
Implementing Fast Parallel Linear System
Solvers In OpenFOAM based on CUDA

Daniel P. Combest and Dr. P.A. Ramachandran
and Dr. M.P. Dudukovic

Optimization, HPC, and Pre- and Post-Processing I Session.
6th OpenFOAM Workshop Penn State University. June 15th 2011

Chemical Reaction Engineering Laboratory (CREL)
Department of Energy, Environmental, and Chemical

Engineering. Washington University, St. Louis, MO.

Objectives

2

3

Introduction to The GPU and CUDA

What exactly is CUDA?
Defined as: Compute Unified Device Architecture. I.e. a parallel
computing architecture used in graphics processing units (GPU),
developed by Nvidia.

4

Introduction to The GPU and CUDA

What exactly is CUDA?
Defined as: Compute Unified Device Architecture. I.e. a parallel
computing architecture used in graphics processing units (GPU),
developed by Nvidia.

What is CUDA C/C++?
A language that provides an interface so that parallel algorithms
can be run on CUDA enabled Nvidia GPUs

5

Introduction to The GPU and CUDA
GPU v.s CPU Calculations

CPU-GPU Comparison of Floating-point operations per second [1]

6

Introduction to The GPU and CUDA

Why are we interested?
Larger problems require more computing resources (LES, coupled
physics)

GPUs are fast when used properly

They are relatively cheap

7

Introduction to The GPU and CUDA

Why are we interested?
Larger problems require more computing resources (LES, coupled
physics)

GPUs are fast when used properly

They are relatively cheap

Where can GPUs be applied?
Where parallel algorithms live

● Linear algebra i.e. sparse matrix math

8

Introduction to The GPU and CUDA

Why are we interested?
Larger problems require more computing resources (LES, coupled
physics)

GPUs are fast when used properly

They are relatively cheap

Where can GPUs be applied?
Where parallel algorithms live

● Linear algebra i.e. sparse matrix math

Why don't we compile everything to work on the GPU?
 Only programs written in CUDA language can be parallelized on
GPU. So we cannot just recompile OF.

9

Integrating CUSP into OpenFOAM

“Cusp is a library for sparse linear algebra and graph computations on
CUDA. Cusp provides a flexible, high-level interface for manipulating
sparse matrices and solving sparse linear systems.”[2]

Provided Template Solvers:
• (Bi-) Conjugate Gradient (-Stabilized)
• GMRES

Matrix Storage
• CSR, COO, HYB, DIA

Provided Preconditioners
• Jacobi (diagonal) preconditioners
• Sparse Approximate inverse preconditioner
• Smoothed-Aggregation Algebraic Multigrid preconditioner

cusp-Library http://code.google.com/p/cusp-library/

http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/

10

Integrating CUSP into OpenFOAM

“Thrust is a CUDA library of parallel algorithms with an
interface resembling the C++ Standard Template Library
(STL). Thrust provides a flexible high-levelinterface for GPU
programming that greatly enhances developer productivity.
“ [3]

http://code.google.com/p/thrust/

http://code.google.com/p/thrust/
http://code.google.com/p/thrust/

11

Integrating CUSP into OpenFOAM

A
X b

=

A
X b

=

OpenFOAM solve(…);

Cusp-based solver on GPU

Thrust Methods

cusp Methods

12

Integrating CUSP into OpenFOAM

A
X b

=

lduMatrix is converted to COO Using
thrust::copy() in C++

A
X b

=

OpenFOAM solve(…);

Cusp-based solver on GPU

Thrust Methods

cusp Methods

13

Integrating CUSP into OpenFOAM

A
X b

=

lduMatrix is converted to COO Using
thrust::copy() in C++

COO is transferred to GPU In CUDA Code

A
X b

=

OpenFOAM solve(…);

Cusp-based solver on GPU

Thrust Methods

cusp Methods

14

Integrating CUSP into OpenFOAM

A
X b

=

lduMatrix is converted to COO Using
thrust::copy() in C++

COO is transferred to GPU In CUDA Code

COO is converted to other formats on GPU
And passed to CUSP-based solver with
convergence criteriaA

X b

=

OpenFOAM solve(…);

Cusp-based solver on GPU

Thrust Methods

cusp Methods

15

Integrating CUSP into OpenFOAM

A
X b

=

lduMatrix is converted to COO Using
thrust::copy() in C++

COO is transferred to GPU In CUDA Code

COO is converted to other formats on GPU
And passed to CUSP-based solver with
convergence criteriaA

X b

= Residual calculated using OF
normalized residual method

OpenFOAM solve(…);

Cusp-based solver on GPU

Thrust Methods

cusp Methods

16

Integrating CUSP into OpenFOAM

A
X b

=

A
X b

=

OpenFOAM solve(…);

Pass X vector and
solver performance
data back to
OpenFOAM using
thrust-methods

Thrust Methods

Cusp-based solver on GPU

17

Preliminary Results
A test Problem.

02 =∇ T

2D Heat Equation

Vary N from 10-2000
where N2 = nCells

Preliminary Results
Solver Settings

All CG solvers

Tolerance = 1e-10;
MaxIter 1000;

 solver GAMG;
 tolerance 1e-10;
 smoother GaussSeidel;
 nPreSweeps 0;
 nPostSweeps 2;
 cacheAgglomeration true;
 nCellsInCoarsestLevel sqrt(nCells);
 agglomerator faceAreaPair;
 mergeLevels 1;

Preliminary Results
Setup

CUDA version 4.0
CUSP version 0.2
Thrust version 1.4
Ubuntu 10.04

CPU: Dual Intel Xeon Quad Core E5430 2.66GHz
Motherboard: Tyan S5396
RAM: 24 gig

GPU: Tesla C2050 3GB DDR5
515 Gflops peak double precision
1.03 Tflops Peak single precision
14 MP * 32 cores/MP = 448 cores
Host-device memory bw = 1566 MB/sec (Motherboard specific)

20

Preliminary Results
Solve Time

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

200

400

600

800

1000

1200

1400

Solve() Time Comparison

cusplink_SmAPCG
GAMG
cusplink_DPCG
cusplink_CG
DPCG-parallel4
DPCG-parallel6-s231
DPCG
CG

nCells

T
im

e
 [s

e
co

n
d

s]

21

Preliminary Results
Solution Speedup

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

2

4

6

8

10

12

14

16

18
Speedup Comparison

DPCG
DPCG-parallel4
DPCG-parallel6-s231
DPCG-parallel6-s161
cusplink_DPCG
cusplink_CG

nCells

Speedup

Speedup = Ts/Tp = T
OFCG

/T
other

22

Preliminary Results
Solution Speedup

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

20

40

60

80

100

120

140

Speedup Comparison

DPCG
DPCG-parallel4
DPCG-parallel6-s231
DPCG-parallel6-s161
cusplink_CG
cusplink_DPCG
GAMG
GAMG6
cusplink_SmAPCG

nCells

Speedup

Speedup = Ts/Tp = T
OFCG

/T
other

23

Preliminary Results
Solution Speedup

0 200000 400000 600000 800000 1000000 1200000
0

10

20

30

40

50

60

Speedup Comparison

DPCG
DPCG-parallel4
DPCG-parallel6-s231
DPCG-parallel6-s161
cusplink_CG
cusplink_DPCG
GAMG6
GAMG
cusplink_SmAPCG

nCells

Speedup

Speedup = Ts/Tp = T
OFCG

/T
other

Preliminary Results

24

Important Considerations

25

Next Steps

26

Take Home Messages
● The GPU only solves the Ax=b system
● We have double precision
● GPUs have been integrated into OpenFOAM using Thrust and CUSP
● As cusp and thrust improve, nothing needs to be changed in this code,
only to update cusp and thrust.
● They have been shown to be faster in the cases provided, because it is
mostly solving Ax = b.
● Residuals are calculated the same as in OpenFOAM
● Multi-GPU still needs attention.
● The results show that memory bandwidth still is an issue with this
particular setup and results could be faster with other setup.

Acknowledgements

Funding and Support
Nvidia Professor Partnership Program

Chemical Reaction Engineering Laboratory (CREL) MRE Fund
(http://crelonweb.eec.wustl.edu/)

OpenFOAM Developers Community

Advisors
Dr. Ramachandran

Dr. Dudukovic

28

Sources
1. Nvidia CUDA Programming Guide, Version 4.0, 2011. Nvidia

Corporation.
2. Nathan Bell and Michael Garland, Cusp: Generic Parallel

Algorithms for Sparse Matrix and Graph Computations, 2010,
http://cusp-library.googlecode.com,Version 0.1.0

3. Jared Hoberock and Nathan Bell, Thrust: A Parallel Template
Library, 2010, http://www.meganewtons.com/,Version 1.3.0

29

Questions?

30

Contact Info:
Dan Combest
dcombest@seas.wustl.edu

Thanks for your attention!

Preliminary Results
Solution Speedup

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

20

40

60

80

100

120

140

Speedup

cusplink_CG
cusplink_DPCG
cusplink_SmAPCG
DPCG
DPCG-parallel4
DPCG-parallel6-s231
DPCG-parallel6-s161
GAMG
GAMG6

nCells

S
p

e
e

d
u

p

Speedup = Ts/Tp = T
OFCG

/T
other

For matrix A x = b,

residual is defined as

res = b - Ax

We then apply residual scaling with the following normalisation factor procedure:

Type xRef = gAverage(x);

wA = A x;
pA = A xRef;

NormFactor = gSum(cmptMag(wA - pA) + cmptMag(source - pA)) + matrix.small_;

and the scaled residual is:

residual = gSum(cmptMag(source - wA))/normFactor;

I will save you from complications with vectors and tensors in my block solver. :-)

Enjoy,

Hrv

Source: http://www.cfd-online.com/Forums/openfoam-solving/57903-residuals-convergence-segregated-
solvers.html

Residual Scaling

