Implementing Replicated Logs
with Paxos

John Ousterhout and Diego Ongaro
Stanford University

Note: this material borrows heavily from slides by Lorenzo Alvisi, Ali Ghodsi, and David Mazieres

Goal: Replicated Log

CEEEEEE

oy

add| jmp |mov

A

-

_/

-

4

T

add| jmp |mov

DL

_/

shl
(Consensus Consensus on
Module achine Module achine

-

nsus S\ate)
oYlule Ma

ine

l‘ @gb

Log

add

jmp /mov s

e Replicated log =>replicated state machine
= All servers execute same commands in same order

e Consensus module ensures proper log replication

Clients

Servers

e System makes progress as long as any majority of servers are up

e Failure model: fail-stop (not Byzantine), delayed/lost messages

March 1, 2013

Implementing Replicated Logs with Paxos

Slide 2

The Paxos Approach

Decompose the problem:

e Basic Paxos (“single decree”):
= One or more servers propose values
= System must agree on a single value as chosen
= Only one value is ever chosen

e Multi-Paxos:

= Combine several instances of Basic Paxos to agree on a series
of values forming the log

March 1, 2013 Implementing Replicated Logs with Paxos Slide 3

Requirements for Basic Paxos

e Safety:
= Only a single value may be chosen

= A server never learns that a value has been chosen unless it
really has been

e Liveness (as long as majority of servers up and
communicating with reasonable timeliness):

= Some proposed value is eventually chosen
= |f a value is chosen, servers eventually learn about it

The term “consensus problem” typically refers to this
single-value formulation

March 1, 2013 Implementing Replicated Logs with Paxos Slide 4

Paxos Components

e Proposers:
= Active: put forth particular values to be chosen

= Handle client requests

O ACCGptOI’SZ
= Passive: respond to messages from proposers
= Responses represent votes that form consensus
= Store chosen value, state of the decision process
= Want to know which value was chosen

For this presentation:
= Each Paxos server contains both components

March 1, 2013 Implementing Replicated Logs with Paxos Slide 5

Strawman: Single Acceptor

e Simple (incorrect) approach: Proposers
a single acceptor chooses [] [] [] []
value

e What if acceptor crashes @ @@ @

after choosing?

e Solution: quorum . Accent
cceptor
= Multiple acceptors (3, 5, ...) ¥
= Value v is chosen if accepted by @

majority of acceptors

= |f one acceptor crashes, chosen
value still available

March 1, 2013 Implementing Replicated Logs with Paxos Slide 6

Problem: Split Votes

e Acceptor accepts only first value it receives?

e If simultaneous proposals, no value might be chosen

accept?(red) accepted(red)

accept?(blue) accepted(blue)
- 0 U S -
accepted(blue)
S4 .. [T P T >
S accept’>(g reen) accepted(g reen)
5ee ...t.iﬁ.].g

Acceptors must sometimes accept multiple (different)
values

March 1, 2013 Implementing Replicated Logs with Paxos Slide 7

Problem: Conflicting Choices

e Acceptor accepts every value it receives?

e Could choose multiple values
oo Red Chosen

¢
v

.. >
1 R

ac cepted(red): gaccepted(blue)‘

__________l" : L T I PITTTITeoN -
i accepted(blue).

S4 ... : [TETTTTUTR Y. R -
i accepted(blue)'

SE e Qs @
accept?(blue) “~----mee--- " time

Blue Chosen

Once a value has been chosen, future proposals must
propose/choose that same value (2-phase protocol)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 8

Conflicting Choices, cont’d

Red Chosen??

e el Ty p—
————————————

-~
-~~
~

..... .‘ ~t

~ accepted(red)\‘I

.. \‘.‘>=

{ Eaccepted(red) i

S3 ... : ‘ \‘ ,
i ac cepted(blue). """""

S4 ... : ... -

Ea cepted(blue)'
SS .. L T L T TSR TRTRYS sevees >
prop(blue) A s time

Blue Chosen

e S: needn’t propose red (it hasn’t been chosen yet)

e S,’s proposal must be aborted (s; must reject it)

Must order proposals, reject old ones

March 1, 2013 Implementing Replicated Logs with Paxos Slide 9

Proposal Numbers

e Each proposal has a uniqgue number
= Higher numbers take priority over lower numbers

= [t must be possible for a proposer to choose a new proposal
number higher than anything it has seen/used before

e One simple approach:
Proposal Number

Round Number Server Id

= Each server stores maxRound: the largest Round Number it has
seen so far

= To generate a new proposal number:
e Increment maxRound
e Concatenate with Server Id
= Proposers must persist maxRound on disk: must not reuse

proposal numbers after crash/restart

March 1, 2013 Implementing Replicated Logs with Paxos Slide 10

Basic Paxos

Two-phase approach:

e Phase 1: broadcast Prepare RPCs
= Find out about any chosen values
= Block older proposals that have not yet completed

e Phase 2: broadcast Accept RPCs
= Ask acceptors to accept a specific value

March 1, 2013 Implementing Replicated Logs with Paxos Slide 11

Basic Paxos

Proposers Acceptors

1) Choose new proposal number n

2) Broadcast Prepare(n) to all

SEIVers 3) Respond to Prepare(n):

= |f n > minProposal then minProposal = n

4) When responses received from <::| = Return(acceptedProposal, acceptedValue)
majority:

= |f any acceptedValues returned, replace
value with acceptedValue
for highest acceptedProposal

5) Broadcast Accept(n, value) to all |::> 6) Respond to Accept(n, value):

SErvers ’ = If n 2 minProposal then
5 acceptedProposal = minProposal = n
acceptedValue = value

6) When responses received from _
» Return(minProposal)

majority:
= Any rejections (result > n)? goto (1)
= Otherwise, value is chosen

Acceptors must record minProposal, acceptedProposal,
and acceptedValue on stable storage (disk)

Basic Paxos Examples

Three possibilities when later proposal prepares:

1. Previous value already chosen:
= New proposer will find it and use it

“Accept proposal 4.5
with value X (from sg)”

X Sq e P 3.1 |l A BT X e oo

Sy, P 3.1 |l AB1 X | eernenrsssnsefonssiensesseeessessessns

values Sz e P31 A31X |-{P45 | A45X
A0 SN S————— PA45 || A4.5 X | -
Y Sg e P45 || A4.5 X |, ——
fime

“Prepare proposal 3.1 (from s,)”

March 1, 2013 Implementing Replicated Logs with Paxos Slide 13

Basic Paxos Examples, cont’'d

Three possibilities when later proposal prepares:

2. Previous value not chosen, but new proposer sees it:
= New proposer will use existing value
= Both proposers can succeed

X Sq e P 3.1 | A 31X e >
Sy, P31
values Sg P3.1 |-
R ——— PA45 || A4.5 X | -
Y Sg P45 || A45 X Ty

March 1, 2013 Implementing Replicated Logs with Paxos Slide 14

Basic Paxos Examples, cont’'d

Three possibilities when later proposal prepares:

3. Previous value not chosen, new proposer doesn’t

see It:

= New proposer chooses its own value
= Older proposal blocked

X Sq e P 3.1 |l A BT X e seeneens >
Sy, P 3.1 | A 31X o -

values Sz . P 3.1 | P45 :AX)Z A4EY | -
R ——— PA45 |/ A4B5Y |, -

Y Sg P45 || A45Y Ty

March 1, 2013

Implementing Replicated Logs with Paxos

Slide 15

Liveness

e Competing proposers can livelock:

S1 | P 3.1 |

Sy [P 3.1 |

A3.1X |-

P41

A3.1X |-

P4.1

S3 .|/ P31 |-

P 3.5

e One solution: randomized delay before restarting

P 3.5

P 3.5

:sz

P41 |-

A4.1X

A4.1X

|l P55 |-

A35Y |-

P 5.5

A35Y |-

P 5.5

= Give other proposers a chance to finish choosing

e Multi-Paxos will use leader election instead

March 1, 2013

Implementing Replicated Logs with Paxos

Slide 16

Other Notes

e Only proposer knows which value has been chosen

e If other servers want to know, must execute Paxos
with their own proposal

March 1, 2013 Implementing Replicated Logs with Paxos Slide 17

Multi-Paxos

e Separate instance of Basic Paxos for each entry in

the log:

= Add index argument to Prepare and Accept (selects entry in log)

ij Client

1. Client sends command

to server

Other A;Q" @?}

Servers

2. Server uses Paxos to
choose command as
value for a log entry

March 1, 2013

shl

4. Server returns result
from state machine to
client

-

nsus Syate)

MoVule Ma

Log

add

jmp /mov s

ine

_/

Server

3. Server waits for previous
log entries to be applied,
then applies new command
to state machine

Implementing Replicated Logs with Paxos Slide 18

Multi-Paxos Issues

e Which log entry to use for a given client request?

e Performance optimizations:
= Use leader to reduce proposer conflicts
= Eliminate most Prepare requests

e Ensuring full replication
e Client protocol

e Configuration changes

Note: Multi-Paxos not specified precisely in literature

March 1, 2013 Implementing Replicated Logs with Paxos Slide 19

Selecting Log Entries

e When request arrives from client:
u Flnd flrst Iog entry not known to be Chosen < E R R R R R R EEEEEEEEEEREEEEEEEEREREE .
= Run Basic Paxos to propose client's command for this index

= Prepare returns acceptedValue? _
e Yes: finish choosing acceptedValue, start again =~ s :
e No: choose client's command

jmp Known Chosen
1 ZK 6/ 7 1 2 3 4 5 6 7

" N e B

S, |mov add sub ret > S, [mov add [cmp|sub |jmp| ret

S; |mov add [cmp cmp| ret S; |mov add [cmp shl | ret

Logs Before Logs After

March 1, 2013 Implementing Replicated Logs with Paxos Slide 20

Selecting Log Entries, cont’'d

e Servers can handle multiple client requests
concurrently:

= Select different log entries for each

e Must apply commands to state machine in log order

March 1, 2013 Implementing Replicated Logs with Paxos Slide 21

Improving Efficiency

e Using Basic Paxos is inefficient:

= With multiple concurrent proposers, conflicts and restarts are
likely (higher load — more conflicts)

= 2 rounds of RPCs for each value chosen (Prepare, Accept)
Solution:

1. Pick aleader
= At any given time, only one server acts as Proposer

2. Eliminate most Prepare RPCs
= Prepare once for the entire log (not once per entry)
= Most log entries can be chosen in a single round of RPCs

March 1, 2013 Implementing Replicated Logs with Paxos Slide 22

Leader Election

One simple approach from Lamport:
e Let the server with highest ID act as leader

e Each server sends a heartbeat message to every
other server every T ms

e If a server hasn’t received heartbeat from server with
higher ID in last 2T ms, it acts as leader:

= Accepts requests from clients
= Acts as proposer and acceptor

e If server not leader:
= Rejects client requests (redirect to leader)
= Acts only as acceptor

March 1, 2013 Implementing Replicated Logs with Paxos Slide 23

Eliminating Prepares

e Why is Prepare needed?

= Block old proposals
e Make proposal numbers refer to the entire log, not just one entry

= Find out about (possibly) chosen values
e Return highest proposal accepted for current entry

e Also return noMoreAccepted: no proposals accepted for any log
entry beyond current one

e If acceptor responds to Prepare with
noMoreAccepted, skip future Prepares with that
acceptor (until Accept rejected)

e Once leader receives noMoreAccepted from majority
of acceptors, no need for Prepare RPCs
= Only 1 round of RPCs needed per log entry (Accepts)

March 1, 2013 Implementing Replicated Logs with Paxos Slide 24

Full Disclosure

e So far, information flow is incomplete:

= Log entries not fully replicated (majority only)
Goal: full replication

= Only proposer knows when entry is chosen
Goal: all servers know about chosen entries

e Solution part 1/4: keep retrying Accept RPCs until all
acceptors respond (in background)
= Fully replicates most entries

e Solution part 2/4: track chosen entries

= Mark entries that are known to be chosen:
acceptedProposal[i] = «

= Each server maintains firstUnchosenindex: index of earliest log
entry not marked as chosen

March 1, 2013 Implementing Replicated Logs with Paxos Slide 25

Full Disclosure, cont’'d

e Solution part 3/4: proposer tells acceptors about
chosen entries
= Proposer includes its firstUnchosenindex in Accept RPCs.

= Acceptor marks all entries i chosen if:
e | <request.firstUnchosenindex
e acceptedProposal[i] == request.proposal

= Result: acceptors know about most chosen entries

log index 1 2 3 4 S5 6 7 8 9

acceptedProposal © | o | o |25 « (34 before Accept

... Accept(proposal = 3.4, index=8, value =, firstUnchosenindex =7) ...

o | w0 [w0 [25] o [3.4 after Accept

Still don’t have complete information

March 1, 2013 Implementing Replicated Logs with Paxos Slide 26

Full Disclosure, cont’'d

e Solution part 4/4: entries from old leaders
= Acceptor returns its firstUnchosenindex in Accept replies

= [f proposer’s firstUnchosenindex > firstUnchosenindex from
response, then proposer sends Success RPC (in background)

e Success(index, v): notifies acceptor of chosen entry:
= acceptedValue[index] = v
= acceptedProposal[index] = «
= return firstUnchosenindex
= Proposer sends additional Success RPCs, if needed

March 1, 2013 Implementing Replicated Logs with Paxos Slide 27

Client Protocol

e Send commands to leader
= |f leader unknown, contact any server
= |f contacted server not leader, it will redirect to leader

e Leader does not respond until command has been
chosen for log entry and executed by leader’s state
machine

e If request times out (e.g., leader crash):
= Client reissues command to some other server
= Eventually redirected to new leader
= Retry request with new leader

March 1, 2013 Implementing Replicated Logs with Paxos Slide 28

Client Protocol, cont'd

e What if leader crashes after executing command but

before responding?
= Must not execute command twice

e Solution: client embeds a unique id in each

command
= Server includes id in log entry
= State machine records most recent command executed for each
client
= Before executing command, state machine checks to see if

command already executed, if so:
e Ignore new command
e Return response from old command

e Result: exactly-once semantics as long as client
doesn’t crash

March 1, 2013 Implementing Replicated Logs with Paxos Slide 29

Configuration Changes

e System configuration:
= |D, address for each server
= Determines what constitutes a majority

e Consensus mechanism must support changes in the
configuration:

= Replace failed machine
= Change degree of replication

March 1, 2013 Implementing Replicated Logs with Paxos Slide 30

Configuration Changes, cont’'d

e Safety requirement:

= During configuration changes, it must not be possible for
different majorities to choose different values for the same log

entry:
New Configuration
Choose v, using :'[] []E :'[] [] D\i Choose v, using
old configuration {_J e J J U ! new configuration

Old Configuration

March 1, 2013 Implementing Replicated Logs with Paxos Slide 31

Configuration Changes, cont’'d

e Paxos solution: use the log to manage configuration
changes:
= Configuration is stored as a log entry
= Replicated just like any other log entry
= Configuration for choosing entry i determined by entry i-a.

Suppose a = 3.
1 2 3 4 5 6 7 8 9 10
C, C,
Use C, Use C, Use C,
e Notes:

= a limits concurrency: can’t choose entry i+a until entry i chosen
= |ssue no-op commands if needed to complete change quickly

March 1, 2013 Implementing Replicated Logs with Paxos Slide 32

Paxos Summary

e Basic Paxos:
= Prepare phase
= Accept phase

e Multi-Paxos:
= Choosing log entries
= | eader election
= Eliminating most Prepare requests
= Full information propagation

e Client protocol

e Configuration changes

March 1, 2013 Implementing Replicated Logs with Paxos Slide 33

