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Introduction to The GPU and CUDA

What exactly is CUDA?
Defined as:  Compute Unified Device Architecture.  I.e. a parallel 
computing architecture used in graphics processing units (GPU), 
developed by Nvidia. 
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Introduction to The GPU and CUDA

What exactly is CUDA?
Defined as:  Compute Unified Device Architecture.  I.e. a parallel 
computing architecture used in graphics processing units (GPU), 
developed by Nvidia. 

What is CUDA C/C++?
A language that provides an interface so that parallel algorithms 
can be run on CUDA enabled Nvidia GPUs
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Introduction to The GPU and CUDA
GPU v.s CPU Calculations

CPU-GPU Comparison of Floating-point operations per second [1]
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Introduction to The GPU and CUDA

Why are we interested?
Larger problems require more computing resources (LES, coupled 
physics)

GPUs are fast when used properly

They are relatively cheap

Where can GPUs be applied?
Where parallel algorithms live 

● Linear algebra i.e. sparse matrix math

Why don't we compile everything to work on the GPU?
      Only programs written in CUDA language can be parallelized on 
GPU.  So we cannot just recompile OF.
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Integrating CUSP into OpenFOAM

“Cusp is a library for sparse linear algebra and graph computations on 
CUDA. Cusp provides a flexible, high-level interface for manipulating 
sparse matrices and solving sparse linear systems.”[2]

Provided Template Solvers:
•  (Bi-) Conjugate Gradient (-Stabilized)
•  GMRES

Matrix Storage 
•  CSR, COO, HYB, DIA

Provided Preconditioners
•  Jacobi (diagonal) preconditioners
•  Sparse Approximate inverse preconditioner
•  Smoothed-Aggregation Algebraic Multigrid preconditioner

cusp-Library     http://code.google.com/p/cusp-library/

http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
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Integrating CUSP into OpenFOAM

“Thrust is a CUDA library of parallel algorithms with an 
interface resembling the C++ Standard Template Library 
(STL). Thrust provides a flexible high-levelinterface for GPU 
programming that greatly enhances developer productivity. 
“ [3]

http://code.google.com/p/thrust/

http://code.google.com/p/thrust/
http://code.google.com/p/thrust/
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Integrating CUSP into OpenFOAM
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Thrust Methods

cusp Methods
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Integrating CUSP into OpenFOAM

A
X b

=

lduMatrix is converted to COO Using  
thrust::copy() in C++

COO is transferred to GPU In CUDA Code

COO is converted to other formats on GPU
And passed to CUSP-based solver with 
convergence criteriaA

X b

= Residual calculated using OF 
normalized residual method

OpenFOAM solve(…);

Cusp-based solver on GPU

Thrust Methods

cusp Methods
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Integrating CUSP into OpenFOAM

A
X b

=

A
X b

=

OpenFOAM solve(…);

Pass X vector and 
solver performance 
data back to 
OpenFOAM using 
thrust-methods

Thrust Methods

Cusp-based solver on GPU
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Preliminary Results
A test Problem.

02 =∇ T

2D Heat Equation

Vary N from 10-2000 
where N2 = nCells



Preliminary Results
Solver Settings

All CG solvers

Tolerance = 1e-10;
MaxIter 1000;

        solver          GAMG;
        tolerance       1e-10;
        smoother        GaussSeidel;
        nPreSweeps      0;
        nPostSweeps     2;
        cacheAgglomeration true;
        nCellsInCoarsestLevel sqrt(nCells);
        agglomerator    faceAreaPair;
        mergeLevels     1;



Preliminary Results
Setup

CUDA version 4.0
CUSP version 0.2
Thrust version 1.4
Ubuntu 10.04

CPU:  Dual Intel Xeon Quad Core E5430 2.66GHz
Motherboard:  Tyan S5396
RAM: 24 gig

GPU:  Tesla C2050 3GB DDR5
515 Gflops peak double precision
1.03 Tflops Peak single precision
14 MP * 32 cores/MP = 448 cores
Host-device memory bw = 1566 MB/sec (Motherboard specific)
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Preliminary Results
Solve Time
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Preliminary Results
Solution Speedup
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Preliminary Results
Solution Speedup
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Preliminary Results
Solution Speedup
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Preliminary Results
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Important Considerations
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Next Steps
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Take Home Messages
●  The GPU only solves the Ax=b system
●  We have double precision
●  GPUs have been integrated into OpenFOAM using Thrust and CUSP
●  As cusp and thrust improve, nothing needs to be changed in this code, 
only to update cusp and thrust.
●  They have been shown to be faster in the cases provided, because it is 
mostly solving Ax = b.
●  Residuals are calculated the same as in OpenFOAM
●  Multi-GPU still needs attention.
●  The results show that memory bandwidth still is an issue with this 
particular setup and results could be faster with other setup.
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Questions?
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Contact Info:
Dan Combest
dcombest@seas.wustl.edu

Thanks for your attention!
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Solution Speedup
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For matrix A x = b, 

residual is defined as 

res = b - Ax 

We then apply residual scaling with the following normalisation factor procedure: 

Type xRef = gAverage(x); 

wA = A x; 
pA = A xRef; 

NormFactor = gSum(cmptMag(wA - pA) + cmptMag(source - pA)) + matrix.small_; 

and the scaled residual is: 

residual = gSum(cmptMag(source - wA))/normFactor; 

I will save you from complications with vectors and tensors in my block solver. :-) 

Enjoy, 

Hrv

Source:  http://www.cfd-online.com/Forums/openfoam-solving/57903-residuals-convergence-segregated-
solvers.html

Residual Scaling


