
Implementing Enterprise Integration Patterns
Using Open Source Frameworks

Robert Thullner, Alexander Schatten, Josef Schiefer

Vienna University of Technology,
Institute of Software Technology and Interactive Systems

{thullner, schatten, js}@ifs.tuwien.ac.at
http://www.isis.tuwien.ac.at

Abstract. Enterprise Application Integration is needed in many organ-
isations to improve the functionality of their IT systems and offer new
business functions to end-users without implementing and deploying new
applications. With growing complexity of the IT infrastructure and the
pressure to bring new features in ever shorter time, application integra-
tion became a challenging task. One approach for integration is to ex-
change messages between participating applications. Patterns have been
described which express best-practices of enabling message-based inte-
gration. The patterns are known under the term enterprise integration
patterns. As Open Source middleware becomes more and more impor-
tant as stable and flexible infrastructure components in enterprise IT,
this paper discusses the support for architects of enterprise integration
patterns by Open Source frameworks, focussing on Apache Camel and
Mule.

Key words: Enterprise Application Integration, Enterprise Integration
Patterns, Frameworks, Open Source, messaging

1 Introduction

Enterprise Application Integration (EAI) is a continuous challenge for most
companies and organisations as soon as a certain size of the organisation is
reached [1]. Various computer systems should share data and functionality to
support new requirements, ideally in an agile manner, i.e., it should be possi-
ble to introduce new functionality fast and without effecting other parts of the
system [2]. Hence, in the last decade, a multitude of integration approaches was
discussed and a large number of software (middleware) systems were introduced
by commercial vendors and developers gained experience with several EAI ap-
proaches.

Patterns in Software Engineering are an important means in transporting
such experiences. Gamma et.al. introduced the well-known design patterns [3].
However, in enterprise integration efforts patterns on a higher level of granularity
are needed and certain efforts to describe such have been undertaken. Martin
Fowler for example, describes patterns of enterprise architecture [4]. However,

in the field of enterprise integration the patterns collected and described by
Hohpe and Woolf in their book Enterprise Integration Patterns[5] were most
influential in the community. Hohpe and Woolf’s patterns focus on message and
event-based integration scenarios, which is the dominating strategy in current
integration efforts [6–8].

2 Related Work

As mentioned already, various authors described patterns that can be used in
enterprise architectures. Most however, do not have the main focus on enterprise
integration. It appears to us, that the patterns described by Hohpe and Woolf
are the most comprehensive description of patterns to be found on enterprise
integration issues. Not by accident, most frameworks (as will be seen later) refer
to the categorisation of these authors.

The patterns described by Hohpe and Woolf are organised into six categories:
(1) channel patterns dealing with various different types of channels which en-
able messages to be exchanged between applications, (2) construction patterns
which describe how messages can be constructed, (3) routing patterns describing
ways how messages can get routed from a source to one or more destination ap-
plications, (4) transformation patterns which deal with transformation issues for
messages, (5) endpoint patterns showing different ways how applications can be
connected to messaging systems and (6) system management patterns dealing
with management and governance issues of message-based EAI solutions.

These patterns are of particular interest as most Open Source projects in
the domain reference this book and claim that their very framework (Mule,
Camel) would implement many of the mentioned patterns or would support the
implementation of these patterns.

In the Open Source communities, a couple of frameworks have been released
that can be placed in the EAI domain which help build EAI solutions [9]. Thus,
there are Open Source projects on the one side and enterprise integration pat-
terns on the other side. What shall be done in this paper, is to show how patterns
are supported and can be implemented with the help of Open Source frameworks.
The used frameworks are Apache Camel1 and Mule2. Other frameworks which
are also worth noticing but will not be covered in this paper in detail are Apache
ActiveMQ3 as well as Apache ServiceMix4 [10, 11]. These are related to Camel
or can be used to enhance it as all three frameworks are mainly supported by
the same community in the background. Hence, Camel is fully integrated into
both projects, so everything which is implemented with Camel can be reused in
either of the frameworks.

1 http://activemq.apache.org/camel
2 http://mule.mulesource.org
3 http://activemq.apache.org
4 http://servicemix.apache.org

2.1 Apache Camel

Apache Camel is a framework which supports the developer in implementing
integration patterns. Patterns must either be configured by writing Java code
or by using Spring-based XML configuration files. When using Java for imple-
menting patterns, a domain-specific language (DSL) is available, which eases the
implementation and readability of patterns.

On the one side, Camel offers a pattern implementation which can be used
easily and, on the other side, it offers a lot of transport types where data can
be received from or written to. This means that one can easily read from a file
in periodic intervals with Camel or write messages to a file. It is also possible
to write to databases or HTTP endpoints. For a full list of available transport
components, see the project website. Furthermore, Camel provides a built-in
XSLT engine for transforming messages.

In a sense, Camel covers a significant part of what one would expect from
an Enterprise Service Bus [12]. In fact, the borders get blurry between different
products in the Apache line: ActiveMQ, ServiceMix and Camel. Yet Camel is well
prepared to be used as a routing and mediation engine in the Apache ActiveMQ
message broker, the Apache ServiceMix JBI-based Enterprise Service Bus, and
also works together with Apache CXF5 (a webservice framework) and Apache
Mina6, which is a rather low level network application framework.

Using integration patterns in Camel is straightforward: All that has to be
done is to create a CamelContext in a Java class, add all pattern rules to the
context and finally start it by calling the start method. Alternatively, as men-
tioned above, rules can be defined in XML. Since version 5.0 of ActiveMQ,
Camel is fully integrated into the message broker. This means that all rules can
be defined in the configuration files of ActiveMQ; either directly as XML or by
providing a reference to Java packages that include all pattern rules. The inte-
gration of Camel and the features of ActiveMQ should make a good player in
the EAI-framework field. However, when mixing ActiveMQ configuration code
and Camel pattern rules, keeping an overview of what parts belong to which
framework might get harder than using them separately.

2.2 Mule

Mule calls itself a messaging platform based on ideas from Enterprise Service
Bus (ESB) architectures. Mule provides many transport types which can be used
for communicating with various applications in an EAI solution. Business logic
can be implemented with POJOs which are called Universal Message Objects
(UMO) in Mule. For transforming different transport protocols Mule offers a
lot of transformation classes which can be applied. In the case that no valid
transformer is offered by Mule, custom transformers can be implemented very
easily. Configuration of all necessary UMOs and their transport types is done
via XML configuration.
5 http://cxf.apache.org
6 http://mina.apache.org

Mule offers more functionality than Camel for EAI projects as it is a real
server for hosting an EAI solution. Camel just provides a library which has to
be used in combination with a message broker like ActiveMQ or an ESB like
ServiceMix.

3 Approach

The approach for finding out implementation support of introduced frameworks
for enterprise integration patterns is done by analysing the frameworks and
implementing scenarios with the help of the frameworks. The scenarios cover
nearly all routing and transformation patterns and a reasonable amount of pat-
terns of other categories. Channel patterns like Point-to-Point Channel, Publish-
Subscribe Channel, Guaranteed Delivery are used nearly in every scenario. Con-
struction and endpoint patterns already come with the used messaging protocol
and do not need much additional support.

For example, JMS already offers support for Correlation Identifier, Return-
Address, Selective Consumer, etc. Thus, the focus of the scenarios are routing
and transformation patterns. The scenarios are settled in different application
domains. These are airport-, airline-, train- and hospital information systems.
All scenarios are imaginary but are partly derived from actual projects that we
have done, however with little adjustments made in the mentioned domains. The
hospital scenario will be covered in more detail in this paper, details of the other
scenarios can be found in [13].

3.1 Communication within Hospital Information Systems

Description This scenario is settled in the hospital domain. When a patient
arrives at a hospital, the personal-, health history- and payment data are inserted
into the information system. After that, the information has to be sent to an
information system used by a doctor and to an accounting system. For the
privacy of the patient it is important that each system only gets the information
it needs to fulfil its task. Therefore, the doctor information system should only
get the personal information and the health information of a patient, but not
any payment data. On the other side the accounting system should not see any
health data of the patient but only data which is relevant for accounting. After
a doctor has checked the patient, additional information has to be added to the
message. This information includes an initial finding and instruction for further
therapies. For each therapy, a message has to be sent to the appropriate therapy
system. After a therapy is finished, a message including the results is sent to
the doctor information system. Another message containing only the patient’s
personal data and the carried-out therapy is sent to the accounting system so that
the patient can get charged. At this point, privacy and security is very important
again. The accounting system should never see any health data of a patient and
therapy and doctor systems should never get any accounting information of a
patient. Another system that is connected is used for generating statistics which

only receives therapy and therapy outcome information for generating reports,
but does not receive any personal data of a patient.

Fig. 1. Hospital scenario: message flow

Modelling The modelling can be seen in Figure 1. The message produced by
the nurse system consists of three parts. The parts are split and sent to a router
which delivers the parts to two different aggregators which aggregate the message
again, one time for the doctor system and one time for the accounting system.
It can be seen in the figure that the message for the doctor and the accounting
system have different content, each containing only relevant data for the specific
system. The doctor system adds two parts to the message. One part represents
the initial finding for a patient and the other part consists of a list of further
therapies. After that, the message is sent to a message translator to bring each
further therapy up one level in the XML hierarchy so that they can be split
easier. After splitting, a router sends the messages to the appropriate therapy
systems. When a therapy is finished, the therapy system will add its outcomes to
the message and send it back to the doctor system and the accounting system so
that they can charge the patient for the therapy. Before the accounting system
receives a message, a content filter has to be used that filters out all health

related information about a patient which is not relevant for the accounting
system. The same is done for the statistics system where, only a different filter
is applied

Modelling alternatives are rare for this scenario, as security and privacy of
data are important for this scenario, a publish-subscribe channel should not be
used. What could be used for this scenario is some kind of process manager to
support the workflow of all systems. For the first part of the system where the
nurse system sends a message to the doctor and accounting system, a splitter and
aggregator is used for sending the correct parts of a message to the appropriate
system. At the last part of the system, a content-filter is used for that. This is
done for showing the usage differently from diverse patterns for implementing
the same functionality.

Implementation The implementation of the first part of the scenario with
Camel can be seen in Listing 1.1. The implementation with Mule is shown in
Listing 1.2. When looking at the Camel code, one will notice that it is very
self-explanatory and one can image what it is about very soon without knowing
anything about the Camel syntax and DSL.

The first part of the code shows how messages can get split according to
an XPath expression, the second part shows routing where XPath is used again
for making routing decisions and the third part shows how messages can get
aggregated again. Aggregation is done according to the JMSCorrelationId of the
messages. The aggregation of the accounting messages is not shown anymore, as
it is equivalent to the aggregation for the doctor system.

When looking at the Mule configuration, one will notice that everything
has to be defined within a service. The first service is responsible for receiving
messages from a JMS queue. After receiving a message, it is split at the outbound
section of the service and sent to the next service. This service sends the split
messages along to two further services according to an XPath expression which is
used for sending the parts to the appropriate aggregator. The last service shows
an aggregator which is used for aggregating messages which will be sent to the
doctor system. The Java code for the custom aggregator is not shown here. The
custom class has to subclass the CorrelationAggregator class which is provided
by Mule. The method aggregateEvents has to be implemented and provides the
business logic for the component. Like in the Camel example, the aggregator for
the accounting system is not shown in the listing, as it is equivalent to the one
for the doctor system.

Listing 1.1. Splitter, router and aggregator in Camel
XPathBuilder splitNurseSystem = new XPathBuilder("/document/∗");
from("hospital:camel.hospital.nurse.send")
.splitter(splitNurseSystem)
.to("hospital:camel.hospital.nurse.split");

Predicate patientPredicate = new XPathBuilder("count(/patient)=1
");

Predicate historyPredicate = new XPathBuilder("count(/history)=1
");

Predicate paymentPredicate = new XPathBuilder("count(/
paymentInformation)=1");

from("hospital:camel.hospital.nurse.split")
.choice() //route parts to different endpoints

.when(patientPredicate)
.to("hospital:camel.hospital.nurse.aggregator.doctor",

"hospital:camel.hospital.nurse.aggregator.accounting")
.when(historyPredicate)

.to("hospital:camel.hospital.nurse.aggregator.doctor")
.when(paymentPredicate)

.to("hospital:camel.hospital.nurse.aggregator.accounting")
.otherwise()

.to("hospital:camel.hospital.nurse.aggregator.failure");

//aggregate doctor parts to one message
from("hospital:camel.hospital.nurse.aggregator.doctor")
.aggregator(header("JMSCorrelationID"), new

MyAggregationStrategy(context))
.to("hospital:camel.hospital.doctor.receiver");

Listing 1.2. Splitter, router and aggregator in Mule
<model name="muleHospital">

<service name="nurseReceiver">
<inbound>

<inbound−endpoint ref="fromNurse"/>
</inbound>
<outbound>

<!−− split messages according to XPath expression −−>
<mule−xml:message−splitter splitExpression="/document/∗">

<!−− send messages to next service −−>
<vm:outbound−endpoint path="routerAfterSplitting"/>

</mule−xml:message−splitter>
</outbound>

</service>

<service name="myRouterAfterSplitter">
<inbound>

<!−− receive split messages −−>
<vm:inbound−endpoint path="routerAfterSplitting"/>

</inbound>
<outbound matchAll="true">

<!−− forward messages according to an XPath expression −−>
<filtering−router>

<vm:outbound−endpoint path="toDoctorAggregator" />
<mule−xml:jxpath−filter pattern="count(/patient)=1"/>
<transformer ref="addGroupSize"></transformer>

</filtering−router>
<filtering−router>

<vm:outbound−endpoint path="toDoctorAggregator" />
<mule−xml:jxpath−filter pattern="count(/history)=1"/>
<transformer ref="addGroupSize"></transformer>

</filtering−router>

<filtering−router>
<vm:outbound−endpoint path="toAccountingAggregator" />
<mule−xml:jxpath−filter pattern="count(/patient)=1"/>
<transformer ref="addGroupSize"></transformer>

</filtering−router>
<filtering−router>

<vm:outbound−endpoint path="toAccountingAggregator" />
<mule−xml:jxpath−filter pattern="count(/

paymentInformation)=1"/>
<transformer ref="addGroupSize"></transformer>

</filtering−router>
</outbound>

</service>

<service name="doctorAggregator">
<inbound>

<vm:inbound−endpoint path="toDoctorAggregator"/>
<!−− custom aggregator for aggregation incoming messages

−−>
<custom−inbound−router class="eip.hospital2.mule.util.

CustomAggregator"/>
</inbound>
<outbound>

<outbound−pass−through−router>
<!−− send message to a JMS queue, where the doctor

system is listening −−>
<outbound−endpoint ref="toDoctor"/>

</outbound−pass−through−router>
</outbound>

</service>
</model>

4 Discussion

Implementing this and other scenarios with either framework could be achieved
without many problems. Both frameworks offer support for the used patterns
and implementing or configuring them is straightforward.

However, when looking at the code of both examples the clear structure of
rules defined in Camel is very impressive. At this point, the strength of a DSL
can be seen immediately. For anyone who is familiar with basic programming
knowledge the meaning of the defined rules will be clear very soon.

On the other side, when configuring all patterns in Mule, one has to know
what specific XML tags are used, where they have to be applied (inbound or
outbound section of a service) and what their meaning is. So some initial learning
or guidance is needed to understand all parts of a Mule configuration and the
patterns used in there. This does not mean that writing a Mule configuration is
more difficult than coding Camel rules, however when taking a first look at both
alternatives the Camel code can be interpreted much faster. This does further
not mean that a Java DSL is always more readable than an XML configuration
or should even be preferred when there is a choice. It is a very personal decision
of integration developers which approach—either the Java DSL or the XML
configuration—that they prefer for implementing their EAI solutions.

Pattern Name ActiveMQ Camel ServiceMix Mule

Pipes and Filters oos oos oos oos

Message Router oos s s s

Content-Based Router oos s s s

Message Filter oos s s s

Dynamic Router oos s s s

Recipient List oos s s s

Splitter oos s s s

Aggregator oos s s s

Resequencer oos s s s

Routing Slip oos ns s s

Process Manager oos ns s s
Table 1. Mapping of Message Routing Patterns to Frameworks

When talking more general about pattern support, it has to be said that
the target patterns of Mule and Camel are routing and transformation patterns
for which they provide nearly full support. The support for routing patterns
is shown in Table 1. The abbreviations used in the table are the following:
s=supported, ns=not supported, oos=out of scope (not expected to be supported
by a framework) and di=design issue (just a design issue when designing an EAI
solution - no special support by frameworks is needed). The tables also show
the pattern support of Apache ActiveMQ and ServiceMix as they were covered
in [13] from where the tables are taken. However, explanation in this paper will
only focus on Camel and Mule. The patterns Composed Message Processor and
Scatter-Gather are not listed in the table, as they are just a combination of
other patterns. Also the Message Broker pattern is not listed as a broker and
is not something that can be supported but is a real application. ActiveMQ is
a message broker implementation and one can say that it therefore implements
this pattern. From the table it can be seen that the only patterns where Mule is
superior to Camel are the Process Manager for which Mule can use its built-in
jBPM process engine and Routing Slip for which Mule also provides support.
These two patterns are not supported by Camel.

Pattern Name ActiveMQ Camel ServiceMix Mule

Control Bus s s s s

Detour oos di di di

Wire Tap oos s s s

Message History oos oos / di oos / di oos / di

Message Store s di di di

Smart Proxy oos oos oos oos

Test Message oos di di di

Channel Purger s oos oos oos
Table 2. Mapping of System Management Patterns to Frameworks

Table 2 shows the support of system management patterns by the frame-
works. A Control Bus is a component which helps administrating an EAI so-
lution. Status information of all components and messages sent over channels
should be seen on the bus. The pattern could be implemented by sending each
message not only to the destination channel but also to the Control Bus. By
applying this, the message flow can be inspected with the help of the bus. Fur-
thermore, each component in the messaging infrastructure could send status
information to the Control Bus telling it that it is still alive. All frameworks
provide support for administration through JMX. This can already be seen as a
Control Bus as one can inspect message channels and components of the messag-
ing infrastructure. However, the tool support is rather little. Thus, some more
work has to be done to achieve more support for this pattern. A Detour routes a
message to an alternative path than initially defined. A Message Router can be
inserted into the solution to provide the functionality of a Detour. Again, this
is only a design issue. The Wire Tap pattern sends a message not only to the
indented receiver but also to a second queue. This pattern is explicitly supported
by Camel and Mule. A Message History deals with adding a history element to
messages travelling through the messaging infrastructure. By doing this, each
component can analyse the history and then knows the path a message took
until it reached the component. This way, the flow of messages can easily be de-
termined. This pattern can either be implemented by participating applications
in the EAI solution by setting a property field. When doing this, it is out of the
scope for the frameworks. Another way could be to use a Content Enricher after
each component that inserts a history element into the message. When apply-
ing this, the pattern is a design issue. One step further than a Message History
is the Message Store pattern. This pattern stores all messages in some kind of
datastore. This could be achieved by reusing the Wire Tap pattern and storing
all incoming messages to a database. This is a reuse of already existing patterns,
therefore, it is marked as a design issue. A Smart Proxy can be used to reroute
reply messages of an application to different destinations as initially defined. To
use this pattern, some implementation work has to be done which ends up in an
additional component that has to be inserted into the EAI solution. Therefore,
this pattern is marked as out of scope for all frameworks. A Test Message can

be used to test the correct behaviour of a component. To achieve this, a gener-
ator for Test Messages is needed. A message has to be sent to the appropriate
message channel to test the correct component. After the messages passed the
component, it has to be rerouted again to some monitoring component where
the result can be verified. For the last step a Router can be used. Thus, it can
be seen that some implementation has to be done to support this pattern but,
as it relies on already existing patterns, it is also marked as a design issue. The
Channel Purger is used to delete all messages from a channel. For Camel and
Mule this pattern is out of scope as it should be situated directly in the message
broker.

Message construction patterns do not relate to the used frameworks very
much, as they deal with the design of the message content which is not relevant
for the used frameworks, but is important in the technical design phase of an
EAI solution. However, support for this category can be achieved by setting
properties on messages which can be easily done. The categories endpoint and
channel patterns are also very much out of scope for the the frameworks. They
are mainly covered by message brokers like ActiveMQ as they deal with low level
messaging issues which can be covered by any message oriented middleware.

What also has to be taken into account is that the goal of Camel is to
provide a enterprise integration pattern implementation that can be used in an
ActiveMQ message broker or the ServiceMix ESB. Thus, it is specialised on
providing a pattern DSL for integration developers. The goal of Mule is not to
provide direct support for enterprise integration patterns, but be a framework
that can be used for integration projects using a message-based approach—
providing patterns is just one aspect of the Mule framework. Additionally, it
offers a jBPM process engine or a Drools rule engine and more features that can
immediately be used when working with Mule. This is where the advantages and
strengths of Mule are situated. Such features are not provided by Camel and,
therefore, it must be used in combination with further frameworks.

5 Conclusion

After analysing Mule, Camel, ActiveMQ and ServiceMix and implementing a
set of scenarios of varying complexity, it turns out that the currently available
Open Source frameworks support the enterprise integration architect with a
broad variety of features in implementing even complex integration patterns.
The first thing that has to be considered when using a message-based approach
for integration is some message-oriented middleware. ActiveMQ is a powerful
broker that can be used as it supports a variety of protocols and even implements
its own protocol that can be implemented by any application for working with
ActiveMQ. Through the integration of Camel into the broker, a lot of routing
and transformation protocols already get delivered with ActiveMQ and can be
used immediately. When there is a need for a standard-compliant EAI container
ServiceMix can be used. It also uses ActiveMQ for messaging and Camel can be
used for supporting integration patterns. However, messages are limited to XML

content when using ServiceMix as the JBI standard only allows XML messages.
This can be mitigated by using XML marshalling and unmarshalling on any
objects that need to be transferred.

On the other side, the competitor to these frameworks is Mule. Mule does
not rely on any message broker like ActiveMQ but can be used with many
different ones as it abstracts from the broker. Like Camel, Mule also offers a
broad support for integration patterns and has a lot of transports available.
Thus, messages coming from many different sources can be handled by Mule.
It is also not limited to XML content and can also send POJOs as a message
content. Additional advantages of Mule are the integrated jBPM and Drools
engine. Thus, there is no need to use further frameworks in an EAI solution
which has to be done when using Camel only.

A guidance like saying Mule is better for situation A and ActiveMQ, Camel
and ServiceMix are better for situation B cannot be done. For an educated
decision-making process, all requirements of the future EAI solution have to
be collected and then mapped to the features of the different frameworks. This
paper can give guidance for the mapping process of integration patterns to the
frameworks but does not consider other aspects like security or transactions. For
this, further investigation has to be done.

6 Future Work

System management patterns have not been considered for implementing the
scenarios very much. The reason for that is the additional implementation effort
which is required, and they are not delivered with the used frameworks out of the
box. Investigation of them was mainly done on a theoretical level. Nevertheless,
they are very important for monitoring and maintaining existing EAI solution.
Thus, a future work that should be done is to expand the scenarios with system
management patterns and implement them with the given frameworks and share
experiences gained from it.

All scenarios used a message-based integration approach. Another approach
is to use BPEL for orchestrating exposed services and implementing the needed
business logic with that. A further possibility is to use SCA and SDO for im-
plementing the given scenarios. A comparison of all three approaches would be
very interesting in terms of development effort needed, clarity and simplicity of
developed artefacts.

7 Summary

This paper analysed the support of enterprise integration patterns of Open
Source frameworks with the focus on Apache Camel and Mule. A sample sce-
nario was introduced to show the different approaches which are taken by the
two frameworks for implementing patterns. Camel offers a Java DSL for con-
figuring all necessary patterns which is very clear and self-explanatory. On the
other side, patterns have to be configured in Mule in an XML configuration file

which leads to a large and not so clear configuration of patterns which is avail-
able when using Camel. However, the main goal of Mule is not to provide a clear
definition of patterns, but to be an integration platform. On the other side the
main purpose of Camel is to provide support for integration patterns.

When considering patterns in general, both frameworks offer a very good
support for all routing and transformation patterns, which are the most impor-
tant categories to provide a good message flow between applications in an EAI
solution. When using system management patterns, some additional implemen-
tation effort has to be done. But as most of them are combinations of other
patterns, the effort is not too large. Other categories of patterns are covered by
other frameworks like ActiveMQ or do not need much support by frameworks,
like the construction patterns.

The code snippets shown in this paper show the basic differences when im-
plementing patterns. Everyone can decide for oneself if the Java or the XML
approach is more suitable or superior when doing integration projects. Integra-
tion can be done with both frameworks, however Mule offers more functionality
than a rules- and workflow engine, which is not offered by Camel. For this, an
additional framework has to be introduced in Camel EAI solutions. But for sim-
ple integration projects, where none of them is needed the lightweight approach
of Camel could be superior.

However, patterns are not the only point that has to be considered when
doing integration projects. Other aspects like security also have to be taken into
account. Thus, this paper only gives an overview of the pattern perspective in
an EAI project. For making an educated decision on which framework to use,
all requirements have to be collected and matched to the given features of the
frameworks.

References

1. Gleghorn, R.: Enterprise application integration: A manager’s perspective. IT
Professional 7(6) (2005) 17–23

2. Fowler, M., Hohpe, G.: Agile eai. Technical report, ThoughtWorks (November
2002)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional (1995)

4. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley
Professional (November 2002)

5. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison Wesley (2004)
6. Hohpe, G.: Programming without a call stack - event-driven architectures. http:

//www.eaipatterns.com (2006) [Online; accessed 01-March-2008].
7. Marechaux, J.L.: Combining service-oriented architecture and event-driven

architecture using an enterprise service bus. http://www-128.ibm.com/

developerworks/webservices/library/ws-soa-eda-esb (2006) [Online; accessed
01-March-2008].

8. Schulte, R.W.: The growing role of events in enterprise applications. http://

www.gartner.com/DisplayDocument?doc_cd=116129 (2003) [Online; accessed 01-
March-2008].

9. Rademakers, T., Dirksen, J.: Open-Source ESBs in Action. Manning Publications
(2007)

10. Binildas, C.: Service Oriented Java Business Integration. Packt Publishing, Birm-
ingham (2008)

11. Vinoski, S.: Java business integration. IEEE Internet Computing 9(4) (July-Aug.
2005) 89–91

12. Richards, M.: The role of the enterprise service bus. http://www.infoq.com/

presentations/Enterprise-Service-Bus (October 2006) [Online; accessed 01-
March-2008].

13. Thullner, R.: Implementing enterprise integration patterns using open source
frameworks. Master’s thesis, Vienna University of Technology (2008)

