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Abstract

Gaze tracking is a field within computer vision that has a large number of possible areas of ap-
plication. However, much of the software available for gaze tracking is locked to licenses and/or
certain equipment that can be expensive, hard to get a hold of, intrusive for the user, or simply
impractical. The research within gaze tracking typically focuses on the theoretical models used to
perform the tracking, rather than the software implementation of it. The purpose of this report is
to make real-time gaze tracking systems more easily available to the common user and developer.
Hence, this thesis explores a possible implementation of gaze tracking using C# in Visual Studio,
with the help of a number of different libraries, only using a simple web camera as hardware. Fur-
ther, the system is analyzed and evaluated by the precision of the subject’s eye movements which
is projected on the screen. The resulting system is heavily inaccurate and imprecise but changing
and adding a few key software components such as estimating the user’s head pose could vastly
improve the accuracy and precision of the system.

Keywords: computer vision, gaze tracking, web camera, desktop environment
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Sammanfattning

Blickspårning är ett fält inom datorseende som har ett stort antal möjliga tilläpmningsområden.
Däremot så är mycket av den tillgängliga mjukvaran låst till licenser och/eller viss utrustning
som kan vara dyr, svår att få tag på, påträngande, eller helt enkelt opraktisk. Forskningen inom
blickspårning fokuserar typiskt sett på den teoretiska modellen som beskriver hur spårningen går
till, snarare än hur det implementeras i mjukvara. Syftet med den här rapporten är att skapa ett
blickspårningsprogram som körs i realtid för att underlätta och göra det mer tillgängligt för andra
användare och utvecklare. Därför utforskar den här uppsatsen ett sätt att implementera blick-
spårning med C# i Visual Studio, med hjälp av ett antal olika kodbibliotek, och endast en enkel
webbkamera som hårdvara. Systemet kommer även att bli analyserat och evaluerat med hänseende
till träffsäkerheten i testpersoners ögonrörelse som projiceras på skärmen. Det resulterande syste-
met har en oerhört låg träffsäkerhet och exakthet, men genom att ändra några nyckelkomponenter
i mjukvaran, så som att uppskatta hur användarens huvud är riktat, så kan systemets träffsäkerhet
och precision ökas dramatiskt.

Nyckelord: datorseende, blickspårning, webbkamera, skrivbordsmiljö
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Chapter 1

Introduction

1.1 Background

Gaze tracking is a field that is contained by the broad category of computer vision. Computer
vision entails anything that allows a computer to capture images of reality and process it in some
way [1]. This can be done in a myriad of ways, by using sensors that collect data about the
surroundings through either light or sound. Gaze tracking is a field that concerns itself with,
through the usage of some sort of computer vision that is based in sensing light, finding where a
user’s vision is directed. In other words, gaze tracking is about finding out where eyes are looking.

Gaze tracking can be used for numerous areas of application with a broad variety of purposes.
It can be used as a tool for controlling computers either in order to provide a more immersive
experience for the user or to allow disabled people to use the computer who otherwise would not
be able to. Another area where gaze tracking is useful is in education, where the tracking data
can be used to record, evaluate and compare the reading patterns of students. By doing this, one
could identify students that have trouble reading and support them with additional resources so
that they do not fall behind in their education [2].

1.2 Problem

While there have been a plethora of different implementations of gaze tracking based on various
equipment and methods, the accessibility of such implementations is scarce for the common user.
Many of the systems that are available either require intrusive equipment, expensive equipment
and/or licenses that may not be practical for all areas of application of gaze tracking. There has
been a lot of purely theoretical papers on how to perform gaze tracking, that do not touch on
the subject of software implementation. How can one implement a gaze tracking software system,
using only a simple web camera as well as free and publicly available software resources?

1.3 Purpose

The purpose of this report is to make real-time gaze tracking systems more easily available to the
common user and developer. By showing the different design choices and software tools that are
required and available to the public, one can use this report as a tool to either fully recreate the
described system or as inspiration to create something similar.

1.4 Goal

The goal of this thesis project is to develop a working real-time gaze tracking system. The system
must be able to run where the only hardware being used is a web camera that is capable of recording
video with a resolution between Full HD and 4k.

3



4 CHAPTER 1. INTRODUCTION

1.5 Benefits, ethics and sustainability
There are many possible benefits that may result from improving the accessibility of gaze tracking.
Since its possible applications include analyzing a person’s reading, a system like the one described
in this report could, for instance, provide benefits to education by adapting teaching approaches to
individual students’ test results. While there are many areas of application that can be of benefit
to society, there are also ways to abuse the technology. In a dystopian society, gaze tracking is used
to control and surveil the people. This would be a grave infringement on the personal integrity of
the people and could contribute to the power of a totalitarian government. Despite this potential
abuse of the technology, contributing to the common person’s understanding of gaze tracking can
decrease the room for abuse, as people realize the power of the technology and consequently actively
resist its abuse.

An aspect of sustainability exists when considering the development and usage of gaze tracking
systems. All forms of digitization inevitably lead to further dependency on electricity. Thus, one
ought to be careful when deciding what applications gaze tracking systems are used for. One
might want to avoid applications where a sudden shutdown of the system can have disastrous
consequences.

1.6 Methodology
In this report, the method consists of a literature study, a method for estimating the user’s gaze,
the choice of development environment, and an evaluation method to analyze and evaluate the
system itself.

The literature study is for finding relevant papers, reports, and information regarding gaze
tracking so that differentiating between high-quality gaze tracking methods and choosing one be-
comes doable. The chosen method ought to fulfill the purpose and goal of this thesis. That is, a
simple implementation of a real-time gaze tracking system which only makes use of a single web
camera and also provides an understandable description of how the implementation was done.

The method for estimating the user’s gaze is the theoretical method that is used and followed
in this report to be able to implement the gaze tracking system with the specified constraints. The
theoretical method that is used in this report is a feature based gaze tracking approach, that uses
three phases and utilizes facial recognition as well as image manipulation to get an estimation of the
gaze vector. The estimated gaze vector is mapped to the screen with a second-degree polynomial
transformation [3].

The development environment part of the method includes the choice of programming language,
integrated development environment for compilation and debugging, as well as theoretically related
choices for development.

The evaluation method is the final part of the method and is used to confirm that the im-
plementation works. Further, this step is used to extract raw data from the gaze estimation for
analysis and evaluation.

1.7 Delimitations
This thesis project’s goal is, as previously mentioned, a real-time eye tracking system that runs on
a regular computer and only makes use of a web camera. A simple web camera is desirable so that
essentially anyone can use the system without any unusual, intrusive or expensive equipment. The
system will be analyzed and evaluated by the precision of the subject’s eye movements projected
on the screen. The system will not in any particular way compensate for environmental differences,
like light or factors rooted in the user’s behavior such as head movement, since it requires a rather
time-consuming and complex addition to the method. Additionally, it is assumed that only one
user is visible to the camera during calibration and estimation so that no additional computation
is made that will unnecessarily burden the system. Finally, the system will not account for the
user wearing glasses, due to the glasses potentially producing a reflection that blocks the camera
from properly identifying the eye features.
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1.8 Outline
In this report, there are seven chapters.

Chapter one is an introduction to the thesis where the background is briefly explained and
what problem will be researched and examined. Shortly the purpose, the goal, and the method
are explained and also what connection it has to ethics and sustainability.

Chapter two is a recess of the theoretical background. The field in computer science called
computer vision and its sub-field gaze tracking is explained. Further, the different categories of
methods in gaze tracking and examples of them are presented.

Chapter three is the discussion and analysis of the methods chosen in this thesis to carry out
the project. This includes the literature study, the method that is used for the gaze tracking itself
as well as some choices related to the software development itself.

Chapter four is about the performed work. In this chapter, there is an explanation of the
different modules that were implemented as well as in what order they were implemented. This
chapter also explains how the evaluation of the system was done. I.e. what method was used to
determine how accurate and precise the system is on an average computer.

Chapter five presents the final results of the thesis. It displays how the resulting system looks
as a program and explains how it works. It also shows how the evaluation of the system went. The
total average of the evaluations is displayed and explained.

Chapter six contains analyses about the results and discusses them. In other words, what the
results mean and why they look the way that they do. Some ways the system could be changed
to improve the accuracy and precision of it are also presented.

Chapter seven presents a conclusion of the thesis in relation to its purpose and goal, as well as
potential future work that can be performed to improve the work.
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Chapter 2

Background

This chapter will explain what computer vision and its sub-field gaze tracking are about. It will
then delve into the different categories that methods of gaze tracking can be placed in, including
a denotation of instances of said categories. The first type of category is based on how intrusive
the hardware part of the system is for the user. The second type depends on the type of camera
equipment used for tracking. Finally, an explanation will be made of how computer programs can
work to recognize facial features either from still images or from a stream of video frames.

2.1 Computer vision

Computer vision is a field that, broadly speaking, concerns itself with the "methods for building
artificial visual systems that interpret and organize visual information" [1]. In other words, com-
puter vision is about keeping track of and interpreting the surroundings of the computer system.
It can be used for a plethora of different applications such as assisting vehicles or robots to nav-
igate their surroundings, building systems that aid the user in interpreting key elements of their
surroundings, and building systems that track the gaze of the user; also known as gaze tracking.

2.1.1 Gaze tracking

A lot of research has been made on gaze tracking for a long time [4]–[14] with great variation in ap-
proaches to how the tracking is done. The variation can primarily be divided into categories based
on the different equipment used. However, within each of these categories, there is a great number
of approaches one can use to build a model for describing reality. These models are primarily differ-
entiated between by their complexity since they all require different levels of mathematical ability
to implement and consequently result in different ways for the computer program to perceive the
eyes of the user.

2.2 Methods based on environment setup

There are two major setups of environment for gaze estimation methods, head-mounted environ-
ments and desktop environments. Methods that use head-mounted environments make use of some
kind of hardware (often a camera and multiple IR-LEDs) which is attached to the user’s head. The
spatial relation between the eye and the camera being static, in combination with the reflection
of the IR-LEDs, allows the system to get a consistent perception of the eye. This is in contrast
to methods that use desktop environments, which may need complicated functions to extract the
eye region before estimating the gaze. These functions are required since these methods are using
cameras that are statically positioned and therefore need some way to estimate the relative position
of the eye.

7



8 CHAPTER 2. BACKGROUND

2.2.1 Head-mounted environments
Head-mounted environments methods make use of one or multiple cameras that are attached to
the head. By attaching the hardware to the head, estimating the gaze becomes easier because one
can achieve a clear and high-quality image of the eye directly, as opposed to searching the whole
image just to extract the eye region. From this follows that there is less work spent on each frame
to detect the eye and thus to estimate the gaze. It is also not necessary to consider significant
head movements because the camera is attached to the head and moves accordingly. On the other
hand, equipment that is used for head-mounted environments is sometimes rather expensive and
hard to get a hold of. It is also not suitable for all areas of application because the equipment can
be uncomfortable and hard to wear. Since it is essential for some of the said areas that the user
experiences no hardware intrusion, an alternative is desirable.

2.2.2 Desktop environments
Methods that use desktop environments depend on one or multiple cameras that are fixed in
position and thus do not need to be attached to the user, allowing for a non-intrusive tracking of
the user’s gaze. On the other hand, since the camera’s position is fixed and the user’s relation to
the camera is innately unknown, the method needs to estimate the position of the user’s eyes in
some way.

One common way of solving this problem is to detect the user’s face region. By doing this, the
face region can be searched through to find and extract the eye region. Since the face region needs
to be detected another problem arises, which is that of head movement. Either the method needs
to assume that the user does not move the head at all during calibration and estimation, or the
method needs to compensate for such movement in its gaze estimation in some way. From this
follows that there are either higher demands placed on the user’s interaction with the program or
that a more complex implementation is needed, which is the trade-off compared to the expensive
and intrusive equipment that head-mounted environments entail.

A lot of different types of cameras can be used. Web cameras, stereo cameras, zoom control
cameras, multiple lens cameras, and control cameras are all possible options [15]–[17]. In "A low
cost webcam based eye tracker for communicating through the eyes of young children with ASD"
, Khonglah and Khosla [4] make use of a simple web camera and six IR-LEDs. In the study "Eye
gaze tracking under natural head movements", Zhu and Ji [5] uses a camera and one IR-LED while
in "Real Time Eye Gaze Tracking with 3D Deformable Eye-Face Model", Wang and Ji [6] only
make use of a simple web camera. Using only a web camera is beneficial in situations when there
is a need to be able to quickly set up the environment in different locations or when a low-cost
hardware setup is desired. A typical desktop environment is displayed in Figure 2.1.

Figure 2.1: Desktop environment
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2.3 Methods based on camera equipment

Gaze tracking estimation methods can be separated into two categories based on the type of camera
equipment that they are using. The methods of the first category only make use of a single camera
[3], [6]–[9], [18]–[20] while methods of the second category make use of more complex hardware
systems and rather expensive equipment, such as multiple IR lights and cameras [10]–[15], [21].

2.3.1 Single camera

The single camera category is further divided into two sub-categories based on what type of camera
is used. The types of cameras that exist are light-sensitive cameras and regular cameras. There are
more studies done on regular cameras than there are on light-sensitive cameras since the need for
gaze tracking with a regular camera is greater. This is primarily due to it being the significantly
cheaper alternative of the two.

Light-sensitive camera

Methods that make use of a light-sensitive camera are efficient when fast real-time image processing
is needed because their code implementations do not need to consider variations in environmental
light, which means that less manipulation of image frames is required. Regardless, the accuracy
is not so good, according to Francisco et al. [8] they managed to achieve an accuracy above 90%
which is an average gaze error deviation of approximately 5 degrees, in "Detecting eye position
and gaze from a single camera and 2 light sources", Morimoto et al. [19] the authors also managed
to get a gaze estimation error deviation of 5 degrees.

Regular camera

Methods that only make use of a regular camera such as a simple web camera or a stereo camera
are good in situations when the system needs to change location often since the setup is rather easy
to move around. From this, it follows that the environment can differ and therefore various light
conditions need to be accounted for by the method or similar light conditions must be ensured by
the user(s) of the system. The manipulation of pixels to solve varying light conditions results in a
more complex and heavier implementation, which in turn means worse performance. The accuracy
of the gaze and the error in degrees varies relatively much, based on the method that is used. This
is because the methods make use of different algorithms. "3D gaze estimation with a single camera
without IR illumination" [7] achieved an error in the estimated gaze of less than 3 degrees, while
the authors of "Eye Gaze tracking using an RGBD camera" [9] got a 4-degree gaze estimation
error. In "Remote gaze estimation with a single camera" [18] the authors managed to get a gaze
estimation error between 5 and 7 degrees. In "Real Time Eye Gaze Tracking with 3D Deformable
Eye-Face Model" [6], which uses a web camera, the system had an average gaze estimation error
of 3.5 degrees while in "Eye Gaze Tracking With a Web Camera in a Desktop Environment" [3],
they managed to get a gaze error margin of 2.27 degrees.

2.3.2 Additional IR-cameras

Methods that make use of IR-cameras have rather accurate estimations of the gaze due to extra
support from the IR-LED to produce a constraint of the corneal glints in the gaze tracking [11].
Depending on what method is used, type of cameras and how many IR-LEDs that are used,
the accuracy varies. In "A Novel Approach to 3-D Gaze Tracking Using Stereo Cameras”, Shih
and Liu [15], "A robust 3D eye gaze tracking system using noise reduction”, Chen et al. [11] and
"Remote point-of-gaze estimation requiring a single-point calibration for applications with infants”,
Guestrin and Eizenman [13] all managed to get a gaze error estimation of <1 degree. While "Eye
gaze tracking using an active stereo head”, Beymer and Flickner [10] achieved a gaze point accuracy
of 0.6 degrees but without head movement.

Anyhow, methods that make use of IR-cameras need to include different circumstances such as
sunshine and reflections and also the position between the IR lights and where the camera is. This
is because sunshine can affect the IR illumination if the camera is in direct contact with the light.
If the subject is wearing glasses there is a possibility that the glass reflects the IR illumination.
Therefore, the methods that use IR-cameras are limited to certain target groups and environments.
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2.4 Recognition of facial features
As previously mentioned, in a desktop environment the eye region needs to be found and analyzed
to estimate the gaze. Therefore the recognition of facial features is an important and useful step
in tracking the gaze. Facial feature recognition can be done in several different ways.

Active appearance model [22] is one type of method which can be used for finding and recogniz-
ing facial features. It is a linear model of different object shapes and texture variation, which has
been trained and learned from a set of training data. The training data is a set of face images com-
bined with coordinates of landmark points. Active appearance model uses square techniques and
the collected data to analyze and find the difference between the current estimation of appearance
and the target image.

Active shape model [23] is related to the active appearance model but with a disadvantage
that it only uses shape constraints together with information about the image structure near the
landmark points. Therefore it does not use all the available information, i.e. all the textures across
the target object. As a consequence of this active appearance model is slightly slower than active
shape model but is more robust and accurate because more information in the image is used.

There is also the regression tree method [24] which computes a 2D object pose with a rough
initial estimation [25]. The regression tree method also makes use of a training set but combines
it with a regression function in the cascade [26]. The regression is learned by a gradient boosting
[27] combined with an error loss function. Given a facial image and a face shape the regression
updates the shape for each iteration until the face is aligned. The regression tree method is not
just faster than active shape model but also more accurate for finding the facial features [24].



Chapter 3

Method

In this chapter, the different parts of the theoretical method are explained. First, the literature
study is described and the most essential previous work is briefly explained. Then, a description
of the method used for the gaze estimation itself is presented, split into three phases. This is
followed by an explanation of the different choices that were made in relation to the development
environment, i.e. what programming language was chosen and what other software was used to
save time and to otherwise make the implementation easier. Finally, the evaluation method that
is used to test the system is expounded.

3.1 Literature study

There are two major categories of gaze tracking estimation methods that make use of a 3D-
based geometric eye model to estimate the gaze by mimicking the structure and the function of
the human eye. The first method [11]–[15], [21] includes a complex hardware system and rather
expensive equipment, such as IR lights. The second method [3], [6]–[9], [18]–[20] only includes a
web camera to perform a 3D estimation of the gaze.

The method that is described in Section 3.2 is from the second category and was found in
the literature study after going through all the material presented in the paragraph above, in
Section 2.2, and Section 2.3. Before this method was chosen, a lot of different methods were gone
through that were, for the most part, using one or more additional IR-cameras and was thus largely
irrelevant to the desired implementation, since it is only supposed to use a single web camera in
terms of hardware. These studies were however useful for understanding the general concept of gaze
tracking and the limitations that exist for methods based on desktop environments using a single
camera. The method that was finally chosen for gaze estimation is a method that is largely based
on the one described in "Eye Gaze Tracking With a Web Camera in a Desktop Environment",
Cheung and Peng [3]. That method is the same as the implemented one, with the exception that
the implemented method does not estimate the head pose of the user. This is because head pose
estimation requires some quite heavy mathematical implementation and would thus take too much
time to implement for the scope of this project. A more detailed description of how the mapping
function is formed in calibration and used in estimation, specifically the underlying math, can be
found in a report written by Cherif et. al in "An adaptive calibration of an infrared light device
used for gaze tracking" [28], was also found through this paper.

3.2 Gaze estimation

The method that is used is based on a three-phase feature based eye gaze tracking approach that
makes use of the head position and eye features to get an accurate estimation of the gaze position
in relation to the camera’s position, originally created by Cheung and Peng in "Eye Gaze Tracking
With a Web Camera in a Desktop Environment" [3]. The implementation in this project differs
from the original method in the way that it ignores the head pose estimation, as mentioned in
Section 1.7 since it is too time-consuming for this project. Because of this, the method is presented
in a slightly different way. The first phase consists of detecting the eye region, the second phase
deals with separating the features of the eye region to estimate the inner corner of the eye as

11



12 CHAPTER 3. METHOD

well as the center of the pupil. In the third and final phase, these two reference points are used
to calculate the gaze vector. It then uses the gaze vector as input to a mapping function that
returns an estimated gaze point. Before the mapping function can be used, it must be formed
in calibration. During calibration, the third phase is used to calculate the gaze vectors for each
corresponding calibration point and establishing a common relationship between them.

A. Eye Region Detection

The first phase in the method is to detect the eye region which is done with a two-step method.
The first step in this method is a face region detection which is done using a classic histogram
of oriented gradients together with a linear classifier, an image pyramid, and a sliding window
detection scheme [29]. The second step of the method is the facial landmark detection which is
done with face alignment using an ensemble of regression trees [24]. A visualization of its result is
illustrated in Figure 3.1.

A classic histogram of oriented gradients is used to utilize different lighting conditions. This is
done by dividing the image into smaller spatial regions that can be called cells. Then a gradient
vector is generated for each cell which is represented as a histogram. Each cell is then split into
angular bins, where each bin corresponds to a gradient direction. This is to reduce the number
of vectors and store the gradients’ magnitudes. Furthermore, the cells are grouped into blocks
together with their neighbors which are normalized, to ensure that it is invariant to illumination
changes, i.e contrast and brightness. Finally, the histogram is combined with an image pyramid
that scales up the image and combines it with a trained linear classifier [30] as well as a sliding
window detection to scan across the image to detect object instances, in this case, the face region.

When the face region is detected and extracted from the image the eye region needs to be found
and extracted. This is done using feature landmark detection[24]. The landmark detection uses a
cascade of regressors which iterates until the estimated shape fits the expected shape. The cascade
predicts an update vector from the image which is added to the current shape estimation in each
step. This process is described by Equation (3.1) below.

St+1 = St + rt(I, S
t) (3.1)

Where I is the face region image, S = (XT
1 ,XT

2 ,...,XT
n ) is the shape vector and denotes the co-

ordinates of all the n landmark points in the image I. St is the current estimation of S and rt is
each regressor step. This is further combined with a trained shaped prediction data set for each
iteration but going into details how that works is outside the scope of this report.

Figure 3.1: Landmark detection

For the reader that wants to know more about Eye Region Detection and the displayed method,
a further understanding can be achieved by reading the following reports. "One millisecond face
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alignment with an ensemble of regression trees", Kazemi and Sullivan [24], "Cascaded Pose Re-
gression", Dollár et al. [26], and "Face Alignment by Explicit Shape Regression" Cao et al. [25].

B. Eye Features Detection

Landmark points are attained from the face detection according to the model of Figure 3.1 to get
the pixel coordinates of the points around the eyes. The landmark points include the inner corner
of the eyes which is one of the parameters required to estimate the gaze vector. Since it is the
second point that the gaze vector consists of, the center of the pupil must also be extracted, so that
the vector can be calculated. The center of the pupil is not one of the landmark points and must
thus be estimated in another way. The image manipulation of the eye region that aims to achieve
this is illustrated in Figure 3.2 and comes from "Automatic pupil detection and extraction", Gupta
[31].

First, the eye region image is inverted, then converted to grayscale. Finally, a binary threshold
filter is applied to it. The binary threshold filter results in a purely black and white image and the
final step is to distinguish the collections of connected pixels that are white, called blobs. After the
image manipulation has been performed, a blob detection function is used for finding the largest
blob in the eye region. Given the order of filters to the eye region, this blob should be the pupil.
The center of this blob is then used as the pupil center.

Figure 3.2: The changes in the eye region through the four stages of image manipulation, to prepare
it for pupil detection.

C. Gaze Vector and Calibration

To extract the estimated point on the screen, an estimated gaze vector needs to be calculated first.
The gaze vector is defined by the simple equation

g = pcorner − ppupil (3.2)

where pcorner is the inner eye corner and ppupil is the center of the pupil. This becomes a nearly
trivial calculation at this point since both of these points are already obtained from the previous
phases. Before the vector g from Equation (3.2) can be used to estimate points on the screen, a
mapping function must be formed in a calibration procedure. The calibration procedure provides
a set of nine different points on the screen. The number of calibration points is chosen partially to
allow for an even spread along the horizontal and vertical axis (3x3), and partially to be greater
than the number of coefficients in the mapping function described below, which is required for the
function to work [28]. One calibration point at a time is presented on the screen and an estimated
gaze vector is recorded when the next point is stepped to.

The mapping function that is used is the same mapping function used in "Eye Gaze Tracking
With a Web Camera in a Desktop Environment", Cheung and Peng [3], and is a second-degree
polynomial transformation that is derived from the method described in "An adaptive calibration
of an infrared light device used for gaze tracking", written by Cherif et. al [28]. The mapping
function can be described as follows.

For each calibration point, the corresponding estimated gaze vector is added as a row in the
matrix M, a matrix with nine rows and six columns, see figure 3.3.
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Figure 3.3: Matrix M, containing the transformed and combined coordinates of the estimated gaze
vectors from the calibration.

After the matrix has been built, its inverse is found with Equation (3.3).

M−1 = (MTM)−1MT (3.3)

MT is the transpose matrix of matrix M. Multiplying M with its transpose results in a matrix with
an equal amount of rows and columns, which makes it possible to take the inverse of it. Finally the
transpose of M is multiplied back into it to get a matrix with the inverted size of M. The coefficient
vectors can then be obtained from Equations (3.4) and (3.5).

a = M−1Xs (3.4)

b = M−1Ys (3.5)

where Xs and Ys are 9x1 vectors containing all the x and y coordinates of the known calibration
points on the screen. This entire process is essentially shorthand for applying the least squares
method to minimize the correction between the gaze vectors and the calibration points. Estimating
a gaze point based on a gaze vector can then finally be achieved with Equations (3.6) and (3.7).

Sx = a0 + a1vx + a2vy + a3v
2
x + a4vxvy + a5v

2
y (3.6)

Sy = b0 + b1vx + b2vy + b3v
2
x + b4vxvy + b5v

2
y (3.7)

Here, (Sx, Sy) are the estimated coordinates on the screen, (vx,vy) is the gaze vector, and (a1, ...,
a5) and (b1, ... , b5) are the coefficient vectors from the mapping function found in Equations (3.4)
and (3.5).

3.3 Development environment

The chosen programming language is C# and Visual Studio is the chosen IDE. C# comes with
the benefits of being an object-oriented language which provides a clear modular structure of the
program, makes it easier to maintain, and allows for faster development because of rich libraries
[32]. At the same time, using C# allows for the use of ported libraries from C and C++.

The use of Visual studio together with C# makes it easy for the developer to start building
an application without thinking about the graphical user interface that much since Visual Studio
provides some quick and practical tools to build it - a great foundation to build and test a system
prototype [33]. Moreover, there are many different libraries that are supported in C# for instance
for image handling, face detection, and eye region detection. These facilitate the whole implemen-
tation of handling image streams from the web camera, finding the eye region and estimating the
gaze vector.

Git is a tool for version control and it also provides the ability to share code between developers
through services like GitHub. Therefore a repository on GitHub has been used for this project,
making it easy to work on different parts of the implementation at the same time.
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3.4 Evaluation method
The evaluation part of the method exists to establish that the implementation works and further,
to be able to extract the raw data from the gaze estimation so that it can be compared to the point
where the test subjects supposedly are looking in reality. This is done to investigate and analyze
how accurate the system is.

The testing setup and environment should be the same for each subject so that the conditions
are the same for everyone. Therefore should all the testings be performed in a rather close period
of time due to variance in brightness. The distance between each subject and the screen should be
approximately 45 cm.

The choice of subjects should be based on a variance in their eye color and eye shape. The
testing phase happens according to the following steps. 1. Each subject starts by looking at the
displaying video stream to be able to place themself in the middle of the image. 2. A calibration
stage is performed together with a supervisor. This is done in the following way, 9 different points
are shown at the screen, one at a time. The subject should then carefully look at each point while
keeping their head steady until the process is done. 3. An estimation stage, each subject looks at
nine new points and performs a similar procedure as in the calibration stage. These nine points
can then be recorded and written to a file along with the estimations for further evaluation.
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Chapter 4

Implementation and testing

Chapter 4 starts, with Section 4.1, by breaking down the implementation process and how the
desired system is divided into different modules, to get a clearer understanding of the order of
implementation that the system requires. Then, the implementation of each module is described,
including the different libraries and data structures that are used. In the second section of this
chapter, Section 4.2, the work that was performed to test and evaluate the system is explained.
The circumstances of the testing are laid out and the testing process is explained.

4.1 Implementation

The implementation of the system is divided into five modules. Gaze estimation, mapping function,
calibration, feature detection, and image handling. The relationship between these is described in
Figure 4.1 by the arrows that point from each module to its respective dependencies. The goal
with the implementation is to implement a live gaze tracking/estimation system. To be able to
implement live gaze estimation there is a requirement for being able to find an estimated gaze vector
as well as there being a mapping function that projects the vector on the screen. To accomplish
this, the system must be able to detect facial features so the gaze vector can be calculated. It
also depends on forming the mapping function that describes the relationship between the user’s
estimated gaze vector and points on the screen. In order for this mapping function to be formed, it
needs to be calibrated with known points on the screen combined with their respective estimated
gaze vector. For the calibration to work, it needs to generate the points on the screen but also
needs the gaze vector estimation (feature detection module) to be implemented. In other words,
the gaze estimation, the mapping function, and the calibration are all dependent on the module of
feature detection. To be able to implement the feature detection, the program needs to be able to
handle images from the web camera’s video stream as individual image frames. The part that all
other parts of the program depend on is thus the image handling, which consequently has to be
implemented first.

Figure 4.1: Topological implementation order. An arrow points at a dependency of the module it
starts from.
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A. Image handling

By using the AForge library [34], all camera devices connected to the computer as well as their
supported modes (resolution, frame rate, and color depth) can be found and selected between.
The library provides a frame event handler that is run every time the program receives a new
frame from the camera, which happens at a frequency according to the selected frame rate. In the
handler, an image frame from the camera is represented as a Bitmap object which is used to read
from and write to individual pixels. The Bitmap object is cropped to half of its width and half of
its height since the face is the relevant part and is typically positioned around the center of the
image. By doing this, the number of pixels searched through becomes substantially reduced and so
the processing time too. This cropping is performed using a filter function from the AForge library.
Further, the Bitmap object is used in the feature detection function to extract an estimated gaze
vector.

B. Feature detection

Feature detection is the part of the program where the gaze is estimated. To estimate the gaze, the
face region and consecutively the eye region need to be extracted first. Both of these things can be
accomplished with the DlibDotNet library [35]. The DlibDotNet library handles all its image data
with its own Matrix object. Since the AForge library uses a Bitmap object, a conversion between
the Bitmap object and the Matrix object is necessary and is thus the first thing to implement
in feature detection. DlibDotNet face detection makes use of the regression tree shape prediction
method described in Section 2.4. It uses training data to match the shape of the face and the
shape model it uses is illustrated in Figure 3.1. In this implementation, the training data that is
used is obtained from the publisher of DlibDotNet through a link in the source code. By using
this data, time is not wasted on making an own set of training data that most likely would not be
as accurate as the one that the publisher provides.

Landmark points are attained from the face detection according to the model of Figure 3.1 to
get the pixel coordinates of the points around the eyes. The landmark points include the inner
corner of the eyes which is one of the parameters required to obtain the estimated gaze vector.
Since it is the second point that the gaze vector consists of, the center of the pupil must also be
extracted, so that the vector can be calculated. The manipulation of the eye region is illustrated in
Figure 3.2. First, the eye region image is inverted, then converted to grayscale. Finally, a binary
threshold filter is applied to it. All of this image manipulation is done with AForge library filter
functions applied to the Bitmap object, based on pixel locations of the landmark points, found in
the DlibDotNet Matrix. The binary threshold filter results in a pure black and white image and
the final step is to distinguish the collections of connected pixels that are white, called blobs. After
the image manipulation has been performed, a function from the AForge library is run to find the
largest blob in the eye region. Given the order of filters to the eye region, this blob should be the
pupil. The center of this blob is then used as the pupil center. With the coordinates of the inner
eye corner as well as the pupil center, the estimated gaze vector is calculated to be used in the
calibration and gaze estimation modules.

C. Calibration

The calibration is the module that forms the mapping function, which in conjunction with the
feature detection is what allows the live gaze estimation to be done. The calibration produces
nine points evenly spread horizontally and vertically over the screen. After the points have been
produced, they are kept in a list that is shuffled so that the order they are displayed in is random.
When a calibration point is displayed and the program moves to the next point, the most recent
estimated gaze vector is added as a row to the matrix M, as described in Section 3.2. M is
represented using a Matrix object from the library Math.NET Numerics [36]. When all the nine
points have been shown and the last one is removed from the screen, all the rows of the matrix
have been filled with gaze vector data. At this point, the Math.NET Numerics library is used to
perform the matrix operations described in Equation (3.3). The resulting inverse matrix of M is
then used in matrix multiplication respectively with the matrices that hold the x- and y-coordinates
of the calibration points on the screen. The result of the multiplication is the coefficient vectors a
(Equation (3.4)) and b (Equation (3.5)).
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D. Mapping Function

The mapping function translates an estimated gaze vector to a point on the screen by multiplying
it with the coefficient vectors a and b. The function takes a gaze vector with an x- and y-
component which is multiplied with the coefficient vectors and added as shown in Equations (3.6)
and (3.7). The estimated gaze point on the screen is obtained by combining the results from the
two multiplications, each representing one of the two coordinates.

E. Gaze tracking

Gaze tracking is the part of the system where the actual translation to the screen happens. When
all of the above modules are implemented, the gaze tracking module can use the live feature
detection to get an estimated gaze vector from each image frame provided by the image handling
module. The vector is used as the argument to the mapping function which returns a point on the
screen. The estimated gaze point is displayed on the screen and the gaze tracking is done.

4.2 System evaluation
The evaluation of the system includes two hardware pieces, a web camera for producing the image
stream and a computer to run the system. The camera that is used is a Logitech Brio web camera
with a resolution of 2560 x 1440 pixels and a frame rate of 30 fps. The camera is installed on top
of the monitor of the computer and at its horizontal center. The computer used is a laptop with
the following specifications:

• Monitor: 14" 16:9, 1920 x 1080 pixels

• Operating system: Windows 10 Home 64-bit

• CPU: Intel R©CoreTM i7-7500U @2.70GHz

• RAM: 8GB DDR4 2133MHz

• Graphics: Intel HD Graphics 620

The same testing location is used for all subjects within one hour, during which the light conditions
are roughly the same. The position in the room is also the same for everyone. The distance between
each subject and the camera is approximately 45cm.

There are six individual subjects. They were chosen based on their availability but a variance
in eye color, eye shape, and the visibility of the subject’s eyes was still maintained. The tests were
performed according to the following process.

Each subject starts by looking at the displayed video stream from the web camera to make
sure that their face is around the center of the image. When they are sitting in the right position,
approved by a test supervisor, the calibration stage is started.

Starting from the calibration stage, each subject tries to hold their head more or less completely
still. During calibration, one calibration point shows up at a time and the subject signals when
they start to look at it. The test supervisor waits a short moment to make sure the camera is not
lagging behind or at the very least catches up, then presses a button which saves the estimated gaze
vector of the subject and moves on to the next point. After the calibration is done, the estimation
can start since the mapping function has been formed.

In the estimation stage, each subject looks at the same nine points as in calibration, one point
at a time. When the subject signals that their gaze is locked on to the point, two seconds pass
before the test supervisor presses a button that writes the 15 most recent gaze point estimations
to a file. The x- and y- coordinates of the actual point on the screen as well as of the estimated
gaze point were written to the file, with each datum separated by a comma. Each estimation
was separated by a line break. When all the nine points have had their 15 estimated gaze points
written to the file, the test is complete for that test subject. The raw data in the file is opened as
comma-separated values in Google Sheets where each column gets to represent either the x- or the
y-coordinate of the actual and estimated points respectively.

The results are further presented in Section 5.2.
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Chapter 5

Result

This chapter consists of two sections. The first section presents the prototype that resulted from
the project work, describing its different parts and how to use it. The second section shows the
results from the system evaluation, as described by Section 3.4 and 4.2.

5.1 Final prototype

The system itself of the final prototype consists of four parts. The start menu, the calibration
menu, the calibration state, and the gaze estimation.

The first part is the start menu. It is demonstrated in Figure 5.1 and consists of four different
functions. Number 1 and 2 in Figure 5.1 are the start and stop camera functions. Their purpose
is very straight-forward, they start and stop the camera and mode that is currently selected.
Number 3 in Figure 5.1 is the "Supported Cameras" function which lists all different cameras that
are connected to and supported by the system. Number 4 in Figure 5.1 is "Supported Modes"
and lists all the different settings available for the chosen camera. Its numbers are, in order of
occurrence, resolution, frame rate (frames per second), and color depth (number of bits). Number 5
in Figure 5.1 is a mirror function that simply mirrors the image stream, i.e. reflects it horizontally.
Number 6 in Figure 5.1 is "Face detection" which starts the process of detecting the face, landmark
detection, eye region detection and then extracting the gaze vector. This box must be checked for
the calibration and gaze tracking to work. Number 7 in Figure 5.1 is a crop function that crops
the image stream to half of its width and half of its height, in order to reduce the processing time
spent on each frame. Number 8 in Figure 5.1 is the "Open calibration" function which opens a
new window for the calibration procedure.

Figure 5.1: Start Menu. Start and stop camera, choice of camera, resolution, fps, color depth,
filters, face detection, and calibration alternatives.
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The "Calibration Menu" section which is not demonstrated in any figure only has two options.
One is "Start calibration" which initiates the calibration process. The other, "Exit calibration",
leads back to the start menu in Figure 5.1.

The "Calibration State" which is demonstrated in Figure 5.2 is when the calibration happens
and should be used as follows. Upon pressing the spacebar button, it starts by showing one out
of the nine calibration points chosen randomly, which can be seen in Figure 5.2. When the user
is looking at the point, the user (or a supervisor) should press the spacebar button to continue to
the next calibration step. The program will then randomly select a new point out of the remaining
ones and show it on the screen. The process is repeated until the user’s eyes have been calibrated
with respect to all nine points. Pressing the escape button at any point during calibration will
prompt the user with a dialog box that asks if the user wants to cancel the calibration, warning
them that any data recorded will be lost. If the user selects ’Yes’, the calibration ends and returns
to the "Calibration Menu" state. If the user selects ’No’, the calibration resumes as if nothing
happened. When the calibration has stepped through all the nine calibration points the program
automatically enters the "Gaze Estimation" state as displayed in Figure 5.3 and described below.

Figure 5.2: Calibration State.

The final part of the system is the "Gaze Estimation" state, which is demonstrated in Figure
5.3. The figure illustrates the real-time estimation of the user’s gaze, which is projected onto the
screen and displayed as a green square, see Number 1 in Figure 5.3.

Figure 5.3: Gaze Estimation
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5.2 Estimation evaluation
Below, the results of the estimation tests that were described in Section 4.2 are presented.

The results contain 810 data points, spread on six different test subjects that each partook in
one calibration and one estimation session each, for a total of 135 estimations per test subject (15
estimations per test point with nine test points per estimation session).

The raw data of each subject is used to calculate the difference between the actual points and
the estimated points in the horizontal and vertical directions, as described by Equations (5.1) and
(5.2) respectively.

diffx = actualx − estx (5.1)

diffy = actualy − esty (5.2)

Further, the data resulting from these two equations describe how far away the system’s es-
timations are from the actual gaze points in the two horizontal and the two vertical directions
respectively. A negative value means for the x-coordinate that it is estimated too far to the left
and for the y-coordinate that it is estimated too far down. A positive value then obviously means
for the x-coordinate that it is estimated too far to the right and for the y-coordinate that it is
estimated too far up.

The resulting data is plotted in scatter diagrams where the center represents the actual screen
point and the blue data points represent one estimation. However, 149 (around 18.4%) of the 810
data points are excluded from the diagrams because the estimations are more than 2000 pixels
away from the screen point either in the horizontal, the vertical, or both directions. The diagram
for each test subject as well as the one with the combined data can be found in Appendix A.

In Figure 5.4 the estimated gaze points of all the test subjects combined are plotted in relation
to the center. The center of the diagram represents the actual position of the known screen point
during the tests. The plotted points represent the relative position of the estimated points to the
point the subjects were supposedly looking at.

Figure 5.4: The offset in pixels for all the subjects’ estimated gaze points in the x- and y-direction
compared to the actual screen point.

This figure provides a decent overview of how the spread of estimations looks like, among
the points that are within 2000 pixels of the center in both directions. However, to get a more
concrete and quantitative understanding of how far the estimations are from their respective point
on the screen, the distance for each point (including the ones that were excluded in Figure 5.4) is
calculated, according to Equation (5.3).

distance =
√

(diffx)2 + (diffy)2 (5.3)

The resulting data are grouped into subsets of data in intervals based on powers of 2, starting
at 0 to 25 and ending at 215. These ranges are chosen so that there is a reasonably proportionate
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division of frequencies among the ranges. These subsets of data allow for plotting a histogram
where the y-axis describes the number of data points that fall within a certain range of distances
and the x-axis represents all these different ranges. The resulting histogram is shown in Figure 5.5.
Each column represents the number of distances that are greater than the number on their left
and less than or equal to the number below them. E.g. the tallest column represents the number
of points that were at a distance greater than 512 pixels but less than or equal to 1024.

Figure 5.5: A histogram describing the distribution of distances (pixels) among the estimations
from their respective points on the screen that they are supposed to be estimating.

Finally, the mean and median are calculated for Equations (5.1) and (5.2). The resulting
means give a difference of approximately 262 pixels for the x-coordinates and -487 pixels for the
y-coordinates. The resulting medians end up being 33 pixels and 52.5 pixels respectively.



Chapter 6

Discussion and analysis

Chapter 6 consists of two major sections that provide an analysis of the results presented in Section
5.2 and respectively, a discussion about the different parts of the project as well as how they may
have impacted the results.

6.1 Analysis of results
Not much analysis of the results is required to realize that the system is working extremely poorly.
While Figure 5.4 may give the impression that the offset generally is not that awful, one must
consider the excluded data points, as well as the points that spread along the edges of the scatter
diagram since they are also greatly imprecise estimations. Figure 5.5 gives a much clearer picture of
how poorly the system is performing. Several hundred data points (around 40% of all estimations
to be more exact) end up in the intervals that are > 1024 pixels, meaning the estimations are very
likely to be outside the screen area since the maximum distance for a 1920x1080 resolution screen
from corner to corner is around 2200 pixels. Many points are even tens of thousands of pixels away
from the actual point, meaning they are several screens worth of space away from their target.

Finally, a look is taken at the respective mean of all the data that resulted from Equations (5.1)
and (5.2), briefly presented at the end of Section 5.2. Although these means suggest a slight bias
towards estimating above and to the right of the actual point, the corresponding medians tell us a
different story. If there was indeed an estimation bias, the medians ought to be of similar magnitude
and the same direction as their respective means. This is however not true since the median of the
differences in the y-direction is positive as opposed to the negative mean. Additionally, the mean
and median of the differences in the x-direction suggests that there is none or very little bias. This
is because the discrepancy between them is rather significant but more importantly, the median is
relatively close to zero.

6.2 Discussion
In this section, the impact on results will be discussed from a perspective of the gaze tracking
method described in Section 3.2, the implementation described in Section 4.1, and respectively
the evaluation performed as explained in Section 4.2. Possible solutions to the problems of these
impacts are also suggested.

6.2.1 Method
The method that is used in this report is missing a rather big section to be able to estimate the
gaze relatively accurately. That section is the estimation of a head pose. This means that there is
no compensation for head movement in this project which affects the gaze estimation and causes
gaze vector errors. Under the circumstances that were used during the evaluation test, a potential
source of errors was found. The estimated gaze is given from the pupil center and the inner eye
corner, i.e g = pcorner - ppupil. If there is a pixel deviation in the estimated gaze vector of only
one pixel, there is approximately a 120-pixel deviation on the screen.

To include head pose estimation, the AWPOSIT algorithm [3] or the POSIT algorithm [37] can
be included in the method. Both algorithms utilize the idea of using an estimation of the head
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position, such as the facial features recognition described in Section 2.4, to be able to calculate
the head movement, which in turn can be used to compensate for the error in the estimated gaze
vector.

Furthermore, there is also a huge error that can occur due to the pupil detection. The logic
seems to work in theory, but does not hold in reality. This is because the theoretical reasoning
behind the pupil detection does not consider differences in environment and eye color. For instance,
for very dark eyes it will be harder to distinguish the iris and the pupil in an environment with
little light. In contrast, if too much light is present in the environment, a reflection might occur in
the eye that obscures the pupil and consequently makes the blob detection select something other
than the pupil. Because of these reasons, the estimation of the pupil center went wrong in some
of the cases. Since the eye region, given the test conditions that were used for the evaluation,
is typically around 100 pixels wide and 30 pixels high, a faulty pupil detection can result in an
error in the gaze vector of up to around 100 pixels. This would then, in turn, result in a massive
pixel deviation on the screen since it would estimate the user’s gaze to be in a completely different
direction from reality. Additionally, because the screen only makes up a part of the user’s field of
view, detecting the pupil at the edge of the eye region would mean the user is looking far outside
of the screen region, which typically should not be happening neither during calibration nor during
estimation.

The choice of evaluation method was inspired by the evaluation method described in "Eye
Gaze Tracking With a Web Camera in a Desktop Environment", Cheung and Peng [3]. There
were some changes in the method due to limitations in terms of time and access to a large pool
of test subjects. The major change that was made was the number of testing iterations that were
performed on each test subject. Hence, there is a larger risk for errors compared with using larger
sets of testing data. Another thing to consider is that the reference points on the screen, that
were used in the evaluation, were the same as the ones used in the calibration stage. From this,
it follows that the precision might seem better than it is since the mapping function most likely
works better around the points it was calibrated with than elsewhere on the screen.

6.2.2 Implementation

There exists a problem in the implementation of the pupil detection. This is because blinking is
not considered in the implementation. When the user blinks, the pupil cannot be found because it
is partially or completely obstructed by the eyelid. This results in a gaze vector that is completely
wrong. This is because the pupil detection chooses a point from the edge of the eye region if no
pupil can be found. This results in a large deviation in the estimated gaze vector which in turn
causes an even larger pixel deviation on the screen. This problem could be remedied by discarding
frames where either the eye region is too small, or the gaze vector is too different from the gaze
vectors found in calibration.

The calibration implementation could also be done differently. Instead of using gaze vector
data from one frame per calibration point, a median value out of, e.g. 15 frames, could result in
a more accurate and precise calibration. This is because several factors that can cause the gaze
vector in the calibration stage to be skewed, blinking included, thus causing the entire mapping
function to be practically useless. By taking the median vector of some number of samples, one
or a few outliers among the vectors do not affect the total calibration. This allows the user to act
more natural in the calibration and estimation stages since inevitable behavior like blinking and
brief straying of the gaze would not affect the end result.

6.2.3 Evaluation

The testing was done using a Logitech Brio web camera with a resolution of 2560 x 1440 pixels and
a frame rate of 30 fps. This was too demanding for the computer that was used and consequently
caused a delay in the program’s image stream which forced the test subjects to wait for the camera
to catch up under the entire calibration and estimation processes. From this follows that there
might be two reasons for error in how the calibration was done and how the estimation data were
extracted for each subject. The first reason is that the subject had to stare at each point over a
period of time to counter-act the camera falling behind. This could lead to the gaze drifting away,
due to the difficulty of focusing one’s gaze on a single point for extended periods of time. Second,
because of the camera delay and despite the efforts to counter-act it, there is no guarantee that
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the subject’s gaze is directed at the correct spot on the screen when the gaze vector is recorded in
the calibration and estimation processes.
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Chapter 7

Conclusion and future work

7.1 Conclusion
While there is a lot of research and practical software libraries that can be used as a foundation
for the implementation of gaze tracking systems, there are many things that can go wrong in the
way it is implemented, tested as well as with the method that is used. Gaze tracking using only
a web camera requires an incredibly well thought out method and implementation thereof since
it has no natural way of handling e.g. head movements and changes in light conditions. One can
attempt to neutralize these problems by giving certain instructions to the user during testing, but
without the software to help solve these problems it is almost impossible to get an accurate and
precise estimate of the user’s gaze.

7.2 Future work
In this implementation, there is a lack of accuracy primarily because of two identified reasons.
Partially because the pupil detection is unreliable and partially because there is no head pose
compensation. Therefore, a good idea for future work to improve the system would be to imple-
ment a head pose compensation algorithm, e.g. the AWPOSIT algorithm [3]. Another idea for
improvement would be to find a better method for pupil detection. One possible such method
would be the one used in "Eye Gaze Tracking With a Web Camera in a Desktop Environment"
[3], which is based on a special type of histogram equalization called locality sensitive histograms.
Additionally, one might want to change how the calibration is done to ensure that it is more error
tolerant, for instance by using the median of a gaze vector sample, as suggested in Section 6.2.2.
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Appendix A

Manipulated data

In this appendix, the diagrams that show the offset of the estimations in relation to the actual
points on the screen are presented. The center of each diagram is where the screen point would
be and the estimated points are displayed at their horizontal and vertical distance from the screen
point. Out of the 810 data points recorded in total, 149 (around 18.4%) are outside the plots
displayed below, as they deviate far too much for the plotting to be intuitive if they were to be
included.

Figure A.1: All subjects’ offset data.
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Figure A.2: Subject #1’s offset data.

Figure A.3: Subject #2’s offset data.



37

Figure A.4: Subject #3’s offset data.

Figure A.5: Subject #4’s offset data.



38 APPENDIX A. MANIPULATED DATA

Figure A.6: Subject #5’s offset data.

Figure A.7: Subject #6’s offset data.
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