Implementing Computer Vision Algorithms for
Autonomous UAV Applications

Sean R. Stockholm
Division of Science and Mathematics
University of Minnesota, Morris
Morris, Minnesota, USA 56267
stock424@morris.umn.edu

ABSTRACT

The tracking of moving objects over a large area can be time
consuming and expensive. An increasingly popular solution
to this is the use of unmanned aerial vehicles (UAVs) with
cameras which are capable of navigation and tracking. This
paper is about new uses for drones, and methods for their
control and navigation. UAVs used are often small quad-
copters 1. These UAVs can fly easily through areas humans
could not easily navigate, using computer vision to gather
data about these areas. There has been a rapid increase
in the number of applications for drones equipped with vi-
sion systems. The applications surveyed are the tracking
of ships and locating of wild fawns. This has impacts on
many different areas from wildlife to drug trafficking. This
rapid increase has also lead to the increased implementation
of algorithms which are useful in image processing; one we
will survey is a signal filtering algorithm called the Kalman
filter.

Keywords

Drones,Computer Vision

1. INTRODUCTION

The tracking of moving objects over a large area can be
time consuming and expensive. An increasingly popular so-
lution to this is the use of unmanned aerial vehicles (UAVs)
with cameras which are capable of navigation and tracking.
UAVs used are often small quadcopters. These UAVs can
fly through areas humans could not easily navigate. The pa-
pers surveyed all use UAVs equipped with thermal cameras
and GPS systems to track objects based on their thermal
characteristics.

Israel [2] uses drones to detect deer fawn, which often sleep
in pastures. Fawns have little scent in the beginning of their

LQuadcopters, octocopters, etc. are similar to helicopters,
but have 4, 8 or whatever the prefix implies small propellers,
instead of one large propeller.

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

UMM CSci Senior Seminar Conference, March 2016 Morris, MN.

life, so they cannot be found with dogs. Additionally their
instinct is to not move at all, unless their mother says so, so
loud noises will not cause them to relocate. Since they are
difficult to detect they are often accidentally killed during
the mowing of pastures. While it is unfortunate to kill a
fawn, dealing with the corpse quickly becomes an issue. It is
far easier to relocate a fawn before mowing it. Additionally
a rotting fawn ruins the nearby grass and makes it unusable
as hay. The researcher made an app based on the Google
Maps API, in which a farmer can draw a path through their
field that the drone will follow searching for sleeping fawns,
and notifying the farmer of their location. The farmer can
then manually relocate them.

Liera et al. [3] use a low cost fixed-wing UAV with a
forward facing thermal camera to classify and track objects
on the surface of the ocean. There is great interest in this
because of its potential uses in border control, namely smug-
gling of drugs. In section 4 we describe methods of identi-
fying boats. Next we explain how they handle the tracking
of boats using a signal filtering algorithm called the Kalman
filter.

Ward et al. [6] describes the use of drones in monitor-
ing wildlife and feral animals. It uses methods similar to
those employed by Leira et al.[3] and Israel[2]. Ward also
incorporates GPS tracking of the operator of the drone, so
that the drone can follow the operator, but this aspect of
the application is outside the scope of this paper. Ward also
implemented the Kalman filter for tracking, but does not go
into any detail on his implementation.

2. TECHNICAL OVERVIEW

We will start by describing the hardware used by Israel[2],
walking through a system diagram and discussing the tech-
nologies aboard his drone. Because of similarities between
drones used, we will only describe the drone system used by
this research paper. Israel captures and processes images
used for fawn detection. We will make use of a visible light
camera to illustrate process of detecting objects. Leira et
al., Israel and Ward have very similar system architectures
and utilize similar computer vision techniques.

Ward and Leira et al. go a step farther implementing
signal filtering with the Kalman filter as was applied by both
Israel and Ward. Making use make use of a simple one-
dimensional example to illustrate the main ideas that make
the Kalman Filter, we will explore the application of the
Kalman Filter by Leira et al.

3. HARDWARE SYSTEMS

The drone deployed by Israel was an octocopter[2], as
shown in figure 2. Images are taken with a downwards facing
thermal camera, and image processing was done on a small
single board computer, similar to a Raspberry Pi. Motor
control is handled by a dedicated controller, which contained
an on-board GPS. The drone can be flown manually, or along
a path provided to it. Information about the drones heading
and location are also sent to on board computer.

Fawn Detection System Drone Ground Control
Controller
Thermal Video Video

/ Camera Transmitter 7] Receiver —1 Monitor

S N Capture
Grabber Software 4 Reciever =

1
X

Transmitter [~ Human

/ I —

Patt S
attern Filght)
Recognition Controller e gzmg‘r’;

Figure 1: system architecture diagram

Figure 1 depicts the system architecture diagram for the
drone used by Israel. They use the data from the thermal
camera that is sent both to the ground, and to the computer
vision system on board. We will discuss the computer vision
in section 4. The video feed sent to the ground control is
viewable on a monitor.

Being able to view the thermal camera footage from the
ground allows the pilot to manually search for fawns. This
also gives them the ability to process the thermal camera
footage on a more powerful computer, as they did in earlier
research. The reason they changed to processing the video
data on the drone has to do with the cost effectiveness of us-
ing a smaller computer, and the convenience of not needing
to bring a larger computer to the field to search for fawn.

For safety reasons, the drone cannot be operated com-
pletely autonomous, so a transmitter, receiver, and pilot
were still necessary for this research.

4. VISION

All research described in this paper performs image pro-
cessing on an images from a thermal camera. For our exam-
ples we replicate this with a visible light camera. This allows
us to apply computer vision techniques similar to those used
in the sources. The camera is connected to a Raspberry Pi
doing the image processing. The Raspberry Pi is similar in
computational power, and power consumption to those used
by the sources. Installed on it is an open source computer
vision package called OpenCV[4]. OpenCV was also used by
Liera et al.[3] for their vision processing.

This section walks you through how vision processing is
done on a Raspberry Pi on a drone. We will be utilizing a
computer vision setup I created which has several similari-
ties to the ones used in my references. For demonstration,
we are using a visible spectrum camera instead. We will
treat image’s greenness as though it is heat. Israel[2] used

Figure 2: drone deployed by Israel[2]

unnamed software to do pattern recognition on the images,
searching for fawn based on size.

Grass can obscure the presence of the fawn, so flying
higher lets the drone more easily peer down between the
blades of grass. Because of this, the combination of down-
wards facing thermal camera and drone is highly potent.
Unfortunately the higher the drone flies, the less pixels the
fawn occupies in the image captured. As result, the size re-
quirements for a fawn scale with the height of the drone,
meaning that they are searching for a smaller thing the
higher they fly. For a full discussion of the trade offs see
[2]. Scaling with height is also a problem for Leira et al. It
is dealt with in a similar way.

For our model, we use a white golf ball as a stand in for a
fawn, since both have high contrast with their surroundings.

#

Figure 3: original image(A) green channel(B) image
to have blobs extracted from(C)

Figure 3(A) is the golf ball against a green background,
while figure 3(C) is the green channel of Figure 3(A). The
threshold operation turns all pixels below a certain intensity
white, and those above that intensity black. Figure 3(C)
is the image of the golf ball with the threshold operation
applied.

Figure 4: Edge detection applied to the golf ball.

Once the threshold operation has been applied to the im-
age, blobs can be searched for. A blob is a data structure
representing a cluster of pixels forming a feature, or unique
shape which allows the feature to be easily distinguished
from the rest of the image. In figure 3(C) three blobs would
be detected. Blobs also contain their size, so we can check
that against what we expect the size to be. In most cases
by the design of our system, this will be enough to know we
have detected a golf ball.

Liera et al.[3] uses their thermal image in a different way.
Rather than looking for things based on their temperature,
they scan for edges of temperature. It is likely that the
reason for this is that we do not necessarily know the tem-
perature of a boat or the surrounding ocean, but it is rea-
sonable to assume the ocean does not have large changes in
temperature across a relatively small region.

Edge scanning outputs similarly to the threshold opera-
tion applied by Israel.

Defined by Pratt[5]“Local discontinuities in image lumi-
nance from one level to another are called luminance edges.”
Since this is the only type of edge we will be using, we will
refer to them as edges. Leira et al. does not go into detail
about the exact edge finding algorithm they used. Edges are
generally found by applying a blur to the image, and ana-
lyzing gradients in the blurred image. Once the gradients
are analyzed, Edges are curves which are perpendicular to
the gradient of the blurred image. Pratt[5] goes into further
detail about how edges are detected. Figure 4 depicts the
golf ball from earlier with edge scanning applied to it.

Leira et al.[3] goes a step farther classifying the blobs
found as human, small boat, big boat, false positive, or noise.
The classification is done using a combination of the aver-
age temperature of the blob, and the size. When taking
the average temperature, they use the location of the blob
to identify a bounding box around it, which includes only
that blob. They then take the average of the temperature
measurements within the bounding box. At this step, they
do not consider blobs which are not entirely in the frame.
For example, in figure 3(C) blobs detected in the lower right

and left corners would have been removed from considera-
tion since they are touching the edge of the frame.

5. SIGNAL FILTERING

Scanning, and classifying blobs takes place in a single
frame. Tracking objects, by necessity takes place in mul-
tiple frames. This creates the problem of, how do we know
if something we have identified in a previous frame is actu-
ally the same thing as in the current frame? On a short time
scale the answer to this is through the use of signal filtering.

5.1 Overview

Signal filtering in general is used to remove unwanted com-
ponents. When tracking an object from a UAV, the thermal
camera is not in an ideal environment. It is subject to the vi-
brations of the aircraft, as well as the intentional motions of
the aircraft that are necessary to maintain attitude. Signal
filtering attempts to correct for these known, and unknown
changes to the image. This is better illustrated in figure 5.
Signal filtering could be used to confirm that the octocat in
the current frame is indeed the same octocat as was detected
in the previous frame.

Figure 5: Time step images of an adorable octocat
moving.

5.2 Algorithm

The signal filter we will explore is called the Kalman Fil-
ter. The Kalman filter was originally(1960s) met with a
high degree of skepticism, forcing Rudolf Kalman to publish
it in a mechanical engineering journal.[8] The Kalman Filter
is now commonly used in tracking for interactive computer
graphics and UAVs such as guided missiles. It was even used
aboard the space shuttle! It is used in these applications be-
cause it is very good at correcting inaccurate measurements
in real time. As for missiles, it helps a missile stay pointed
at another missile it may be trying to destroy.

When we talk about the state of a system we are talking
about its properties at the time it is being examined. The
discreet Kalman filter is a version of the Kalman filter where
the state is estimated at discrete points in time.[7] From now
on, we will be referring to the discrete Kalman filter as the
Kalman filter.

5.3 Explanation

The Kalman filter uses a form of feedback control. It
predicts what the state should be, using measurements to
correct the state.

The basic procedure is:

e Time Update (Predict)
e Measurement Update (Correct)

During the time update, the next measurement is pre-
dicted using the previous measurement. Also, the predicted
error in the predicted measurement is updated. Next, during
the Measurement update, the actual measurement updates
the expected measurement, and the actual error updates the
expected error. This is depicted with the actual equations
in Figure 6.

Time Update (‘“Predict”)

(1) Project the state ahead

X, = Ax, _+Bu,

(2) Project the error covariance ahead

- T

Measurement Update (“‘Correct™)

(1) Compute the Kalman gain
_ pyT - T -1
K, = P,H'(HP H" +R)
(2) Update estimate with measurement z;
(3) Update the error covariance

P, = (I-KH)P,

Figure 6: Complete picture of operations performed
by the Kalman filter from [7]

Due to the way the Kalman Filter is used, it has good
time efficiency. In many cases it works similarly to finding
a linear regression line from a live feed of possibly infinite
data. Welsh and Bishop[7] provide a more comprehensive
explanation of the Kalman filter.

5.4 Example

Because of the complexity of higher dimensional Kalman
Filters, the implementation of it by Leira et al. is explained

in the context of a popular new app called BPM. BPM[1](short
for beats per minute) is an app for iPhone in which you tap
a button, and the app tells you how many times you are
tapping per minute. I worked in a limited capacity with the
developers of this app to implement a Kalman filter so that
the measurements of how quickly you are tapping could be
more accurate. The implementation used in BPM is largely
based upon those described by Welch and Bishop [7], so it
has many similarities to Figure 6.

var X: Double = 1

var P: Double = 0.1

var Q: Double = 0.0001

var A: Double = 1

var R: Double = 0.00001

func predict() {
X=AxX
P=AxP+Q

}

func correct(measurement: Double) -> Double {
predict ()
let K=P *x (1 / (P + R))
X = X + K * (measurement - X)
P=(1-XK) *P
return X

The variable X represents the state current state of the
system. In BPM, X is the number being returned. During
each iteration, X is first modified by the predict function
to the expected next value. The time since last tapped is
passed into the function correct, and used to update X.
In Leira et al.[3] X represents the location and speed of the
object being tracked.

The variable P represents our confidence in the accuracy
of the values of X. We chose the initial P, but subsequent
iterations modify P based upon the consistency of the values
of X. At the start of an iteration, the predict function uses
constant values to modify the expected error in the next
measurement. Next, P is updated taking into account the
difference between the measurement and prediction.

The local variable K in the correct function is refereed
to as the Kalman gain. The Kalman gain determines how
much the Kalman filter can change the value of the mea-
surement. If we set K to 0, the correct function would
always return only the prediction. This is apparent in the
correct function in the pseudo code; when K =0, X = X +
0 * (measurement - X).

The variable Q represents a constant error. If we are cer-
tain about some amount of inaccuracy in the measurements,
we can account for that here. For example, if while using the
app, you are certain that users cannot tap within 10 BPM
of the rate they are attempting, it may be appropriate to
set Q to a higher value. Q cannot be set to 0, because if
it was the predict step would be doing almost nothing, and
the Kalman filter would cease to function.

The variable A relates the state of the system in the pre-
vious step to the next step. In our case, A is 1 because we
expect that users of BPM are attempting to find a constant
beat. Leira et al use A to link the speed of the object be-
ing tracked with its predicted location. This can be done
in higher dimensional Kalman Filters because in higher di-

mensions, A is a matrix. In higher dimensions, X = A * X
in the predict function lets us have interdependence between
the variables being filtered, when relating the state of the
system to the previous state.

The variable R impacts the speed the system responds to
change. So suppose you are tapping at 50 BPM, and you
change tempo to 100 BPM. A high R value would allow the
system to more quickly adapt to the higher beat rate. In
this case a low R is desired because of how BPM is typically
used.

The Kalman filter also has variables which correct for in-
tentional changes to the system, which are not present in
BPM. The modification to include intentional changes to
the system be to the predict() function, we would add to
X the intentional change. In Liera et al. this variable is used
to correct for the motion of the aircraft.

It should be noted that carefully choosing each of these
variables can lead to very robust filtering, although it can
still work with less careful choices. This is because the
Kalman filter updates its own predicted accuracy, making
it an incredibly robust algorithm. This was apparent in
the results produced by Leira et al. One of their major
comments was that their vision system was upscaling the
framerate, resulting in large amounts of sequential dupli-
cate measurements being passed to the Kalman filter. This
strongly effected performance in the field, but despite the
handicap their results were still positive.

6. RESULTS

Liera et al. successfully detected 99.6% of the objects they
were attempting to detect. Classification was also successful,
correctly classifying 93.3% of of those detected. Also they
succeeded in tracking 54 of the 64 times it initialized the
tracking; only 5 of the initializations not actually tracking
an object. [3]

Israel tested their system im May and June of 2011 with 15
field campaigns, covering 70.77 hectare at different times of
day, and different weather conditions. It was successful when
weather and lighting conditions were good. It produced lim-
ited results in sub optimal lighting. Altitudes when search-
ing for fawn were between 30 m and 50 m. At the upper
bound, fawns were sometimes missed even in the best con-
ditions. They were forced to fly at the lower bound when
conditions were not good. Vegetation heights were very low
during this time, due to dry weather, so few fawns were
killed that year. During the campaigns they were able to
identify 14 fawns, 3 adult deer, five rabbits, one fox, and
some smaller animals.[2]

7. CONCLUSION

In conclusion the these algorithms and techniques enable
new and interesting uses for drones. Their lowering costs
make them viable to be used in many new applications.
They can save the lives of fawns, and keep grass from rot-
ting due to fawn. Also their uses in the tracking of boats
are great because they are cheap and can cover a wide area,
accurately identifying and tracking many different sizes and
shapes of boats. Computer vision aboard drones can save
people a great deal of time on tasks covering a large area.
Additionally signal filtering with the Kalman filter is highly
effective at filtering the errors and noise from images taken
by drones.[7] It is especially useful because it can take into

account the drone’s motions as well, correcting for errors in
the data at many levels. It’s robustness makes it ideal for
use on a fast moving, vibrating platform like a drone.

8. REFERENCES

[1] BRIAN MITCHELL, Z. L. BPM.
https://github.com/bman4789/bpm. accessed
2016-04-24.

[2] IsRAEL, M. A UAV-based roe deer fawn detection
system. International Archives of Photogrammetry and
Remote Sensing 38 (2011), 1-5.

[3] LEIRA, F. S., JOHANSEN, T. A., AND FosseN, T. L.
Automatic detection, classification and tracking of
objects in the ocean surface from uavs using a thermal
camera. In Aerospace Conference, 2015 IEEE (2015),
IEEE, pp. 1-10.

[4] OpenCV. http://opencv.org/. accessed 2016-04-5.

[5] PrATT, W. K. Digital image processing, new-york.
NY: John Wiley and Sons (1991).

[6] WARD, S., HENSLER, J., ALSALAM, B., AND
GONzALEZ, L. F. Autonomous UAVs wildlife detection
using thermal imaging, predictive navigation and
computer vision.

[7] WELCH, G., AND BIsSHOP, G. An introduction to the
kalman filter. university of north carolina, department
of computer science. Tech. rep., TR 95-041, 1995.

[8] WIKIPEDIA. The kalman filter — Wikipedia, the free
encyclopedia.

https://en.wikipedia.org/wiki/Rudolf E. K%C3%A1lm%C3%A1n.

Online; accessed 2016-04-5.

