.59% percent of the total

processing time. For the BiCG-STAB solver, the data-copy is at most 1.6% of the

processing time. The ratio of data-copy time to the processing time decreases as the size

of the input matrix increases. For large matrices, the data-copy time should be minor in

comparison to the preconditioner and solver computation time.
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Conclusions and Future Work

An optimized, parallel linear solver for power system matrices that can take advantage

of the current generation of massively parallel processors has been implemented in this

research. The advantages of the GPU-based linear solver over CPU implementation has

been demonstrated. The thesis uses an efficient polynomial preconditioning technique

which favors the SIMD structure of GPUs. The preconditioner is capable of processing

large sparse matrices and performs well with ill-conditioned linear systems. The process

time of the preconditioner is comparable with the production-grade direct solver included

with MATLAB, and it has also shown good scalability for large matrices. The BiCG-

STAB iterative linear solver developed in this research is suitable for the large, sparse,

linear solvers encountered in power system analyses. The BiCG-STAB solver together

with the Chebyshev preconditioner form a powerful linear solver which is capable of

solving the ill-conditioned linear systems that occur during power system analysis. Based

on the performance results presented in Chapter 6, the preconditioned iterative linear

solver is competitive with state-of-the-art linear solvers used in industrial software and

likely to scale well with an increased number of streaming processors.

This work focused on the linear solver implementation and performance. Possible

future works includes both extensions and verification of the currently developed algo-
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rithms, as well as studies involving another power system analysis or computing platform:

• An important application of the linear solver is transient stability analysis. The

developed linear solver in this research could be used to implement a full transient

stability simulator. The ac power flow analysis is another application which can

benefit from the linear solver developed in this research.

• The wide variety of iterative linear solvers such as GMRES can be implemented on

the GPU and compared to the current implementation. Since the Krylov subspace

iterative linear solvers have similar computational needs at the kernel level (e.g.,

both BiCG and GMRES require optimized sparse matrix-vector products), the

kernels described in Chapter 5 could likely be re-purposed for a broader class of

sparse iterative solvers.

• Evaluate the compatibility of other computationally demanding analyses in power

systems such as dynamic programming and Monte Carlo analysis to the GPU ar-

chitecture.

• The algorithms implemented in this research are easily adaptable to future proces-

sors that are likely to have even more cores (e.g., the new generation of NVIDIA

GPUs, Fermi, has up to 480 core which is twice as much as the GPU used in this

research). Future work could investigate the scalability of the implementation to

newer GPUs and portability to other parallel platforms (such as FPGAs and CELL

processors) in power system analysis.



Appendix A

Gauss-Jacobi and Gauss-Seidel

Algorithms

The key idea behind the G-J and G-S methods is to split the coefficient matrix into

strictly lower triangular, strictly upper triangular and a diagonal matrices D.

A = Ls +D + Us (A.1)

The subscript s is used to clarify the difference between the strictly triangular matrices

Ls and Us and the L and U factors of LU decomposition. The linear system of (3.1) then

becomes

(Ls +D + Us)x = b (A.2)

The G-J uses the following form

Dx = b− (Ls + Us)x (A.3)

If both side of (A.3) are multiplied by the inverse of the diagonal matrix, the following

form is obtained

x = D−1b−D−1(Ls + Us)x (A.4)
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The G-J method starts with an initial guess for the solution x0 and updates the solution

in every iteration k by calculating

xk+1 = D−1b−D−1(Ls + Us)xk (A.5)

The G-J method is given in Algorithm 11.

Algorithm 11 Gauss Jacobi Linear Solver method

1: Choose an initial solution x(0), Set k = 1

2: while not converged do

3: for i = 1 to n do

4: x̄i = 0

5: for j = 1 to i− 1 and j = i+ 1 to n do

6: x̄i = x̄i + ai,jx(k−1)j

7: end for

8: x̄i = (bi − x̄i)/ai,i

9: end for

10: x(k) = x̄i

11: Check convergence; Increment k.

12: end while

In order to form the G-S method, the (A.2) is put in the following form

(D + Ls)x = b− Usx (A.6)

Both sides are multiplied with the inverse of the (Ls +D) matrix to obtain

x = (Ls +D)−1b− (Ls +D)−1Usx (A.7)

Similar to G-J method, the G-S method starts with an initial guess for the solution x0

and updates the solution in every iteration k by calculating

xk+1 = (Ls +D)−1b− (Ls +D)−1(Ls + Us)xk (A.8)
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Algorithm 12 Gauss Seidel Linear Solver method

1: Choose an initial solution x(0), Set k = 1

2: while not converged do

3: for i = 1 to n do

4: σ = 0

5: for j = 1 to i− 1 do

6: σ = σ + ai,jx(k−1)j

7: end for

8: for j = i+ 1 to n do

9: σ = σ + ai,jx(k−1)j

10: end for

11: x(k)i = (bi − σ)/ai,i

12: end for

13: Check convergence; Increment k.

14: end while

The G-S method is given in Algorithm 12. In the G-S algorithm, the previously com-

puted results are used as soon as they are available. Therefore updates can not be done

simultaneously and the algorithm is serial in each iteration.
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GPU Programming Example: Dense

Vector Multiplication

In this section, a simple GPU kernel is described in order to illustrate how the CUDA

architecture is used. More complicated kernels are described in the implementation

chapter. The kernel described here takes two same size vectors and multiplies each

element in the first vector by its corresponding element in the second vector. The kernel

behavior is illustrated in Figure B.1.

a1 a2 a3 a4 aN.  .  .Vector_A

Vector_B

Result

b1 b2 b3 b4 bN.  .  .

a1b1 a2b2 a3b3 a4b4 aNbN.  .  .

Multiplication 

Kenel

Figure B.1: Vector multiplication: Each element in the first vector is multiplied by its

corresponding entry in the second vector
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The first step is to allocate enough memory space on device memory for each vector.

This is accomplished with the CudaMalloc instruction

float *d_vector_A; cudaMalloc( (void**) &d_vector_A,(sizeof(

float)*N) );

d_vector_A specifies the location of the first element of the vector. Note that the size of

allocated memory is defined explicitly by measuring the size of a floating point variable

and multiplying it by the size of vector A. The next step is to copy the contents of

the vector to the GPU’s global memory. This is performed by executing the following

command

cudaMemcpy( d_vector_A, h_vector_A, (sizeof( float)*N),

cudaMemcpyHostToDevice);

cudaMemcpy( d_vector_B, h_vector_B, (sizeof( float)*N),

cudaMemcpyHostToDevice);

The variables d_vector_A and h_vector_A specify the location of the first element of the

vector on device and host memory, respectively. The same convention is used for the rest

of the variables, that is d_ denotes the device memory and h_ denotes the host memory.

The size of the copied data is also defined explicitly. cudaMemcpyHostToDevice specifies

that data is to be copied from host memory to device memory. The vector d_vector_B

is copied to GPU memory in the same way as d_vector_A. Now that the data is on the

GPU’s memory, the kernel is executed

vectorAdd<<< grid, block >>> (vector_A, vector_B);

The execution configuration is defined in <<<>>> notation. The grid dimensions are

defined by grid and the block dimension is defined by block. After the execution

is complete, the result can be copied back to host memory by using the cudaMemcpy

command.
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cudaMemcpy( h_result, d_vector_A, (sizeof( float)*N),

cudaMemcpyDeviceToHost);

It is not always necessary to copy the result back to host memory. For example, inter-

mediate results in a multi-step algorithm can remain on the GPU’s global memory and

used in subsequent kernels. If a set of data is no longer needed on global memory, the

memory space can be freed up with a call to cudaFree.

cudaFree(d_vector_A)

An example of kernel code to perform the operation is

__global__ void vectroAdd(float*A, float*B)

{

int thread_id = blockIdx.x*blockDim.x + threadIdx.x;

if (thread_id < N) A[thread_id] = A[thread_id] * B[thread_id];

__syncthreads();

}

__global__ specifies that the kernel will be executed on the GPU. The reserved keyword

blockDim holds the number of threads in every dimension of the block as specified in

the execution call vectorAdd<<< grid, block >>>. One dimensional blocks are used

in this kernel; therefore, blockDim.x returns the number of threads in each block and

blockDim.y and blockDim.z are equal to one. Blocks in a grid have a unique index and

all threads in a thread block can access this index through blockIdx. In addition, every

thread in a block has a specific index. This index is accessible through the threadIdx

keyword. The first line in the kernel code will result in a globally unique number when

executed on each thread. Using its unique index thread_id into the vector output, each

thread will perform on the vector elements specified by this number. The next line in

kernel code performs the multiplications with an overrun check. Since each thread_id
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refers to a unique element in the output vector, each element is calculated by a different

thread. In this kernel, the number of threads have to be equal or more than the number

of elements in vectors to ensure that calculation in performed on all elements. However,

threads with thread_id larger than N must remain idle to avoid manipulating the data

out of desired range (similar to pointer offset checks in C). The __syncthreads() call

ensures that all threads reach a specific point before further computation is performed.

In this case, all threads must finish calculation before the result is copied back to host

memory.
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GPU Kernels Code

The GPU kernels code is include in this section.

////////////////////////////////////////////////////////////////////////////////
// Kernel 1: norm of a vector
////////////////////////////////////////////////////////////////////////////////

__global__ void
bicg_kernel1( int size,

float * vector,
float * coeff,

float * scan,
int num1)

{
__shared__ float s_vector[k1_BLOCK_SIZE];
__shared__ float sdata[k1_BLOCK_SIZE];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
//const int thread_lane = threadIdx.x & WARP_SIZE; // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

s_vector[threadIdx.x] = vector[thread_id];
if ( thread_id >= size ) s_vector[threadIdx.x] = 0;

sdata[threadIdx.x] = s_vector[threadIdx.x] * s_vector[threadIdx.x];

// reduce local sums to row sum (ASSUME: warpsize 32)
if (threadIdx.x < 64) { sdata[threadIdx.x] += sdata[threadIdx.x + 64]; __syncthreads();}
if (threadIdx.x < 32) { sdata[threadIdx.x] += sdata[threadIdx.x + 32]; __syncthreads();}
if (threadIdx.x < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; __syncthreads();}
if (threadIdx.x < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; __syncthreads();}
if (threadIdx.x < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; __syncthreads();}
if (threadIdx.x < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; __syncthreads();}
if (threadIdx.x < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; __syncthreads();}

// first thread writes warp result
if (threadIdx.x == 0){

//for (int i=1; i<8;i++)
//sdata[threadIdx.x] += sdata[WARP_SIZE * i];

scan[blockIdx.x] = sdata[threadIdx.x];
//coeff[1] = blockDim.x;

}

__syncthreads();

if (blockIdx.x == 1){

sdata[threadIdx.x] = scan[threadIdx.x];

83



Appendix C. GPU Kernels Code 84

if ( threadIdx.x >= gridDim.x ) sdata[threadIdx.x] = 0;

// reduce local sums to row sum (ASSUME: warpsize 32)
if (threadIdx.x < 64) { sdata[threadIdx.x] += sdata[threadIdx.x + 64]; __syncthreads();}
if (threadIdx.x < 32) { sdata[threadIdx.x] += sdata[threadIdx.x + 32]; __syncthreads();}
if (threadIdx.x < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; __syncthreads();}
if (threadIdx.x < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; __syncthreads();}
if (threadIdx.x < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; __syncthreads();}
if (threadIdx.x < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; __syncthreads();}
if (threadIdx.x < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; __syncthreads();}

// first thread writes warp result
if (threadIdx.x == 0){

//for (int i=1; i<8;i++)
//sdata[threadIdx.x] += sdata[WARP_SIZE * i];

coeff[num1] = sdata[threadIdx.x];
//coeff[1] = gridDim.x;

}
}

}

/* Copyright 2008 NVIDIA Corporation. All Rights Reserved */
//////////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a vector model (one warp per row)
//////////////////////////////////////////////////////////////////////////////

__global__ void
bicg_kernel2(const int num_rows,

const int * ptr,
const int * indice,
const float * data,
const float * x,

float * y)
{

__shared__ float sdata[k2_BLOCK_SIZE];
__shared__ int ptrs[k2_BLOCK_SIZE/WARP_SIZE][2];

const int thread_id = k2_BLOCK_SIZE * blockIdx.x + threadIdx.x; // global thread index
const int thread_lane = threadIdx.x & (WARP_SIZE-1); // thread index within the warp
const int warp_id = thread_id / WARP_SIZE; // global warp index
const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
const int num_warps = (BLOCK_SIZE / WARP_SIZE) * gridDim.x; // total number of active warps

for(int row = warp_id; row < num_rows; row += num_warps){
// use two threads to fetch ptr[row] and ptr[row+1]
// this is considerably faster than the more straightforward option
if(thread_lane < 2)

ptrs[warp_lane][thread_lane] = ptr[row + thread_lane];
const int row_start = ptrs[warp_lane][0];
const int row_end = ptrs[warp_lane][1];

// compute local sum
sdata[threadIdx.x] = 0;
for(int jj = row_start + thread_lane; jj < row_end; jj += WARP_SIZE)

sdata[threadIdx.x] += data[jj] * x[indice[jj]]; //fetch_x<UseCache>(indice[jj], x);

// reduce local sums to row sum (ASSUME: warpsize 32)
if (thread_lane < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; EMUSYNC; }
if (thread_lane < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; EMUSYNC; }
if (thread_lane < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; EMUSYNC; }
if (thread_lane < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; EMUSYNC; }
if (thread_lane < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; EMUSYNC; }

// first thread writes warp result
if (thread_lane == 0)

y[row] += sdata[threadIdx.x];
}

}
////////////////////////////////////////////////////////////////////////////////
// Kernel 3: y = Z * x based on scalar method
////////////////////////////////////////////////////////////////////////////////
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__global__ void
scalar_spmv_kernel(const int num_rows,

const int * Zptr,
const int * Zindice,
const float * Zdata,
const float * x,
float * y)

{

// row index
const int row = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
float sum;// = TK2[row];// it is tk2+= A*tk1
if(row < num_rows){

const int row_start = Zptr[row];
const int row_end = Zptr[row+1];

//const int col_start = Zptr[col_num];
//const int col_end = Zptr[col_num+1];

for (int jj = row_start; jj < row_end; jj++){
sum += Zdata[jj] * x[Zindice[jj]];

}
}

y[row] = sum;
}

void scalar_spmv_kernel_device(const int d_num_rows,
const int * d_Zptr,
const int * d_Zindice,
const float * d_Zdata,
const float * d_x, float * d_y)

{
const unsigned int BLOCKSIZE = 256;
const unsigned int NUM_BLOCKS = iDivUp(d_num_rows, BLOCK_SIZE);;

scalar_spmv_kernel <<<NUM_BLOCKS, BLOCKSIZE>>>
(d_num_rows, d_Zptr, d_Zindice, d_Zdata, d_x, d_y);

}
////////////////////////////////////////////////////////////////////////////////
// Kernel 3: dot product of two vector
//////////////////////////////////////////////////////////////////////////////

__global__ void
bicg_kernel3( int size,

float * vector1,
float * vector2,
float * coeff,

float * scan,
int num1)

{
__shared__ float s_vector1[k1_BLOCK_SIZE];
__shared__ float s_vector2[k1_BLOCK_SIZE];
__shared__ float sdata[k1_BLOCK_SIZE];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
//const int thread_lane = threadIdx.x & WARP_SIZE; // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

s_vector1[threadIdx.x] = vector1[thread_id];
s_vector2[threadIdx.x] = vector2[thread_id];

if ( thread_id >= size ) {s_vector1[threadIdx.x] = 0;s_vector2[threadIdx.x] = 0;}
sdata[threadIdx.x] = s_vector1[threadIdx.x] * s_vector2[threadIdx.x];

// reduce local sums to row sum (ASSUME: warpsize 32)
if (threadIdx.x < 64) { sdata[threadIdx.x] += sdata[threadIdx.x + 64]; __syncthreads();}
if (threadIdx.x < 32) { sdata[threadIdx.x] += sdata[threadIdx.x + 32]; __syncthreads();}
if (threadIdx.x < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; __syncthreads();}
if (threadIdx.x < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; __syncthreads();}
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if (threadIdx.x < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; __syncthreads();}
if (threadIdx.x < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; __syncthreads();}
if (threadIdx.x < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; __syncthreads();}

// first thread writes warp result
if (threadIdx.x == 0){

//for (int i=1; i<8;i++)
//sdata[threadIdx.x] += sdata[WARP_SIZE * i];

scan[blockIdx.x] = sdata[threadIdx.x];
//coeff[1] = blockDim.x;

}

__syncthreads();

if (blockIdx.x == 1){

sdata[threadIdx.x] = scan[threadIdx.x];
if ( threadIdx.x >= gridDim.x ) sdata[threadIdx.x] = 0;

// reduce local sums to row sum (ASSUME: warpsize 32)
if (threadIdx.x < 64) { sdata[threadIdx.x] += sdata[threadIdx.x + 64]; __syncthreads();}
if (threadIdx.x < 32) { sdata[threadIdx.x] += sdata[threadIdx.x + 32]; __syncthreads();}
if (threadIdx.x < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; __syncthreads();}
if (threadIdx.x < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; __syncthreads();}
if (threadIdx.x < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; __syncthreads();}
if (threadIdx.x < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; __syncthreads();}
if (threadIdx.x < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; __syncthreads();}

// first thread writes warp result
if (threadIdx.x == 0){

//for (int i=1; i<8;i++)
//sdata[threadIdx.x] += sdata[WARP_SIZE * i];

coeff[num1] = sdata[threadIdx.x];
}

}

}

////////////////////////////////////////////////////////////////////////////////
// Kernel 3: product of two vector a.*b, for scaling a vector
//////////////////////////////////////////////////////////////////////////////

__global__ void
bicg_kernel31( int size,

float * vector1,
float * vector2,
float * vector3)

{
//__shared__ float s_vector1[k1_BLOCK_SIZE];
//__shared__ float s_vector2[k1_BLOCK_SIZE];
//__shared__ float sdata[k1_BLOCK_SIZE];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
//const int thread_lane = threadIdx.x & WARP_SIZE; // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

//s_vector1[threadIdx.x] = vector1[thread_id];
//s_vector2[threadIdx.x] = vector2[thread_id];

if ( thread_id < size )
vector3[thread_id] = vector1[thread_id] * vector2[thread_id];

}
////////////////////////////////////////////////////////////////////////////////
// Kernel 4: dot product of two vector, special for updating alpha
//////////////////////////////////////////////////////////////////////////////

__global__ void
bicg_kernel4( int size,

float * vector1,
float * vector2,
float * coeff,
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float * scan,
int num1)

{
__shared__ float s_vector1[k1_BLOCK_SIZE];
__shared__ float s_vector2[k1_BLOCK_SIZE];
__shared__ float sdata[k1_BLOCK_SIZE];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
//const int thread_lane = threadIdx.x & WARP_SIZE; // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

s_vector1[threadIdx.x] = vector1[thread_id];
s_vector2[threadIdx.x] = vector2[thread_id];

if ( thread_id >= size ) {s_vector1[threadIdx.x] = 0;s_vector2[threadIdx.x] = 0;}
sdata[threadIdx.x] = s_vector1[threadIdx.x] * s_vector2[threadIdx.x];

// reduce local sums to row sum (ASSUME: warpsize 32)
if (threadIdx.x < 64) { sdata[threadIdx.x] += sdata[threadIdx.x + 64]; __syncthreads();}
if (threadIdx.x < 32) { sdata[threadIdx.x] += sdata[threadIdx.x + 32]; __syncthreads();}
if (threadIdx.x < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; __syncthreads();}
if (threadIdx.x < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; __syncthreads();}
if (threadIdx.x < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; __syncthreads();}
if (threadIdx.x < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; __syncthreads();}
if (threadIdx.x < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; __syncthreads();}

// first thread writes warp result
if (threadIdx.x == 0){

//for (int i=1; i<8;i++)
//sdata[threadIdx.x] += sdata[WARP_SIZE * i];

scan[blockIdx.x] = sdata[threadIdx.x];
//coeff[1] = blockDim.x;

}

__syncthreads();

if (blockIdx.x == 1){

sdata[threadIdx.x] = scan[threadIdx.x];
if ( threadIdx.x >= gridDim.x ) sdata[threadIdx.x] = 0;

// reduce local sums to row sum (ASSUME: warpsize 32)
if (threadIdx.x < 64) { sdata[threadIdx.x] += sdata[threadIdx.x + 64]; __syncthreads();}
if (threadIdx.x < 32) { sdata[threadIdx.x] += sdata[threadIdx.x + 32]; __syncthreads();}
if (threadIdx.x < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; __syncthreads();}
if (threadIdx.x < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; __syncthreads();}
if (threadIdx.x < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; __syncthreads();}
if (threadIdx.x < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; __syncthreads();}
if (threadIdx.x < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; __syncthreads();}

// first thread writes warp result
if (threadIdx.x == 0){

//for (int i=1; i<8;i++)
//sdata[threadIdx.x] += sdata[WARP_SIZE * i];

coeff[2] = coeff[num1] / sdata[threadIdx.x];
}

}

}

////////////////////////////////////////////////////////////////////////////////
// Kernel 4: calculates vector3 = coeff[num1] * vector1 - coeff[num2] * vector2
////////////////////////////////////////////////////////////////////////////////

__global__ void
bicg_kernel5( int size,

float * vector1,
float * vector2,
float * vector3,
float * coeff,

int num1)
{

__shared__ float s_vector1[k1_BLOCK_SIZE];
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__shared__ float s_vector2[k1_BLOCK_SIZE];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
//const int thread_lane = threadIdx.x & WARP_SIZE; // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

s_vector1[threadIdx.x] = vector1[thread_id];
s_vector2[threadIdx.x] = vector2[thread_id];

int c = coeff[num1];
if ( thread_id <= size ) {vector3[thread_id] = s_vector1[thread_id] - c * s_vector2[thread_id];}

}
////////////////////////////////////////////////////////////////////////////////
// Kernel 6: dot product of two vector, special for updating omega
//////////////////////////////////////////////////////////////////////////////

__global__ void
bicg_kernel6( int size,

float * vector,
float * coeff,

float * scan,
int num1)

{
__shared__ float s_vector[k1_BLOCK_SIZE];
__shared__ float sdata[k1_BLOCK_SIZE];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
//const int thread_lane = threadIdx.x & WARP_SIZE; // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

s_vector[threadIdx.x] = vector[thread_id];
if ( thread_id >= size ) s_vector[threadIdx.x] = 0;

sdata[threadIdx.x] = s_vector[threadIdx.x] * s_vector[threadIdx.x];

// reduce local sums to row sum (ASSUME: warpsize 32)
if (threadIdx.x < 64) { sdata[threadIdx.x] += sdata[threadIdx.x + 64]; __syncthreads();}
if (threadIdx.x < 32) { sdata[threadIdx.x] += sdata[threadIdx.x + 32]; __syncthreads();}
if (threadIdx.x < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; __syncthreads();}
if (threadIdx.x < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; __syncthreads();}
if (threadIdx.x < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; __syncthreads();}
if (threadIdx.x < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; __syncthreads();}
if (threadIdx.x < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; __syncthreads();}

// first thread writes warp result
if (threadIdx.x == 0){

//for (int i=1; i<8;i++)
//sdata[threadIdx.x] += sdata[WARP_SIZE * i];

scan[blockIdx.x] = sdata[threadIdx.x];
//coeff[1] = blockDim.x;

}

__syncthreads();

if (blockIdx.x == 1){

sdata[threadIdx.x] = scan[threadIdx.x];
if ( threadIdx.x >= gridDim.x ) sdata[threadIdx.x] = 0;

// reduce local sums to row sum (ASSUME: warpsize 32)
if (threadIdx.x < 64) { sdata[threadIdx.x] += sdata[threadIdx.x + 64]; __syncthreads();}
if (threadIdx.x < 32) { sdata[threadIdx.x] += sdata[threadIdx.x + 32]; __syncthreads();}
if (threadIdx.x < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; __syncthreads();}
if (threadIdx.x < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; __syncthreads();}
if (threadIdx.x < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; __syncthreads();}
if (threadIdx.x < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; __syncthreads();}
if (threadIdx.x < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; __syncthreads();}

// first thread writes warp result
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if (threadIdx.x == 0){
//for (int i=1; i<8;i++)
//sdata[threadIdx.x] += sdata[WARP_SIZE * i];

coeff[3] = coeff[num1] / sdata[threadIdx.x];
}

}

}
////////////////////////////////////////////////////////////////////////////////
// Kernel 7: calculates vector3 += coeff[num1] * vector1 + coeff[num2] * vector2
////////////////////////////////////////////////////////////////////////////////

__global__ void
bicg_kernel7( int size,

float * vector1,
float * vector2,
float * vector3,
float * coeff,

int num1,
int num2)

{
__shared__ float s_vector1[k1_BLOCK_SIZE];
__shared__ float s_vector2[k1_BLOCK_SIZE];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
//const int thread_lane = threadIdx.x & WARP_SIZE; // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

s_vector1[threadIdx.x] = vector1[thread_id];
s_vector2[threadIdx.x] = vector2[thread_id];

int c1 = coeff[num1];
int c2 = coeff[num2];

if ( thread_id <= size ) {vector3[thread_id] += c1 * s_vector1[thread_id] - c2 * s_vector2[thread_id];}

}
__global__ void
bicg_kernel8( int size,

float * vector1,
float * vector2,
float * vector3,
float * coeff)

{
__shared__ float s_vector1[k1_BLOCK_SIZE];
__shared__ float s_vector2[k1_BLOCK_SIZE];
__shared__ float s_vector3[k1_BLOCK_SIZE];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
//const int thread_lane = threadIdx.x & WARP_SIZE; // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

s_vector1[threadIdx.x] = vector1[thread_id];
s_vector2[threadIdx.x] = vector2[thread_id];
s_vector3[threadIdx.x] = vector3[thread_id];

int beta = (coeff[0] * coeff[2] )/(coeff[1] * coeff[3]);
int zeta = beta * coeff[3] ;

if ( thread_id <= size ) {vector2[thread_id] = s_vector1[thread_id]
+ beta * s_vector2[thread_id] - zeta * s_vector3[thread_id];}

if ( thread_id == 0 ) {coeff[1] = coeff[0];}

}

////////////////////////////////////////////////////////////////////////////////‘
// In this kernel, one column of the final preconditioner is calculated
// The final result is: M = Sigma ( C[r] * T(K) , T(K) = 2 * Z * T(K-1) - T(K-2) )
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////////////////////////////////////////////////////////////////////////////////
__global__ void
SpMVMul_kernel(const int num_rows, const int col_num,
const int * Zptr, const int * Zindice, const float * Zdata,
float * M,float * TK1, float * TK2, float * C)

{

__shared__ float partial[16];
__shared__ float z[16];

const int row = blockIdx.x; //(blockDim.x * blockIdx.x + threadIdx.x);

if(row < num_rows){
//float sum = 0;
//int dense_flag = 0;

int Zrow_start = Zptr[row];
int Zrow_end = Zptr[row+1];

z[threadIdx.x] = 0;
if (threadIdx.x < (Zrow_end-Zrow_start)) z[threadIdx.x] = Zdata[threadIdx.x + Zrow_start];

//int col_start = vec1_ptr[col_num];
//int col_end = vec1_ptr[col_num+1];

int r=0;
for (r=0; r<2; r++){

partial[threadIdx.x] = z[threadIdx.x] * TK1[Zindice[threadIdx.x + Zrow_start]];

// now we add up all partial multiplication results
if (threadIdx.x < 16) partial[threadIdx.x] += partial[threadIdx.x + 16];
if (threadIdx.x < 8) partial[threadIdx.x] += partial[threadIdx.x + 8];
if (threadIdx.x < 4) partial[threadIdx.x] += partial[threadIdx.x + 4];
if (threadIdx.x < 2) partial[threadIdx.x] += partial[threadIdx.x + 2];
if (threadIdx.x < 1) partial[threadIdx.x] += partial[threadIdx.x + 1];

if (threadIdx.x == 0){
float m = 2 * partial[threadIdx.x] - TK2[row];
M[row] += C[r] * m;
TK1[row] = m;
TK2[row] = TK2[row];
}

__syncthreads();
}

}
}

__global__ void
formM3_kernel(const int num_rows,

const int col_num,
const float * Z,
const float * TK1,
const float * TK2,
const float * C,

float * M,
float * dense_ptr)

{
__shared__ float sC[BLOCK_SIZE/WARP_SIZE][4];
__shared__ float sM[BLOCK_SIZE];
const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
const int thread_lane = threadIdx.x & (WARP_SIZE-1); // thread index within the warp
//const int warp_id = thread_id / WARP_SIZE; // global warp index
const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

if(thread_lane < 4)
sC[warp_lane][thread_lane] = C[thread_lane];

if (thread_id < num_rows)
sM[threadIdx.x] = sC[warp_lane][1] * Z[thread_id] + sC[warp_lane][2] * TK1[thread_id]

+ sC[warp_lane][3] * TK2[thread_id];
if ( (sM[threadIdx.x]) && (thread_id < num_rows) ){
dense_ptr[thread_id] = 1;
M[thread_id] = sM[threadIdx.x];}
if (thread_id == 0)

M[col_num] += sC[warp_lane][0];
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}
void formM3_kernel_device(const int d_num_rows,

const int d_col_num,
const float * d_Z,
const float * d_TK1,
const float * d_TK2,
const float * d_C,

float * d_M,
float * d_dense_ptr)

{
const unsigned int BLOCKSIZE = 256;
const unsigned int NUM_BLOCKS = iDivUp(d_num_rows,BLOCKSIZE);

formM3_kernel <<<NUM_BLOCKS, BLOCKSIZE>>>
(d_num_rows, d_col_num, d_Z, d_TK1, d_TK2, d_C, d_M, d_dense_ptr);

}
__global__ void
formM_kernel(const int num_rows,

const float * Z2,
const float * Z3,
const float * C,

float * M)
//float * dense_ptr)

{
__shared__ float sC[BLOCK_SIZE/WARP_SIZE][4];
const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
const int thread_lane = threadIdx.x & (WARP_SIZE-1); // thread index within the warp
const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
//const int warp_id = thread_id / WARP_SIZE; // global warp index
//const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

if(thread_lane < 4)
sC[warp_lane][thread_lane] = C[thread_lane];

if(thread_id < num_rows){
M[thread_id] = sC[warp_lane][2] * Z2[thread_id] + sC[warp_lane][3] * Z3[thread_id];
}

}
void formM_kernel_device(const int d_num_rows,

const float * d_Z2,
const float * d_Z3,
const float * d_C,

float * d_M)
{

const unsigned int BLOCKSIZE = 256;
const unsigned int NUM_BLOCKS = iDivUp(d_num_rows,BLOCKSIZE);

formM_kernel <<<NUM_BLOCKS, BLOCKSIZE>>>
(d_num_rows, d_Z2, d_Z3, d_C, d_M);

}
////////////////////////////////////////////////////////////////////////////////
// In this kernel the initial Z matrix is formed
////////////////////////////////////////////////////////////////////////////////

__global__ void
formZ_kernel(const int num_rows,

const int col_num,
const int * Zptr_c,
const int * Zindice_c,
const float * Zdata_c,
const float * coeff,

float * Z)
{

__shared__ int ptrs[2];
const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index

if(thread_id < 2)
ptrs[thread_id] = Zptr_c[col_num + thread_id];

const int row_start = ptrs[0]; //same as: row_start = Zptr[row];
const int row_end = ptrs[1]; //same as: row_end = Zptr[row+1];

const int jj = thread_id + row_start;
const int indice = Zindice_c[jj];
const float coeff1 = coeff[0];
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const float coeff2 = coeff[1];
if (jj < row_end)

Z[indice] += coeff1 * Zdata_c[jj];
if (thread_id == 0)

Z[col_num] += coeff2;
}
void formZ_kernel_device(const int d_num_rows,

const int d_col_num,
const int * d_Zptr_c,
const int * d_Zindice_c,
const float * d_Zdata_c,

const float * d_coeff,
float * d_Z)

{
const unsigned int BLOCKSIZE = WARP_SIZE;
const unsigned int NUM_BLOCKS = 1;

formZ_kernel <<<NUM_BLOCKS, BLOCKSIZE>>>
(d_num_rows, d_col_num, d_Zptr_c, d_Zindice_c, d_Zdata_c, d_coeff, d_Z);

}

////////////////////////////////////////////////////////////////////////////////
// Sparse Matrix Multiplication
////////////////////////////////////////////////////////////////////////////////

__global__ void
third_spmv_kernel(const int num_rows,

const int col_num,
const int * Zptr,
const int * Zindice,
const float * Zdata,
float * Z2)

{

const int row = blockDim.x * blockIdx.x + threadIdx.x; // global thread index

if(row < num_rows){
float sum;// = TK2[row];// it is tk2+= A*tk1

const int row_start = Zptr[row];
const int row_end = Zptr[row+1];

const int col_start = Zptr[col_num];
const int col_end = Zptr[col_num+1];

for (int jj = row_start; jj < row_end; jj++){
for (int kk = col_start; kk < col_end; kk++){
if (Zindice[jj] == Zindice[kk])
sum += Zdata[jj] * Zdata[kk];

}
}

Z2[row] = sum;
}

}

void third_spmv_kernel_device(const int d_num_rows,const int d_col_num,
const int * d_Zptr,
const int * d_Zindice,
const float * d_Zdata,
float * d_Z2)

{
const unsigned int BLOCKSIZE = 256;
const unsigned int NUM_BLOCKS = iDivUp(d_num_rows, BLOCK_SIZE);;

third_spmv_kernel <<<NUM_BLOCKS, BLOCKSIZE>>>
(d_num_rows,d_col_num, d_Zptr, d_Zindice, d_Zdata, d_Z2);

}

__global__ void
second_spmv_kernel(const int num_rows,

const int * Zptr,
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const int * Zindice,
const float * Zdata,
const float * TK1,

float * TK2)
{

__shared__ float sdata[BLOCK_SIZE];
__shared__ int ptrs[BLOCK_SIZE/WARP_SIZE][2];

const int thread_id = blockDim.x * blockIdx.x + threadIdx.x; // global thread index
const int thread_lane = threadIdx.x & (WARP_SIZE-1); // thread index within the warp
const int warp_id = thread_id / WARP_SIZE; // global warp index
const int warp_lane = threadIdx.x / WARP_SIZE; // warp index within the CTA
const int num_warps = (blockDim.x / WARP_SIZE) * gridDim.x; // total number of active warps

for(int row = warp_id; row < num_rows; row += num_warps){
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the more straightforward option
if(thread_lane < 2)

ptrs[warp_lane][thread_lane] = Zptr[row + thread_lane];
const int row_start = ptrs[warp_lane][0]; //same as: row_start = Zptr[row];
const int row_end = ptrs[warp_lane][1]; //same as: row_end = Zptr[row+1];

// compute local sum
sdata[threadIdx.x] = 0;
for(int jj = row_start + thread_lane; jj < row_end; jj += WARP_SIZE)

sdata[threadIdx.x] += Zdata[jj] * TK1[Zindice[jj]];//fetch_x<UseCache>(Zindice[jj], TK1);

// reduce local sums to row sum (ASSUME: warpsize 32)
if (thread_lane < 16) { sdata[threadIdx.x] += sdata[threadIdx.x + 16]; EMUSYNC; }
if (thread_lane < 8) { sdata[threadIdx.x] += sdata[threadIdx.x + 8]; EMUSYNC; }
if (thread_lane < 4) { sdata[threadIdx.x] += sdata[threadIdx.x + 4]; EMUSYNC; }
if (thread_lane < 2) { sdata[threadIdx.x] += sdata[threadIdx.x + 2]; EMUSYNC; }
if (thread_lane < 1) { sdata[threadIdx.x] += sdata[threadIdx.x + 1]; EMUSYNC; }

// first thread writes warp result
if (thread_lane == 0)

TK2[row] = sdata[threadIdx.x];
}

}

void second_spmv_kernel_device(const int d_num_rows,
const int * d_Zptr,
const int * d_Zindice,
const float * d_Zdata,
const float * d_Tk1,

float * d_Tk2)
{

const unsigned int BLOCKSIZE = 256;
const unsigned int NUM_BLOCKS = MAX_THREADS/BLOCKSIZE;

second_spmv_kernel <<<NUM_BLOCKS, BLOCKSIZE>>>
(d_num_rows, d_Zptr, d_Zindice, d_Zdata, d_Tk1, d_Tk2);

}
void second_spmv_kernel_tex_device(const int d_num_rows,

const int * d_Zptr,
const int * d_Zindice,
const float * d_Zdata,
const float * d_TK1,

float * d_TK2)
{

const unsigned int BLOCKSIZE = 256;
const unsigned int NUM_BLOCKS = MAX_THREADS/BLOCKSIZE;

bind_x(d_TK1);

second_spmv_kernel <<<NUM_BLOCKS, BLOCKSIZE>>>
(d_num_rows, d_Zptr, d_Zindice, d_Zdata, d_TK1, d_TK2);

unbind_x(d_TK1);
}
__global__ void
first_spmv_kernel(const int num_rows,

const int * Zptr,
const int * Zindice,
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const float * Zdata,
const float * TK1,

float * TK2)
{

// row index
const int row = blockDim.x * blockIdx.x + threadIdx.x; // global thread index

if(row < num_rows){
float sum;// = TK2[row];// it is tk2+= A*tk1

const int row_start = Zptr[row];
const int row_end = Zptr[row+1];

for (int jj = row_start; jj < row_end; jj++){
sum += Zdata[jj] * TK1[Zindice[jj]];;

}

TK2[row] = sum;
}

}

void first_spmv_kernel_device(const int d_num_rows,
const int * d_Zptr,
const int * d_Zindice,
const float * d_Zdata,
const float * d_Tk1,

float * d_Tk2)
{

const unsigned int BLOCKSIZE = 256;
const unsigned int NUM_BLOCKS = iDivUp(d_num_rows, BLOCK_SIZE);;

first_spmv_kernel <<<NUM_BLOCKS, BLOCKSIZE>>>
(d_num_rows, d_Zptr, d_Zindice, d_Zdata, d_Tk1, d_Tk2);

}

////////////////////////////////////////////////////////////////////////////////
// This kernel transform a dense vector into a sparse vector
//////////////////////////////////////////////////////////////////////////////
__global__ void
Dens2Sp_kernel( int col_size,

int col_num,
float * scan_ptr,
float * dense_data,
int * indice,
float * data,
int * ptr)

{
__shared__ unsigned int s_scan_ptr[D2S_BLOCK_SIZE];

const unsigned int row = (blockDim.x * blockIdx.x + threadIdx.x);
unsigned int data_num = ptr[col_num];// num data so far, pointer vector should be zero for the first time

if ( row < col_size){
s_scan_ptr[threadIdx.x] = scan_ptr[row];
float not_zero = s_scan_ptr[threadIdx.x+1] - s_scan_ptr[threadIdx.x];

if (not_zero){
unsigned int nnz_so_far = s_scan_ptr[threadIdx.x+1] + data_num;//

data[nnz_so_far] = dense_data[row];
indice[nnz_so_far] = row;

}
if (row == (col_size-1) ){
ptr[col_num + 1] = data_num + scan_ptr[row];
}

}
}

void Dens2Sp_device( int d_col_size,
int d_col_num,
float * d_scan_ptr,
float * d_dense_data,
int * d_indice,
float * d_data,
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int * d_ptr)
{

const unsigned int BLOCKSIZE = D2S_BLOCK_SIZE;
const unsigned int NUM_BLOCKS = iDivUp(d_col_size, BLOCKSIZE);
dim3 grid( NUM_BLOCKS, 1, 1);
dim3 threads( BLOCKSIZE, 1, 1);
Dens2Sp_kernel<<<NUM_BLOCKS,BLOCKSIZE>>>
(d_col_size, d_col_num, d_scan_ptr,d_dense_data,
d_indice,d_data,d_ptr);

CUT_CHECK_ERROR("Kernel execution failed");

}
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