cādence[®]

Implementing Force Sense Connection

Product Version SPB16.6 October 15, 2013 Copyright Statement

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and the Cadence logo are registered trademarks of Cadence Design Systems, Inc. All others are the property of their respective holders.

Contents

Purpose	4
Audience	
Flow Overview	4
DE HDL library requirements to define Force Sense symbols	5
Example Schematic Symbol	5
Footprint Library	7
Example Footprint	8
Front to Back Flow Environment Requirement	10
Schematic Capture	10
Example Schematic	. 10
Constraint Assignment	
Max Propagation Delay	. 11
Primary Width	. 11
Board Layout	
Allegro PCB Router	13
Net Schedule	13
Identifying intentional short	15
Example IPC-D-356 netlist	
Miscellaneous Notes	16
Software and License used	.16
Sample Database	.17
Important Database Element	. 17
Summary	
References	.17

Purpose

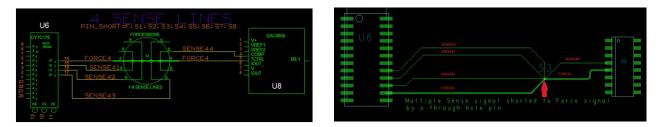
The use of separate Force (F) and Sense (S) connections (often referred to as a Kelvin connection) is quite a common requirement in the PCB design. These separate Force (F) and Sense (S) connections at the load removes any errors resulting from voltage drops in the force lead. Routing the Kelvin sense lines by separating lines for sensing signals (S) from lines delivering power to loads (F) prevents noise related problems in a closed loop system as it allows for more accurate measurement of the sense voltage.

The requirement is to implement this at the schematic to drive the PCB board so that both Force and Sense signals can be identified and constrained independently and still allowed to be physically shorted in layout.

Before you begin, download the Database from Cadence Online Support. Click Here to Download.

Audience

Electrical Engineers and PCB Designers using Cadence Allegro tool set and implementing Kelvin connection using Force (F) and Sense (S) signals.


Flow Overview

This flow is based on a special logical symbol, which is created and saved in a library.

The force sense library symbol(s) has shorting schemes defined within the symbol definition which allows the engineer to seamless define the nets to be force sense.

When placed in a schematic, will short at least two sense lines to a force line. During packaging, separate nets are generated and flow to the PCB. As shown in the image four sense lines are connected to a force line using the library symbol.

Inside PCB Editor, a Symbol gets placed, and defines the location of the short for force and sense signals.

To use this flow create a schematic symbol and footprint symbol as shown below.

DE HDL library requirements to define Force Sense symbols

Use the **PIN_SHORT** property on the logical symbol. The PIN_SHORT property uses the logical pin name list in the value. At the time of packaging, based on CPM directive (see page 10), the packager acknowledges the PIN_SHORT property value and creates NET_SHORT property with value containing the physical net names connected to the logical pin names.

This can be validated by reviewing the "pstxnet.dat" file for "NET_SHORT" property on the pin as shown in the example. This file is located in the "projectname/worklib/test/package" directory.

NET_NAME

'FORCE2'

'@TEST_LIB.TEST(SCH_1):FORCE2':

C_SIGNAL='@test_lib.test(sch_1):force2';

NODE_NAME S2 1

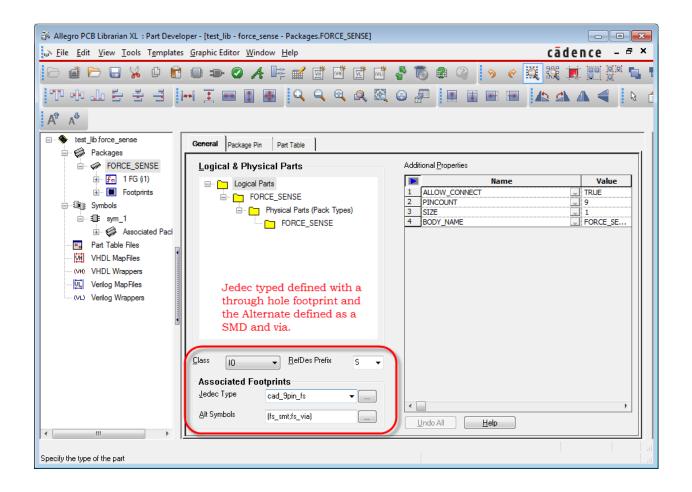
'@TEST_LIB.TEST(SCH_1):PAGE1_I13@TEST_LIB.FORCE_SENSE(CHIPS)':

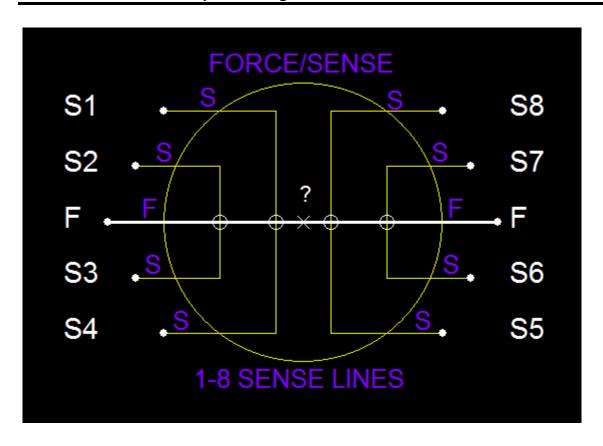
'F':NET_SHORT='FORCE2:SENSE21:SENSE22',

CDS_PINID='F';

The symbol needs to be ignored from Bill of Material (BOM) utilizing the BOM_IGNORE = TRUE attribute and is associated to a footprint required to make the connection on board.

Example Schematic Symbol


The Force-Sense symbol can connect one force line with one or multiple sense lines. In the example symbol provided, the Force & Sense symbol has been built to accommodate from 1 to 8 sense lines. PIN "F" is defined as pass-thru pin, so the total numbers of pins on the symbol are 9.


PIN_SHORT should be defined on symbol as-

PIN_SHORT=F:S1:S2:S3:S4:S5:S6:S7:S8

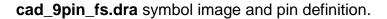
Implementing Force Sense Connection

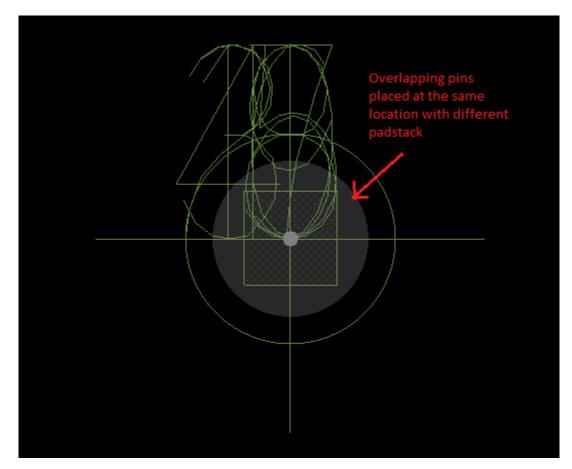
🗱 Allegro PCB Librarian XL : Part Developer - [test_lib - force_sense - Symbols.sym_1]	
Eile Edit View Iools Templates Graphic Editor Window Help	cādence – 🖶 🗙
D 🗴 🖻 🖬 🖌 🗘 🖻 🗊 🗢 ⊘ 🛧 📭 🖬 🖬 🖬 🗳 🖏 🖓	ッ 《 👯 🌉 📰 🖉 🐂 🐂 🖷
17 사 쇼 흔 충 크 [HH 王 🖬 🖪 🔍 윽 윽 욕 쯶 @ 🖉 🗐 🖩	■ ■ IA A ◀ 👂 🕈 ๖ Lo 🗞 🖥 🕹 🤤 🤹
A ⁹ A ⁰	
Ceneral Symbol Pins Find Pin_SHORT and BOM_IGNORE properties added as definition of schematic part Properties	FORCE/SENSE S1 S2 S2 S S3 S3 S S3 S S5 S5 S6 S4 S5 S5 S5 S5 S5 S5 S5 S5 S5 S5

Footprint Library

There are multiple ways to short the signals on the board. The most common methods are-

- Shorting the signals on different layer or on same layer of board. This can be achieved by defining the footprint with Pin 1 defined as a through hole pin/pad combination, and a specified drill diameter. The remaining pins would be defined using a smaller diameter pad and a drill of zero. These would be positioned exactly on top of pin 1. Connections using this part could occur on any layer of the PCB. In the sample database a footprint "cad_9pin_fs" is defined for this.
- 2. Shorting the signals on a single layer, without a through hole part, can be achieved with a SMD pad. This can be achieved by defining the footprint with just the SMD pads for all the pins in the symbol. In the sample database a footprint "fs_smt" is defined for this. This could also be defined as an alternate symbol for the above defined footprint.


NOTE: If using an SMD pad is required on internal layers, the database needs to be set up with Embedded Layers. Setup>Embedded Layer Setup can be accessed to accomplish this. This would require a Miniaturization Option license.


Example Footprint

The above symbol for Force-Sense with eight sense and a force pin should be associated with a footprint with nine pins at the same location. The pins are defined with the padstack -

Pin 1: 20 mil pad and 8 mil drill hole

Pins 2 - 9: 2 mil pad and 0 mil drill hole

I Show Element	x
<u>F</u> ile <u>C</u> lose <u>H</u> elp	
Item 7 < PIN >	*
class PIN	
location-xy: (0.0000 0.0000)	
pin number: 8	
not on a net Padstack name: CAD_ZERODRILL_SMT Type: through	
padstack defined from TOP to BOTTOM padstack rotation: 0.000 degrees	
Number of connections: 0	
Item 8 < PIN >	
class PIN	
location-xy: (0.0000 0.0000)	
pin number: 2	
not on a not	
Padstack name: CAD_ZERODRILL_SMT	
padstack defined from TOP to BOTTOM padstack rotation: 0.000 degrees	
Number of connections: 0	
Item 9 < PIN > Different Padstack used at the same	
class PIN location	
location-xy: (0.0000 0.0000)	
pin number: 1	
pot on a not	_
Padstack name: CADCIR_0820 Type: through	=
padstack defined from TOP to BOTTOM padstack rotation: 0.000 degrees	
Number of connections: 0	
~ ~ ~ ~ ~ ~ ~end-of-file~ ~ ~ ~ ~ ~ ~	
	T

Front to Back Flow Environment Requirement

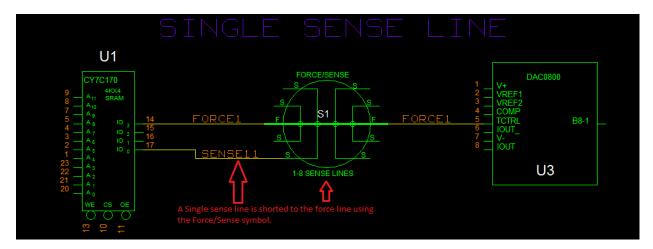
To transfer the NET_SHORT property to the netlist, and to board file based on the PIN_SHORT defined on the logical symbol, define the following in the project cpm file or in the site.cpm file in the packager section ("PKGXL") as.

START_PKGXL

• • •

PROCESS_PIN_SHORT_PROP 'ON'

...


END_PKGXL

Schematic Capture

Once the logical symbol is defined, then the logical schematic can be created in Allegro Design Entry HDL (DE HDL).

Example Schematic

In this case one Force signal is shorted to one sense line using the Force/Sense symbol from the library.

Constraint Assignment

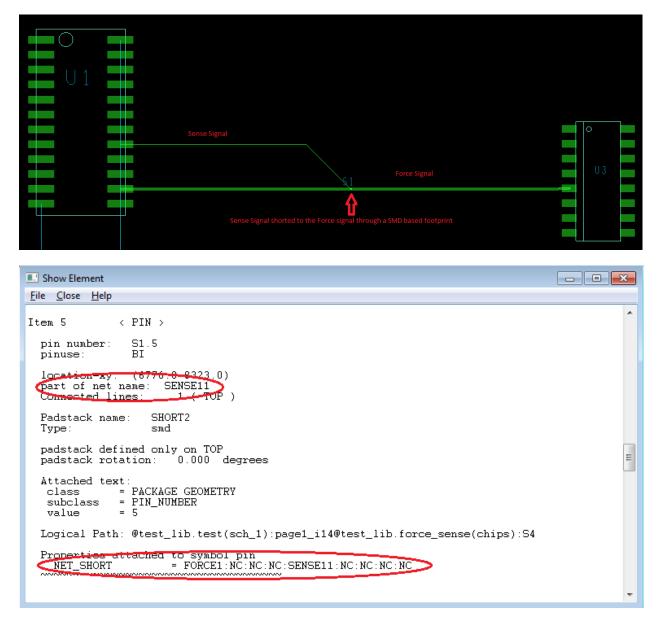
The use of this flow, allows for individual net constraints to be assigned and used in the front to back flow. As an example, Net Schedule, Max Propagation Delay and trace width can be defined.

Max Propagation Delay

Pin Pairs can be created, then used to control location of short on FORCE.

<u>File Edit O</u> bjects <u>C</u> olumn <u>V</u> iew A <u>n</u> al	/ze <u>A</u> udit	To	ols <u>W</u> indow <u>H</u> elp										cādenc
3 X D A 🧐 🐫 🗖			💽 🌈 🖓 🕻)e 🔚 🍊 🛦	🖬 👘 🔆	_ ⊷	Yo	Y6 ¥	a 🖑 🕯	ĩ, T	× 1	⊨ _ ⇒ .	
orksheet selector	netsh	ortb	pard										_
Electrical			Ohlasta	Referenced		Pin Delay			Prop Delay		Prop Delay		
Electrical Constraint Set		Objects		Electrical CSet	Pin Pairs	Pin 1 Pin 2		Min Actual		Margin	Max	Actual	
📄 🜆 Signal Integrity	Type S Name					mil	mil	ns	marginns	ns	Actual	Margin	
Reflection/Edge Distortions	*	*		*	*	*	*	*	*	*	*	*	*
Xtalk/SSN	Dsn		netshortboard										6.4 MIL
🗄 🖣 Timing	Net		- FORCE1	PROP_SCHEDULE					×***	~~~~			8 MIL
🗄 📲 Routing	PPr		S1.1:U1.14									1392.0 MIL	8 MIL
Wiring	PPr		\$1.1:U3.5								300.0 MIL	231.5 MIL	62.5 MIL
Vias	Net		FORCE2	PROP_SCHEDULE									10.8 MIL
Impedance	PPr		\$2.1:U2.14								1400.0 MIL	1389.2 MIL	10.8 MIL
Min/Max Propagation Delays	PPr		\$2.1:U4.5								300.0 MIL	240.3 MIL	59.7 MIL
Total Etch Length	Net		- FORCE3	PROP_SCHEDULE									29.5 MIL
Differential Pair	PPr		\$4.1:U5.14								1400.0 MIL	1361.0 MIL	39 MIL
	PPr		\$4.1:U7.5								300.0 MIL	270.5 MIL	29.5 MIL
Relative Propagation Delay	Net		FORCE4	PROP_SCHEDULE									6.4 MIL
🗄 🕼 All Constraints	PPr	Ц.	\$3.1:U6.14								1400.0 MIL	1393.6 MIL	6.4 MIL
🗁 Net	PPr	н.	\$3.1:U8.5			_					300.0 MIL	258.7 MIL	41.3 MIL
🗄 📲 Signal Integrity	Net	н.	SENSE11										
🗄 💵 Timing	Net	-	SENSE21										
🗄 🜆 Routing	Net	-	SENSE22 SENSE31										
Wiring	Net	-	SENSE32										
Vias	Net	Η-	SENSE33							*****			
Impedance	Net	-	SENSE41										
Min/Max Propagation Delays	Net	-	SENSE41							 			
Total Etch Length	Net	-	SENSE43					-		*****			
Differential Pair	Net	-	SENSE44						<u> </u>				

Primary Width


To control the width for FORCE and SENSE signals separately.

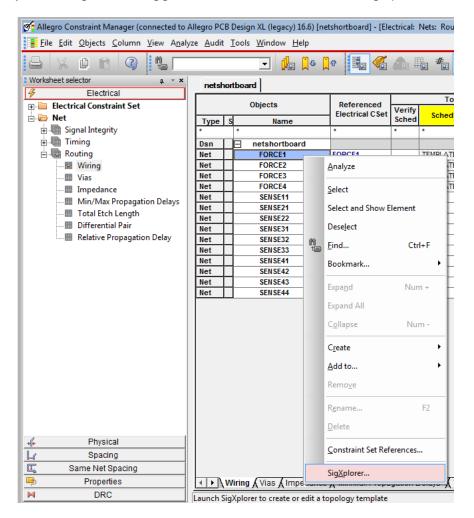
Туре		c Phase		Min Line		
	Objects	Antural	Manualia	Spacing	Primary Gap	Primary Widt
		Actual	Margin	mil	mil	mil
*	ż	*	*	*	*	×
Dsn	😑 test					
Net	FORCE1			8		12.0000
Net	FORCE2			8		12.0000
Net	FORCE3			8		12.0000
Net	FORCE4			8		12.0000
Net	FORCE5			8		12.0000
Net	SENSE11			8		
Net	SENSE21			X		
Net	SEN SE22			X		
Not	CENCE24		400000000	히		1

Also different constraints like line impedance, relative propagation can be used to meet the specific requirements.

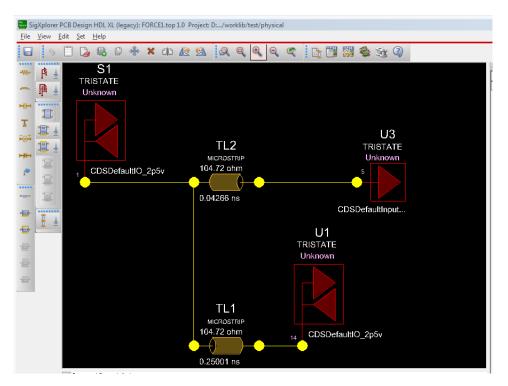
Board Layout

Once the logic information is imported in the board, the NET_SHORT information is transferred to the pins of the footprint to which Force/Sense symbols is associated.

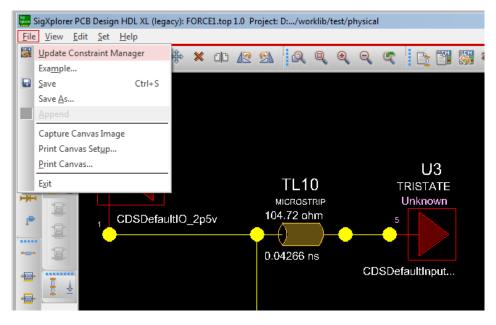
When interactively routing the F & S nets, it is best if you start from the Sense Pin and work from there, completing each net before moving to the next. There is an issue currently, where if you do not complete the interconnect and leave a dangling stub, when you select the next net to route, your stub gets truncated back into the Sense Pin.


Once routed no DRC is generated for the short because of the NET_SHORT defined on the pin.

Allegro PCB Router


Allegro PCB Router has been enhanced to connect the Sense Pins that have the NET_SHORT property assigned.

Net Schedule


To ensure Allegro PCB Router connects in the expected manner, it is suggested to perform a Net Schedule on the Force net. If there are many such connections within your design, it is suggested to exact the net into SigXp:

Schedule the net on the SigXp canvas:

Then reapply in Allegro using Update Constraint Manager.

Apply the Referenced ECSet to the remaining Force nets within the Allegro PCB design.

If using Allegro PCB Router, when more than 2 or 3 Sense lines are required, it may be a good idea to schedule the nets on different layers of the design.

Identifying intentional short

Allegro PCB Editor reports the pins and x,y location with NET_SHORT property in the IPC356 netlist.

Example IPC-D-356 netlist

C PIN X+070780Y+054660 FORCE4:NC:NC:SENSE41:SENSE42:SENSE43:NC:SENSE44:NC

C PIN X+070780Y+054660 FORCE4:NC:NC:SENSE41:SENSE42:SENSE43:NC:SENSE44:NC

C PIN X+070780Y+054660 FORCE4:NC:NC:SENSE41:SENSE42:SENSE43:NC:SENSE44:NC

C PIN X+071280Y+067710 FORCE3:NC:NC:SENSE31:SENSE32:SENSE33:NC:NC:NC

Miscellaneous Notes

The use of this flow could potentially cause issues downstream in your manufacturing process. Currently there is no direct way to communicate shorted nets to validation software such as Valor. It would be up to the user to manage the data accordingly to those vendors.

It is recommended to create and use a standard and unique reference designator for the force and sense physical symbol, ex. SP_1 (Shorting Pin). This would aid in search, and report generation.

There is currently a CCR logged against Allegro PCB Router for the methodology used in this Rapid Adoption Kit. Ensure that you are using the latest SPB 16.6 Hotfix. At this update, there was no date assigned to the fix.

Software and License used

This Application Note and its associated database has been modified using Cadence SPB 16.6 release with Hotfix -15.

This feature was originally available in SPB 16.5 release. It was not implemented until later in the release stream. If you use this technique, use the latest SPB 16.5 hotfix available on the Cadence downloads site.

Various software and license used are-

Part Developer with PCB Librarian Expert license.

Allegro Design Entry HDL with Allegro Design Authoring license and High Speed option.

Allegro PCB Editor with Allegro PCB Designer license and High Speed option to define different Constraints.

Use the Miniaturization options, if using an SMD pad on internal layers for connection, as that layer needs to be defined as Embedded Layer.

Sample Database

Download the sample database attached to this application note. Use this database for the evaluation purpose.

Important Database Element

Force Sense Schematic symbol *"force_sense"* located in the folder - worklib\force_sense

Force Sense Footprint symbol ("*cad_9pin_fs.dra*" and "*fs_smt.dra*") located in the folder - worklib\test\physical\symbols

Allegro Design Entry HDL project file - "force_sense.cpm"

Board file - "netshortboard.brd" located in the folder - worklib\test\physical

Summary

Using this methodology will reduce the time and effort required to design a board with force and sense connections. Also, nets can be individually constrained. Pin-Pairs can be defined in the schematic to control shorting location. It allows for quick search and navigation in a schematic for these types of signals. Additionally, custom reports can be extracted based on the reference designator to assist with downstream processes.

References

The following Allegro product documentation may be found in local Cadence SPB16.5 installation (CDSROOT) and also online at Cadence Online Support.

Allegro User Guide

(\$CDSROOT\doc\algromast\algromast.pdf)

Allegro Design Entry HDL User Guide

(\$CDSROOT\doc\concepthdl\concepthdl.pdf)

Allegro Platform Properties Reference Guide

(\$CDSROOT\doc\propref\propref.pdf)