

©John P. Reilly, 2011

Implementing the TM
Forum Information
Framework (SID)

A Practitioner’s Guide

Version 1.0 September, 2011

© John P. Reilly, 2011 Page i

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

By John P. Reilly

Copyright © 2011 John P. Reilly

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording or otherwise without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and authors assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from use of the information contained herein.

This book is sold subject to the condition that it shall not, by t way of trade or otherwise, be lent,
resold, hired-out, or otherwise circulated without the publisher’s prior consent in any form of binding
or cover other than that in which it is published and without a similar condition including this condition
being imposed on the subsequent purchaser.

Published by TM Forum

First printing: [insert printing date]

ISBN [insert ISBN number]

Trademarks

All terms mentioned in the book that are known to be trademarks or service makes have been
appropriately identified. The publisher cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and accurate as possible, but no
warranty or fitness is implied. The information provided is an “as is” basis. The authors and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page ii

Version 1.0 � John P. Reilly, 2011 Page iii

Table of Contents

Table of Contents ... iii
List of Figures... vi
Acknowledgements .. 1

Preface ... 2

Chapter 1 – The Information Framework (SID) .. 3

The Information Framework (SID) ... 3

The SID’s Structure .. 4

The SID UML Model .. 8

Extensibility of the SID ... 9

Chapter 2 – Implementing SID Patterns ... 13

Class Hierarchy Implementation Techniques .. 13

Class Hierarchy Technique Guidance ... 20

Class Hierarchy Implementation Considerations .. 22

Implementing Other Modeling Patterns ... 25

EntitySpecification/Entity ... 25

Entity/EntityRole... 26

CharacteristicSpecification/CharacteristicValue .. 27

Chapter 3 – SID and Database Design .. 29

A Note on SID and Database Design .. 29

Database Design & Class Hierarchy Patterns ... 29

General Considerations ... 29

Top Down – Business Interaction Pattern ... 31

Bottom Up – Composite/Atomic Pattern.. 35

Middle Up & Down (Top Down, Bottom Up).. 41

Database Design & Other Modeling Patterns ... 42

EntitySpecification/Entity ... 42

Entity/EntityRole... 42

CharacteristicSpecification/CharacteristicValue .. 47

Working with Other SID ABEs ... 52

Working with Base Type ABE Entities ... 52

Implementing the Contact Medium ABE ... 54

Implementing the Location ABE .. 56

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page iv

Lessons Learned ... 59

Information Model Considerations ... 59

Database Design Tool Considerations .. 60

Version 1.0 � John P. Reilly, 2011 Page v

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page vi

List of Figures

Figure 1.01- SID Domains 6

Figure 1.02 – SID Level 1 ABEs 7

Figure 1.03 – SID Level 2 ABEs 8

Figure 1.04 – Customer UML Model 9

Figure 1.05 – SID as a Framework of Frameworks 10

Figure 2.01 – Consolidating Sub-Classes – Top Down - Before 14

Figure 2.02 – Consolidating Sub-Classes – Top Down - After 15

Figure 2.03 – Consolidating Sub-Classes – Bottom Up - Before 15

Figure 2.04 – Consolidating Sub-Classes – Bottom Up - After 16

Figure 2.05 – Consolidating Sub-Classes – Top Down – Bottom Up - Before 17

Figure 2.06 – Consolidating Sub-Classes – Top Down – Bottom Up - After 18

Figure 2.07 – Consolidating Sub-Classes – Typing - Before 19

Figure 2.08– Consolidating Sub-Classes – Typing - After 19

Figure 2.09 – Performance Management Class Hierarchy 20

Figure 2.10 – Transformed Performance Management Class Hierarchy 20

Figure 2.11 – Product and Inventory Performance 20

Figure 2.12– Usage Class Hierarchy 21

Figure 2.13 – Transformed Usage Class Hierarchy 21

Figure 2.14 - Service Hierarchy - Bottom Up - Before 24

Figure 2.15 – Service Hierarchy – Bottom Up – After 24

Figure 2.16 – Party and PartyRole 26

Figure 2.17 – PartyRoles Transformed Into Party Subclasses 26

Figure 3.01 – Customer Order Logical Data Model Fragment 31

Figure 3.02 – Transformed Customer Order Model Fragment 32

Figure 3.03 – Customer Order Inherited Associations 33

Figure 3.04 – Product Offering UML Model Fragment 35

Figure 3.05 – Product Offering Logical Data Model 36

Figure 3.06 – Product Offering Physical Data Model 37

Figure 3.07 – Customer Without Party Role 42

Figure 3.08 – Partial PartyRole and Customer Logical Data Model 43

Figure 3.09 – Partial Party, PartyRole, and Customer Physical Database 43

Figure 3.10 – Customer Logical Data Model 44

Version 1.0 � John P. Reilly, 2011 Page vii

Figure 3.11 – Customer Physical Data Model 45

Figure 3.12 – Details of Customer Physical Data Base Entity 47

Figure 3.13 – Basic Characteristic and “Use” Entities 48

Figure 3.14 – Full Characteristic Specification Model 48

Figure 3.15 – Product Specification “Use” of Characteristics 49

Figure 3.16 – Product Specification and Characteristic Keys 50

Figure 3.17 – Example Physical Entity with Columns and All Keys 50

Figure 3.18 – TimePeriod as a Related Entity 52

Figure 3.19 – Time Period Attributes Transformed As Attributes 53

Figure 3.20 – Contact Medium Logical Data Base Model 54

Figure 3.21 – Contact Medium Physical Data Model 55

Figure 3.22 – Urban Property Addresses Logical Data Model 56

Figure 3.23 – Postal Delivery Address Logical Data Model 57

Figure 3.24 – Address Physical Data Model 58

Figure 3.25 – SID Product Offering ABE 59

Figure 3.26 – Structure Compare of Two Physical Data Models 61

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 1

Acknowledgements

When the number of books about TM Forum deliverables, such as Frameworx Distilled,
reached five, I thought I was done. But then I started thinking about the members who
have often asked about using the Information Framework (SID) as a starting point for
database development. And, a few other SID-related topics. So, I thank you all for
providing me with the inspiration to write a sixth and perhaps final book, at least from me!

I would like to thank the TM Forum, which permitted the use of content from various SID
documents and models. And, to IBM who have kindly provided licenses to me for the
use of Rational Software Modeler and InfoSphere Data Architect.

I can’t forget thanking my wife, Jeannie, who puts up with my crazy traveling schedule
and the somewhat odd hours I work during my time at home with her and Sara the cat.

John P. Reilly

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 2

Preface

The adoption of the TM Forum’s Information Framework (SID) continues to increase
within the information, communications, and entertainment industry. As a result, there is
a need to provide advanced guidance on how the SID can be implemented by TM
Forum members. Specifically, members expect guidance on implementing the SID for
use in interface specifications as well as database design.

This book introduces more advanced concepts/techniques that can be used to
successfully implement the SID within an application environment. They have been
gathered and used by many SID practitioners from both teaching and consulting
engagements. The culmination of this experience resulted in the practical guidance
presented here for using the SID from an implementation perspective. Examples are
used throughout the book to demonstrate the concepts and techniques presented.

In addition to providing an overview of the SID, this book’s chapters provide guidance
for:

x Implementing SID modeling patterns

x SID and database design

x Maintaining SID conformance

x Instantiating SID entities

x Applying other implementation considerations

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 3

Chapter 1 – The Information Framework (SID)

This chapter provides an overview of the SID, focusing on the its benefits, its structure,
and its inherent extensibility.

The Information Framework (SID)

The Information Framework (SID) responds to the industry need for a shared information
and data model. It represents an enterprise-wide information decomposition and model.
An information model is independent of platform, language and protocol – today the
Information Framework is an information model. One single information model can be
used as the starting point for multiple technology-specific data models, such as
technology-specific databases and technology-specific interfaces.

As a federated model, the SID draws on knowledge from other industry associations,
standards bodies, authorities, and TM Forum member companies;; it is not “home-
grown”. The origins of the SID come from member contributions as well as existing
industry models, such as ITU-T M.3100 and Distributed Management Task Force
(DMTF) Common Information Model (CIM).

The reasons for having an information model are also relevant from a shared information
architecture perspective. The SID is one of the few industry models that cover the
breadth of an entire enterprise. The SID provides a standard way of structuring,
defining, and implementing information and also provides consistent, common
terminology.

The model includes all concepts typical of an object-oriented model with the exception of
behavior, or how things work. Behavior is provided not only by services and interfaces
that make up the Integration Framework, but also the Process Framework, which also
represents behavior.

The Information Framework, specifically Product and Service related entities, are now an
ITU-T standard as of July 2008.

The framework assists in achieving a number of benefits:

x Reduce time to market

x Reduce cost of integration

x Reduce management time and cost

x Facilitate introduction of new technologies

x Support multiple technology implementations.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 4

From a SID viewpoint, the first goal, reducing time to market, is related to the fourth goal,
facilitating the introduction of new technologies and services that utilized the
technologies. The inherent extensibility of the SID enables new technologies to be
introduced without making major changes to the SID framework or its underlying models.
Changes to information architectures that do not use SID modeling patterns typically
require changes to the information architecture when introducing new technologies and
the product offerings made available by these technologies. Additionally, sometimes
substantial changes must be made to the applications that support the offerings and
technologies. These changes could range from the need for new user interfaces to large
fragments of code and/or database changes. The changes are minimized by employing
the SID and result in the ability to reduce the time it takes to bring these new
technologies and offerings to the market.

Implementing the SID also achieves the second goal, reducing the cost to integrate
processes and applications. The SID facilitates this in a number of ways. First, the use
of the SID as part of an integration framework provides a standard information
vocabulary, framework, and model that reduce the time to translate the vocabulary,
framework, and model among applications that are being integrated. Second, the SID
can be employed as an operational data store (ODS). An ODS is a database designed
to federate data from multiple sources to facilitate operations, analysis and reporting.
Because the data originates from multiple sources, the integration often involves
cleaning, redundancy resolution and business rule enforcement. An ODS is usually
designed to contain low level or atomic (indivisible) data such as transactions and prices
as opposed to aggregated or summarized data such as net contributions.

Using the SID also achieves the fifth goal, Support implementation of multiple application
technologies. This goal is realized by the separation of the SID information model from
the SID-based data models. This separation allows multiple data models to be
developed and generated from a single information model. For example, an Oracle or
DB2 based data model can be developed/generated based on a single information
model, or the development/generation of Java interface classes or XML schema.

As a byproduct of achieving the other goals, the management time and cost is reduced.
The time and cost associated with introduction of new offerings and technologies is
reduced because the impact of these changes is minimized. The time and cost to
integrate applications is reduced by having a standard information vocabulary,
framework, and models. The time and cost to develop data models is reduced by
employing a single information model upon which the data models are based.

The SID’s Structure

The SID information model represents a logical view of things of interest (entities) to an
enterprise such as customer, location and network element, and relationships
(associations) between these things, such as a network element is situated at a location.
Entities are further characterized by facts (attributes) that describe them and behavior
(operations) that describe how the entities work. The SID as a data model represents a
physical implementation of the SID logical view of things.

The SID links distributed and diverse information into a common structure and
represents a holistic framework for controlling distributed problem solving. The SID
supports interoperability across organizational, corporate, and regulatory boundaries.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 5

The SID has been structured to allow for federation of information. The organization of
the SID framework enables a “divide and conquer” approach to problem solving. For
example, information that characterizes network resources is organized into a single
domain (Resource) within the SID. The use of modeling patterns to capture common
structures and relationships makes the SID inherently extensible.

The SID provides a standard way of structuring, defining, and implementing information
and behavior. It provides consistent, common terminology and allows reuse of
information technology investment. The SID provides a single information model from
which information-technology-specific data models, such as Oracle, and DB2, can be
derived.

Concepts key to the SID’s structure are:

x Business Entity - something of interest to the business that may be tangible
things (such as a Customer), active things (such as a Customer Order), or
conceptual things (such as a Customer Account). Business entities are
characterized by attributes and participate in relationships with other business
entities. Business entity instances typically move through a well-defined life cycle

x Aggregate Business Entity (ABE) –a well-defined set of information that
characterizes a highly cohesive set of business entities that are loosely coupled
with entities in other ABEs

x Domain - a collection of Aggregate Business Entities associated with a specific
management area. Domains that make up the SID Framework are consistent
with eTOM level 0 concepts.

Similar to the Business Process Framework’s (eTOM) framework that provides a
decomposition of business processes, the SID is organized into a framework that
represents a decomposition of information. The first level of decomposition represents
large areas, called domains, which represent key concepts of interest to every
information and communications enterprise. The domains include concepts such as
Market/Sales, Product, Customer, Service, Resource, Supplier/Partner, and Enterprise
as shown in Figure 1.01 – SID Domains. In the figure SID domains are superimposed
on the eTOM Strategy Infrastructure & Product and the Operations processes to show
that the SID supports both process areas, as well as Enterprise processes. One
difference from the Business Process Framework is that the Information Framework
domains, Market/Sales, Product, and Customer, are shown as separate horizontals.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 6

Figure 1.01- SID Domains

Each domain is further decomposed into cohesive collections of entities that characterize
the domain. These collections of entities are called Aggregate Business Entities (ABEs).
ABEs include such things of interest as Product Offerings, Service Specifications, and
Supplier/Partner Orders and represent the first level of ABEs.

The source of the framework is based on previous work of another team in addition to
analysis that was performed on an enterprise-wide information model. Previous work by
the TM Forum Systems Integration Map team included an object oriented framework
upon which the Information Framework is based. Development of the framework
included performing affinity analysis on an enterprise-wide information model. Affinity
analysis measures the degree to which entities are related and how they are used by
processes, the result of which is cohesive groups (clusters) of entities that became the
ABEs shown in Figure 1.02 – SID Level 1 ABEs. It is interesting to note that while the
SID Framework is presented as a top-down decomposition, it was actually developed
from the bottom up!

Enterprise

Strategy, Infrastructure &
Product

Operations

Market/Sales, Product and Customer

Service

Resource
(Application, Computing and Network)

Supplier/Partner

eTOM/SIM Level 0 Concepts/Domains

SID DomainSID DomainSID DomainSID DomainSID Domains

Enterprise

Strategy, Infrastructure &
Product

Operations

Market/Sales, Product and Customer

Service

Resource
(Application, Computing and Network)

Supplier/Partner

eTOM/SIM Level 0 Concepts/Domains

SID DomainSID DomainSID DomainSID DomainSID Domains

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 7

Figure 1.02 – SID Level 1 ABEs

Referring back to what affinity analysis measures, a direct relationship between these
ABEs and Business Process Framework Level 2 core processes can be seen. For
example, Customer Order entities contained within the Customer Order ABE are the
focus of the Order Handling process; Service is the focus of the Service Configuration &
Activation process; Service Performance is the focus of the Service Quality Management
process. Additional details about this relationship and the relationship between the four
Frameworks will be presented later in this book.

Note that an additional domain, Common Business Entities, which is not present as a
concept within the eTOM, has been added. This domain contains ABEs that could be
placed in two or more domains. One reason for the addition of this domain is that the
Information Framework is a non-redundant decomposition of information, just as the
eTOM represents a non-redundant decomposition of processes.

This domain also holds generalized ABEs, such as Usage and Performance. Many
ABEs, such as Product, Service, and Resource Usage, have many entities in common.
Rather than model these common entities redundantly in each ABE, they are modeled
within a generalized ABE with the entities in the other domain-specific ABEs inheriting
from the generalization.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 8

Not all ABEs have been developed. For example, none of the Strategy & Plan ABEs
have been developed as information associated with these ABEs is typically developed
by ad hoc processes whose information requirements would be difficult to consistently
define. Additionally, applications that support these ABEs are typically not part of an
enterprise’s suite of applications. The Supplier/Partner domain has not been developed,
but other ABEs could be used if a SID implementer wanted to do so. For example, S/P
Performance could leverage the Performance ABE. Also, the Product Offering entity
has been related to the Party Role entity and could be used to support S/P Product
requirements. And, during the writing of this book, the Problem/Trouble and Test ABEs
are currently under development by the TM Forum Interface Program; the Configuration
ABEs are work in process for the SID team.

Each ABE, based on its complexity, may further decompose into one or more
subsequent levels of ABEs. The subsequent levels of ABEs possess the same
characteristics of level 1 ABEs, in that they represent a cohesive collection of business
entities. For example, Figure 1.03– SID Level 2 ABEs shows how a number of ABEs
within the Market/Sales domain decompose into a second level of ABEs.

Figure 1.03 – SID Level 2 ABEs

In some cases, ABEs below the first level can be found by analyzing groupings of
entities. This represents a “bottom-up” form of ABE discovery.

The SID UML Model

At some point in the decomposition or bottom-up discovery process the lowest level is
found. This lowest level contains a group of closely related entities that define the ABE
as shown in Figure 1.04 – Customer UML Model for the current Customer ABE. These
entities are represented by a Unified Modeling Language (UML) diagram as shown in
the figure.

Market / Sales
Market Segment

Market Statistic

Party
Demographic

Party Profile

Marketing Campaign

Media

Competitor

Competitor
Intelligence

Competitor
Product

Correlation

Market / Sales
Market Segment

Market Statistic

Party
Demographic

Party Profile

Marketing Campaign

Media

Competitor

Competitor
Intelligence

Competitor
Product

Correlation

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 9

Figure 1.04 – Customer UML Model

UML classes are used to represent SID business entities, such as those shown in the
figure. UML attributes and associations are used to represent the corresponding SID
concepts. Associations are sometimes referred to as relationships or business
relationships. Entities that represent a further refinement of an entity, such as a logical
resource or a physical resource are represented by UML subclasses.

Each developed ABE is documented in a SID addendum. The addenda are organized
by SID domain. Each addendum contains the design approach, rational for why the
entities were modeled in a certain way if there were alternative modeling approaches,
and use cases. These enable the model to be better understood and extended to model
project-specific entities. Each addendum also includes references to other sources that
provide more information about key concepts. Also included is a data dictionary that
provides business definitions for all entities and their attributes, as well as UML models.
Alias and cross-references to other industry models and concepts that were used as
sources for the SID model are included.

Extensibility of the SID

The Information Framework can be viewed as a framework of frameworks, where each
domain and each ABE are smaller frameworks within the overall Information Framework.
The reason they can be viewed this way is the fact that the entire framework is based on
the results of affinity analysis.
What this (framework of frameworks), and the fact that it is enterprise-wide, enables is
the ability to explicitly add domain or ABE specific extensions, that represent new types
of ABEs/entities. This facilitates the addition of components to the framework without
major impact to other areas of the framework. This is a necessary characteristic of an
extensible information framework and its associated model.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 10

Explicit extensions can be added to the Network ABE and the Party Role ABE as new
types of entities. New types of entities are typically added as subclasses of existing
entities, such as the examples shown in Figure 1.05 – SID as a Framework of
Frameworks. This technique is sometimes referred to as the “blade” concept, similar to
adding a blade (new capability or functionality) to a network element. In some cases
based on the amount of information associated with the new type, such as the NGN
Access Network, a single entity is added. In other cases, the information associated with
the new type of entity may require the addition of a new ABE, such as Competitor in the
figure. In either case, the new type inherits all the attributes and associations of the
existing entity.

Figure 1.05 – SID as a Framework of Frameworks

Sub-typing (sub-classing) is one of the two ways that the Information Framework
provides an extensible information model. The other way is the use of modeling
patterns. These patterns were chosen to provide either dynamic or explicit extensibility
of the Information Framework to achieve the goals of TM Forum Frameworx. Minimizing
changes to an enterprise’s information architecture and the applications which use the
architecture means that applications are not barriers to an enterprise’s introduction of
new product offerings, new types of services, new types of resources, and so forth.

There are a number of other benefits to employing modeling patterns. There are quite a
few patterns contained in a number of books and papers that could be used to model
information; probably at least 50. Using a small number that were chosen because they
provide built-in extensibility does represent a consistent approach that makes the model
easier to understand. How consistent and easy to understand would a model be that
used 10 or more patterns? And, the patterns should be used when extending the SID.

The five patterns used in the SID are:

x EntitySpecification/Entity

x Composite/Atomic

x Entity/EntityRole

x Business Interaction

x CharacteristicSpecification/CharacteristicValue.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 11

Note that these patterns can be used in combination and that there may be cases when
none of the patterns are used to model an entity or group of entities in the framework.
They are also described in Using the SID (addendum GB922-U).

The following provides a short description of the business requirement satisfied by the
pattern:

x EntitySpecification/Entity – many entities are described by specifications, which
take the form of paper spec sheets or links to specifications that can be found
when shopping on the web. The facts (attributes) for a specification, such as
weight, dimensions, color, and so forth, are common to all instances of the entity
related to the specification.

x Composite/Atomic – entities are often grouped together. For example, bundles
of product offerings, network elements composed of physical and logical
resources.

x Entity/EntityRole – an entity can often play many roles, while retaining a basic set
of facts about the entity in general. For example, an individual can play the role
of customer and employee, but the individual’s name and address don’t change
from role to role.

x Business Interaction – as an enterprise carries out its mission, it interacts with
individuals and organizations in a number of ways. This generalization pattern
models the characteristics (entities, attributes, and associations) common to
most interactions. As such it allows new interactions, such as customer orders,
late payment notices, and so forth, to be easily added to the Information
Framework.

x CharacteristicSpecification/CharacteristicValue – attempting to model every
attribute for new and/or existing entities or attributes associated with new types
(specifications) of entities is a near impossible task. This pattern enables new
attributes to be dynamically defined, eliminating the need to explicitly model
them.

The Information Framework program is considering the addition of two patterns. One, a
temporal pattern, can be used to provide a time dimension to the relationship between
entities. It has been approved by the team, but not yet applied in the framework. The
second is a Version pattern that can be used to expand the basic versioning information,
such as validFor attributes that represent from and to effective dates/times for an entity.

A generalized UML view of the five patterns can be found in GB922-U – Users Guide.

The fifth pattern is the CharacteristicSpecification/Characteristic pattern. Some
modeler’s call this the Attribute pattern, since it is used to enable the dynamic addition of
attributes that describe an entity without changing the model.

This pattern is often described as enabling dynamic sub-classing of an entity.

It is very useful in the Product, Service, and Resource domains (to name a few!)
because often with the introduction of a new type (instance of a specification) of product,
service, or resource, there are additional attributes (characteristics) that represent
properties and/or features not supported by the current information architecture.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 12

The CharatcteristicSpecification/Characteristic pattern is often used with the
EntitySpecification/Entity and Composite/Atomic patterns to enable near complete
freedom (dynamic extensibility) in defining any type of entity and its attributes together
with various ways to group the entities.

It’s about choices. There is nothing wrong with using the “blade” concept to explicitly
model new types of entities (specifications and entities). The considerations described
below should help make the choice.

Dynamic attributes are those that are not known until a new information requirement
arises, such as a new Product Specification, is made known. Or, when a new Product
Specification is just created and the attributes may be in a state of flux. Informational
attributes are attributes that only convey some type of information, such as height,
weight, color, and so forth, and are not typically used in an application’s logic.

Also, note that it is often convenient to start out using explicit modeling as this is a way to
document the attributes and their properties. Information modelers often refer to this
type of modeling as the construction of a business object model and keep a historical
copy of it to be used when populating instances of characteristic specification entities.
Note that the explicitly modeled entities would not be present in the information model if
characteristics are chosen to support the entity and its attributes.

These considerations are further discussed in Chapter 3 – Implementing Applied SID
Modeling Patterns.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 13

Chapter 2 – Implementing SID Patterns

This chapter reviews the current techniques for implementing class hierarchies patterns
and other patterns that were described in an earlier book, Getting Started with the SID
and that are taught in the SID Modeler’s workshop. The techniques regarding patterns
that employ class hierarchies described here also apply to any area of the SID where
there are several levels in a class hierarchy, such as in the SID Resource domain. It
provides guidance on an implementation technique to choose and considerations that
must be taken into account based on the chosen technique.

Special Note: The techniques described here act on the SID information UML
model. It is suggested that, if possible, a database design tool that transforms the
logical information model (SID UML) to a logical data model (as a first step
towards implementation) be employed. A tool such as this should support the
specification of transformations described in this chapter that are automatically
performed when transforming the logical data model to the physical data model.
Many of the considerations described in this chapter that must be taken into
account when transforming the SID UML are then not applicable. These will be
pointed out at the point where they are discussed in this chapter. The next
chapter provides more detail on using the SID as the basis for database design.

Class Hierarchy Implementation Techniques

In some cases, such as when the SID is to be used as starting point for a physical data
base, the logical perspective of the SID is modified to improve performance. In other
cases, such as SID-based interfaces, the physical perspective may be generated or
developed directly from the SID model as-is or from a subset of the SID model, without
employing any of the techniques presented in this section. However, these techniques
can also be employed to the SID before interfaces are generated or developed. The
considerations presented in this chapter will assist in making the decision to expose the
SID as-is or after these techniques are employed. These techniques are not unique to
the SID, but can be applied to any information model that contains class hierarchies.

A SID implementer must balance impact of new releases of the SID with practicalities of
implementation. Changes made to the SID when transforming the logical perspective to
the physical perspective may have to be reconciled manually when adopting new
versions of the SID as no comprehensive tools exist today that provide automated
reconciliation assistance.

Presented here are techniques that can be employed when moving to the physical
perspective. The use of these techniques minimizes the impact of adopting new
versions of the SID, while supporting improved performance and a more consolidated,
simplified view of the SID. The techniques also ensure that the logical perspective of the
SID can be exposed via interfaces when employing the SID as part of an integration
framework.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 14

The techniques include:

x Consolidating entities from the “top” down

x Consolidating entities form the “bottom” up

x Consolidating entities from the “middle” - top down and bottom up

x Consolidating entities using a “type” attribute.

The first technique is used to consolidate a SID class hierarchy by explicitly moving
attributes and relationships from abstract super-classes to concrete subclasses. This is
referred to as the “top” down consolidation technique. Figure 2.01 - Consolidating Sub-
Classes – Top Down - Before shows a class hierarchy from the Business Interaction
ABE before consolidation. Note: The examples presented here do not always show
repositioning of relationships, but the same technique applies.

Figure 2.01 – Consolidating Sub-Classes – Top Down - Before

In this example, all attributes from the super-classes above the ProductOrder entity are
moved to it as shown in Figure 2.02- Consolidating Sub-Classes – Top Down - After.
This simplifies the implementation view without compromising the structure of the SID,
as the super-classes of ProductOrder can be constructed from it if desired for exposure
via an interface.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 15

Figure 2.02 – Consolidating Sub-Classes – Top Down - After

The second technique is similar to the first, but the consolidation involves merging the
subclasses into the super-class. Typical applications of this technique remove the
composite/atomic sub-classes for a business entity or consolidate an extension to an
entity into the entity being extended. Composite/atomic sub-classes are employed
throughout the SID model to represent the fact that a single instance of an entity can be
comprised of other instances of the same entity. For example, a bundled
ProductSpecification is comprised of other instances of ProductSpecification. It is not
unusual to apply this technique if entities can be related in a number of other ways in
addition to a composite/atomic association, such as “mutually exclusive”, “superseded
by”, and so forth. Figure 2.03 - Consolidating Sub-Classes – Bottom Up - Before shows
a class hierarchy from the Product Specification ABE before consolidation.

Figure 2.03 – Consolidating Sub-Classes – Bottom Up - Before

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 16

In this example, all attributes and relationships from the two ProductSpecification
subclasses are moved to it as shown in Figure 2.04 - Consolidating Sub-Classes –
Bottom Up - After. This simplifies the implementation view without compromising the
structure of the SID, as the subclasses of ProductSpecification can be exposed via an
interface if necessary and then later consolidated within an application. The manner in
which this is accomplished is that the composite/atomic relationship between an instance
of ProductSpecification and two or more other instances of ProductSpecification become
another type of relationship maintained by the ProductSpecificationRelationship entity
shown in Figure 2.04.

Figure 2.04 – Consolidating Sub-Classes – Bottom Up - After

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 17

The third technique, top-down bottom up, represents a combination of the first two
techniques. This technique can be combined with the first technique when there is also
a desire to consolidate a pattern such as the composite/atomic pattern. This technique
involves moving attributes and relationships from one or more super-classes and from
one or more subclasses to one or more intermediate sub-classes. Figure 2.05 - –
Consolidating Sub-Classes – Top Down – Bottom Up - Before shows a class hierarchy
from the Product Offering Price ABE before consolidation.

Figure 2.05 – Consolidating Sub-Classes – Top Down – Bottom Up - Before

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 18

In this example, a SID modeler wants to retain the visibility of two types of
ComponentProdOfferPrice, while removing what are mainly illustrative examples (the set
of concrete subclasses is not exhaustive) of the types of ProdOfferPriceCharge and
ProdOfferPriceAlteration. This simplifies the implementation view without compromising
the structure of the SID, as the ComponentProdOfferPrice and its subclasses can be
exposed via an interface if necessary and then later consolidated within an application.
This type of consolidation for the example is shown in Figure 2. 06 – Consolidating Sub-
Classes – Top Down – Bottom Up - After.

Figure 2.06 – Consolidating Sub-Classes – Top Down – Bottom Up - After

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 19

The fourth technique, typing, is a variant of the bottom up technique. This technique
involves moving attributes and relationships from one or more subclasses and to their
intermediate super-class and by adding an attribute that indicates what “type” of
subclass is represented by an instance of the super-class. This technique can be
applied when the subclasses do not represent the entire set of possible types of the
super-class or there is a very small if any number of attributes in the subclasses. Figure
2.07 – Consolidating Sub-Classes – Typing - Before shows a class hierarchy from the
Customer Order ABE before consolidation.

Figure 2.07 – Consolidating Sub-Classes – Typing - Before

In this example, a SID modeler is not interested in retaining explicit visibility into the four
of the possible types of CustomerOrders. This technique simplifies the implementation
view without compromising the structure of the SID, as the various types of
CustomerOrders can be exposed via an interface if necessary and then later
consolidated within an application. The resulting consolidation for the example is shown
in Figure 2.08 - Consolidating Sub-Classes – Typing - After.

Figure 2.08– Consolidating Sub-Classes – Typing - After

The next chapter describes more techniques that can be used in transforming the SID
logical perspective into the SID physical perspective.

CustomerOrder
customerOrderType
purchaseOrderNumber : String
assignedPriority : long
assignedResponsibilityDate : date
dueDate : Date

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 20

Class Hierarchy Technique Guidance
When choosing the class hierarchy implementation technique, there are a number of
considerations that can be taken into account to choose the technique.

Application Boundaries

Application boundaries can provide guidance when choosing the first or second option.
For example, the first option (top-down) may be chosen if there are separate applications
that deal with different types of performance, such as product, service, and resource
performance. Figure 2.09 – Performance Management Class Hierarchy shows a
generalized Performance entity and its subclasses. Note that the entities related to the
specifications shown in the figure would also be transformed from the top down.

Figure 2.09 – Performance Management Class Hierarchy

The Figure 2.10 – Transformed Performance Management Class Hierarchy shows the
resultant model after the transformation.

Figure 2.10 – Transformed Performance Management Class Hierarchy

Another example of application boundaries providing some guidance is where there are
two performance applications. One application is part of a Customer Relationship
Management (CRM) solution that supports Product performance. Another application is
part of an Inventory, or Infrastructure, application that supports Service and Resource
performance. In this case, the top-down option may be also chosen that results in the
transformation shown in Figure 2.11 – Product and Inventory Performance. In this
example, the top-down option results in two entities as shown.

Figure 2.11 – Product and Inventory Performance

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 21

In the figure, an inventoryType attribute has been added to indicate whether the
specification is a Service or Resource performance specification. Alternatively, the
association (not shown) to ServiceSpecification or ResourceSpecification could be used
to determine the type of performance specification.

In another case where application boundaries can assist in determining the technique to
use, consider a Mediation application. The various types of usage (product, service, and
resource) may just represent states, or stages, in the life cycle of a usage record. In this
case the second option (bottom-up) may be chosen, with the associations to product,
service, and resource representing the states in the life of usage as it is guided to a
product. Figure 2.12 – Usage Class Hierarchy depicts the usage model before
transformation. It is also important to note that “raw” Resource usage data typically
includes data about Product and Service usage, which may further influence choosing
this transformation option.

Figure 2.12– Usage Class Hierarchy

Figure 2.13 – Transformed Usage Class Hierarchy shows the hierarchy after
transformation, including the associations with Product, Service, and Resource, which
were also transformed from the bottom up. The Composite/Atomic ProductUsage
entities were also transformed from the bottom up. In the transformed model it may be
advantageous to either add a usageType attribute as discussed earlier.

Figure 2.13 – Transformed Usage Class Hierarchy

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 22

Other Technique Guidance

It should not always be assumed that individuals are familiar with the SID. Often, in the
case of B2B interfaces an interacting company is not familiar with the SID. For example
the concepts of Business Interaction or other abstract classes, such as Party may not be
known or may not be well-known. In these cases, option one, where classes are
transformed from the top down may the implementation choice, as shown in Figure 2.08
– Consolidating Sub-Classes – Typing – After.

Often in this case, attribute names, such as interactionDate may also be changed to a
more common term, such as customerOrderDate to facilitate understanding. A later
chapter of this book discusses the implications of this type of transformation, where
maintaining conformance should be considered.

Class Hierarchy Implementation Considerations
There are implementation considerations that should be taken into account for each
option, some of which are included here. There are certainly others that may be taken
into account based on a SID implementer’s experience. These considerations do
assume a relational database implementation.

When a new version of the SID is to be implemented a full or partial transformation may
be required using the database design tool that supports automatic transformation.
Alternatively, the changes may be manually introduced into the logical data model.

Considerations Applicable to All Techniques

There are integration cost considerations that must be taken into account. All of these
techniques change the basic structure of the information model. Interfaces that expose
these transformed structures often must be mapped back to the information model, if the
information model is used as-is within an integration framework. Additionally, the
changes made must be explained. Both of these add to the cost of integration.

All these options also present a small problem as any changes would have to be re-
applied manually if the use of a new SID version containing updated entities involved in
the transformation is desired. This consideration is not applicable if a data base design
tool is used to automatically transform the SID to a logical data model.

An important consideration is that each option hides details that are shown by the
subclasses. For example in Figure 2.04 – Consolidating Sub-Classes – Bottom Up -
After the fact that “groups” (CompositeProductSpecification) can be defined is now
hidden in a value that the attribute “type” (in ProductSpecificationRelationship), which is
used to indicate that groups, or bundles, of ProductSpecifications can be defined. Just
relying on this can result in an application not supporting the definition of groups.
Figures that represent the entities before and after transformation are often kept and
attached to application documentation to reduce the probability of this requirement not
being supported. A database design tool could provide this before and after view with
the unchanged SID UML information model representing the “before” and the logical
data model representing the “after”.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 23

Considerations for Specific Techniques

Application of the top-down and middle-up-and-down techniques result in duplication of
attributes. Therefore, if the properties of the attribute change, care must be taken to
ensure they are change across all the tables. Also, the recursive association on
business interaction is no longer usable to related different types of business
interactions. They must be explicitly modeled. This also applies to any other entity that
is transformed from the top-down or middle-down. A database design tool that supports
automatic transformation negates all these considerations.
The bottom-up, middle-up-and-down, and “type”-attribute techniques result in many
attributes and associations that were “required” in a subclass to become “optional” in the
super-class. The conditions under which the attributes and associations are still required
must be carefully documented. Some database design tools will add a type attribute or a
type entity automatically for these types of transformations, if they are specified within
the tool.

Considerations associated with the middle-up-and-down option include those of both the
top-down and bottom-up techniques.

When applying the top-down technique, it should be noted that this does not have to be
applied to all subclasses. For example, the PartyRole entity may be transformed top-
down into Customer and Supplier because there is no interest in implementing an
enterprise wide Party model. However, it may be desirable to consolidate some of the
other roles that can be played by individuals or organizations that do not have a large
number of attributes or related entities into a single set of entities that represent the Party
and the PartyRoles played and their related entities. The next chapter provides an
example of the top-down transformation of PartyRole into Customer.

There is an implementation consideration that should be taken into account when
transforming any application of the Composite/Atomic pattern using the bottom-up
technique. There is often a concern about changing a composite instance to an atomic
instance or an atomic instance to a composite instance, if the pattern is implemented as-
is. This should not be an issue from an implementation perspective, because there
should be application functionality in place to accommodate these requirements.

For example, changing a BundledProductOffering to a SimpleProductOffering, must first
remove all instances of SimpleProductOfferings from the BundledProductOffering, even
if the bottom-up technique has been employed; and application functionality should be in
place to copy the instance of the BundledProductOffering to an instance of a
SimpleProductOffering.

Another consideration here is that the original entity’s “type” should not be changed so
that a historical record of its type is maintained, particularly if there are instances of
Product associated to it. Changing the type can lead to problems, particularly if
instances of SimpleProductOfferings are actually removed (deleted) from a
BundledProductOffering as described in the example above. The Products related to
the SimpleProductOfferings would be orphaned, possible creating referential integrity
problems, or even deleted if the SimpleProductOffering to which they are related are
deleted. Rather changing the type, the original entity should be inactivated using the
endDateTime and a new instance of the entity reflecting the type change should be
created.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 24

The next two figures show an example of the bottom-up technique that can lead to
multiple issues. The first figure shows part of the as-is Service class hierarchy. The
second figure shows the resulting transformation.

Figure 2.14 - Service Hierarchy - Bottom Up - Before

Figure 2.15 – Service Hierarchy – Bottom Up – After

This transformation example would allow a CustomerFacingService (CFS) to be
required by an ResourceFacingService (RFS) and a CFS to be composed of RFS and
vice versa. A possible solution to these problems would to stop bottom up
transformation at CFS and RFS, which would include transforming the two aggregation
associations to two recursive associations. If not some form of logic, and possibly a
“rules” entity, would need to be included in an application that supported the full bottom-
up transformation. Or a middle up and down transformation could be employed, leaving
only CFS and RFS and the applicable associations.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 25

Implementing Other Modeling Patterns

There are also techniques and considerations for implementing the
EntitySpecification/Entity, Entity/EntityRole, and the
CharacteristicSpecification/CharacteristicValue modeling patterns. Included are
guidance on what not to do or what to do, as well as a discussion of application
boundary considerations.

EntitySpecification/Entity

It sometimes may appear desirable to collapse an EntitySpecification entity, such as
ProductSpecification into the related Entity, such as Product. But this also means
collapsing any subclasses and associations, not just the attributes. Here the focus
will be on the implications of duplicating attributes from the EntitySpecification in the
related Entity.

These implications are called anomalies. There are three:

x Update anomaly
x Insert anomaly
x Delete anomaly

When an attempt is made to modify (update, add, or delete from) instances,
undesired side-effects may follow. The examples will use the ProductSpecification
and Product entities.

Each instance of Product would contain the ProductSpecification attributes, such as
name, description, productNumber, and brand. A change to any of these attributes
will need to be applied to multiple instances of Product. If the change is not
successful, the brand is updated for some instances but not others. This results in
inconsistencies, which means conflicting answers to the question of what this
particular ProductSpecification’s brand is. This phenomenon is known as an
update anomaly.

There are circumstances in which Product attribute values cannot be recorded
at all. For example, each instance of a Product contains specification
information. This means that attribute values that describe a new instance of
ProductSpecification cannot be defined unless there is at least one instance of
Product. This phenomenon is known as an insertion anomaly.

If the last instance of Product that contains the attributes the describe the
associated specification is deleted, then the instance of ProductSpecification is
also deleted. All information about the ProductSpecification is lost. This
phenomenon is known as a deletion anomaly.

These anomalies should be considered before one to many association is collapsed, not
just the parts of the model where the EntitySpecification/Entity pattern has been applied.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 26

Entity/EntityRole
There may be a desire to transform the EntityRole application of the Entity/EntityRole
pattern to a subclass of the Entity.

Figure 2.16 - Party and PartyRole shows the Party and PartyRole application of this
pattern.

Figure 2.16 – Party and PartyRole

Some of the subclasses of PartyRole, such as Customer, ServiceProvider , and
Employee, are shown in Figure 2.17 – PartyRoles Transformed Into Party Subclasses.

Figure 2.17 – PartyRoles Transformed Into Party Subclasses

With this transformation, a separate instance of Party would have to be created for each
role, losing the capability of sharing instances of Party attributes and associations for
each role a Party plays and the anomalies discussed earlier reappear. This also ignores
the fact Party is already sub-classed. And, the same anomalies that occur when an
entity’s specification is collapsed into the associated entity await those who follow this
path for the Entity/EntityRole patterrn!

If the two entities that make up this pattern are collapsed, it is difficult to support multiple
roles and still maintain data integrity. For example, where would you store the name of
someone who is both a customer and an employee?

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 27

CharacteristicSpecification/CharacteristicValue
This section presents a number of implementation considerations when using the
CharacteristicSpecification/CharacteristicValue pattern.

Characteristics are Attributes, not Entities

Keep in mind that characteristics are attributes, not entities. While composite attributes
can be defined using this pattern, attributes don’t participate in complex associations,
they can’t be sub-classed, and can’t have attributes that describe them.

For example, suppose there is a requirement to add new performance monitoring entity
that is related to a party role. This could be added as a composite attribute called
“PerformanceMonitoring” with the attributes define it as atomic attributes. But, how is the
referential integrity with the associated PartyRole maintained? Atomic attributes could
the name of the related entity, PartyRole in this case, and the name of the entity’s
identifier. However, this is a work-around for modeling the entities and associations and
requires an application to do maintain referential integrity that is done by a database. If
also does not account for any misspellings in the name of the related entity and the
name of the attribute which identifies the entity.

Explicit Modeling Versus Characteristics

When using and implementing the CharacteristicSpecification/CharacteristicValue
pattern a number of questions often arise, including

x When should the attributes (characteristics) be modeled explicitly versus using
the pattern?

x If characteristics are used, is there anything else that needs to be considered
from a modeling perspective?

x Are there any performance issues that should be considered?.

Explicit modeling should take the following considerations into account

� Adding/removing/modifying attributes changes the model

� Attributes are visible

� Attributes stable/well known

� Logic associated with attribute

� Can start with this technique to identify characteristics.

Characteristics should take the following considerations into account

� No changes required to the model when adding/modifying/removing attributes

� Hides attributes

� Dynamic attributes- ones that are not known at the time of constructing the
model

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 28

� Informational attributes – ones that are not used in logic.

It is about choices. There is nothing wrong with explicitly modeling new types of entities
(specifications and entities). The considerations above should help make the choice.
Also, note that it is often convenient to start out using explicit modeling as this is a way to
document the attributes and their properties. Information modelers often refer to this
type of modeling as the construction of a business object model and keep a historical
copy of it to be used when populating instances of characteristic specification entities.
Note that the explicitly modeled entities would not be present in the information model if
characteristics are chosen to support the entity and its attributes.

There are other considerations that need to be taken into account. The Information
Framework does not contain entities that support the dynamic design of user interfaces,
such as web pages. To more completely support the
CharacteristicSpecification/CharacteristicValue pattern the framework should be
extended to provide this support. No user wants characteristics to be randomly placed
on a user interface! To help model these requirements, think of the properties that are
specified when designing a user interface, such as position, label, prompt, length, and so
forth.

Another consideration is modeling behavior-related entities so that code associated with
a characteristic can easily be added to an application.

There may be other considerations that are specific to a given use of the pattern, but
these are ones that are typical to any use of the pattern.

The next two chapters will discuss implementing a single characteristic model from a
database perspective. Later chapters will discuss other implementation considerations.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 29

Chapter 3 – SID and Database Design

This chapter describes techniques that can be used when employing a database design
tool for implementing the five SID modeling patterns, as well as any part of the SID
model that include class hierarchies or entities involved in one to many associations.
Included in the chapter are many alternatives that can be considered along with lessons
learned that should be taken into account before and after transforming the SID
information model to a SID-based data model. The examples in this chapter start with
transforming UML-specified entities into Entity-Relationship specified logical data model
entities and then to relational physical data model entities. The Data Definition
Language (DDL) generated from the physical data models are provided for some
transformations.

A Note on SID and Database Design

Using the SID information model as the basis for the design of a database is not all that
much different than data base design for any model that contains class hierarchies or
modeling patterns similar to those used in the SID. Many, if not all, of the
transformations could deferred to database design, if a tool that is used for database
design provides functionality to roll up and roll down entities and other transformations
described in the previous chapter. For example, the top-down technique can be
supported by rolling-down the BusinessInteraction entity and its associations to entities
in lower levels of its class hierarchy.

Database Design & Class Hierarchy Patterns

This section focuses on the SID patterns that represent class hierarchies, the Business
Interaction pattern and the Composite/Atomic pattern.

General Considerations
As a technology-neutral information model, the “I” component of the SID has never been
intended to be implemented as-is. Parts of the SID include multi-level class hierarchies
that are not necessarily suitable for one-to-one SID entity to database table
implementation.

There are two key implementation issues that are resolved by using the transformation
techniques. The first is that if entities in a class hierarchy are implemented as-is, then
multiple instances of entities are created. For example, in the BusinessInteraction class-
hierarchy were implemented as-is to support the ProductOrder entity, then four instances
of it must be created, one in each table, BusinessInteraction, Request, CustomerOrder,
and ProductOrder. This may be viewed as creating too many tables to represent one
concept in the database.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 30

The second issue deals with the resolution of table joins that would be necessary if a
class hierarchy is implemented as-is. In the BusinessInteraction example, four tables
would have to be joined to retrieve a single instance of a ProductOrder. This may result
in unacceptable database performance in high volume applications, such as those
required by a Customer Order Management application.

These two issues also exist for applications of the Composite/Atomic pattern, although
few tables would be generated if the applications of this pattern is implemented as-is.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 31

Top Down – Business Interaction Pattern
Described here is a top-down technique that can be used to develop a database that
implements the Business Interaction pattern. Since Product Order and the other
subclasses of CustomerOrder can be considered examples, this is the use of the top-
down technique, not the middle – up & down technique.

Also, keep in mind that this technique can be used to collapse any other class
hierarchies in the SID, such the Service or Resource entity hierarchies.

Figure 3.01 – Customer Order Logical Data Model Fragment depicts the
BusinessInteraction hierarchy, including CustomerOrder and CustomerOrderItem.
Some of the associations that BusinessInteraction and BusinessInteractionItem have
with other SID entities are also shown. Not all are shown because the transformation for
these is similar to those shown in the diagram.

For those not familiar with the Entity-Relationship diagramming, in the figure and all
similar figures shown in this chapter the “o” means optional, the “│” indicates a one

multiplicity, the “ ” indicates a many multiplicity, and the “ ” represents a subtype
(subclass). If the reader wants more information about Entity Relationship modeling
many tutorials/explanations can be found on the Internet.

Figure 3.01 – Customer Order Logical Data Model Fragment

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 32

Figure 3.02 – Transformed Customer Order Model Fragment shows the results of
transforming the logical data model to the physical model. The super-classes
BusinessInteraction and Request were rolled down (collapsed) into CustomerOrder, and
the superclass BusinessInteractionItem was rolled down into CustomerOrderItem. This
was specified in the logical data model. Notice the inherited BusinessInteraction and
BusinessInteractionItem attributes. The validFor (datatype is TimePeriod in the Base
Types ABE) attribute is missing in BusinessInteractionItem. This will be discussed in a
later section of this chapter. Also, an upcoming figure will show some of the inherited
associations.

Figure 3.02 – Transformed Customer Order Model Fragment

There a number of changes that were made before and after the transformation to the
physical data model. Non-needed keys have been removed. For example, requestID
was made non-persistent in the logical model and businessInteractionID was removed in
the physical model after the proper foreign keys were generated. Some tools allow this
to be done in logical data model, so regeneration of physical data model does not
require removal of them.

Keep in mind that this is not unique to the SID. However, it may be necessary to retain
some inherited primary key attributes in the logical data model to correctly generate the
physical data base foreign key attributes. As with any tool that transforms an information
model to various stages of data models, practice with the tool is essential! Knowing the
desired end result will impact how the transformations are defined and the number of
manual changes that are required at each step in the transformation.

Also, it is up to the implementer to decide if the “interaction” prefix on the attributes
inherited from BusinessInteraction should be changed to “customerOrder”.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 33

Figure 3.03 – Customer Order Inherited Associations shows some of the inherited
associations.

Figure 3.03 – Customer Order Inherited Associations

Notice that the two BusinessInteraction many to many (*-*) associations were
transformed into separate entities as part of the transformation. The last section in this
chapter describes an approach to handling these types of associations that should be
considered before transforming the information model to the logical data model.

It is up to the SID implementer to decide whether to change the name of the
BusinessInteraction-focused names. For example, it may be desirable to change
BusinessInteraction prefixes to CustomerOrder and BusinessInteractionItem prefixes to
CustomerOrderItem. Notice that the BusinessInteractionRelationship and
BusinessInteractionItem_X_BusinessInteractionItem entities now only provide for inter-
relating CustomerOrder entities. Support for associations across the subclasses of
BusinessInteractions is lost but could be manually introduced by adding associations in
the logical or physical data model. The last chapter in this book discusses maintaining
cross-domain and cross-ABE associations that may cross application boundaries.

Shown next are two extracts from the Data Definition Language (DDL), also call Data
Description Language, generated from the physical data model. DDL is the starting
point for the generation of physical tables in a database. For those not familiar with Data
Definition Language, the internet can be used as a starting point to gain an
understanding.
CREATE TABLE "Schema"."CUSTOMERORDER" (
 "CUSTOMERORDER_ID" INTEGER NOT NULL GENERATED BY DEFAULT
AS IDENTITY (START WITH 1 INCREMENT BY 1 MINVALUE 1 MAXVALUE
2147483647 NO CYCLE CACHE 20 NO ORDER),
 "CUSTOMERORDERTYPE" VARCHAR(32672),
 "PURCHASEORDERNUMBER" VARCHAR(32672),
 "ASSIGNEDPRIORITY" INTEGER,
 "ASSIGNEDRESPONSIBILITYDATE" DATE,
 "DUEDATE" DATE,
 "ID" VARCHAR(32672),
 "INTERACTIONDATE" DATE,
 "DESCRIPTION" VARCHAR(32672),
 "INTERACTIONDATECOMPLETE" DATE,
 "INTERACTIONSTATUS" VARCHAR(32672),

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 34

 "_BUSINESSINTERACTIONTYPEBUSINESSINTERACTIONTYPE_ID"
INTEGER NOT NULL,
 "_BUSINESSINTERACTIONSPECBUSINESSINTERACTIONSPEC_ID"
INTEGER
)
 DATA CAPTURE NONE;

CREATE TABLE "Schema"."CUSTOMERORDERITEM" (
 "CUSTOMERORDERITEM_ID" INTEGER NOT NULL GENERATED BY
DEFAULT AS IDENTITY (START WITH 1 INCREMENT BY 1 MINVALUE 1
MAXVALUE 2147483647 NO CYCLE CACHE 20 NO ORDER),
 "_CUSTOMERORDERCUSTOMERORDER_ID" INTEGER NOT NULL,
 "ACTION" VARCHAR(32672)
)
 DATA CAPTURE NONE;

Note that the length of the VARCHAR (UML String data types) is the default for the tool
used. It can be changed in the physical data model or the logical data model depending
on which of these (or both) support incremental updates as part of the transformation to
them. For example, some tools don’t provide for incremental changes to the logical data
model when transforming from UML; if this is the case, then the changes can be made in
the physical data model, with the hope that transformation to it can be incremental!

The second fragment of the generated Data Definition Language follows:
ALTER TABLE "Schema"."CUSTOMERORDER" ADD CONSTRAINT
"CUSTOMERORDER_BUSINESSINTERACTIONSPEC_FK" FOREIGN KEY
 ("_BUSINESSINTERACTIONSPECBUSINESSINTERACTIONSPEC_ID")
 REFERENCES "Schema"."BUSINESSINTERACTIONSPEC"
 ("BUSINESSINTERACTIONSPEC_ID");

ALTER TABLE "Schema"."CUSTOMERORDER" ADD CONSTRAINT
"CUSTOMERORDER_BUSINESSINTERACTIONTYPE_FK" FOREIGN KEY
 ("_BUSINESSINTERACTIONTYPEBUSINESSINTERACTIONTYPE_ID")
 REFERENCES "Schema"."BUSINESSINTERACTIONTYPE"
 ("BUSINESSINTERACTIONTYPE_ID");

ALTER TABLE "Schema"."CUSTOMERORDERITEM" ADD CONSTRAINT
"CUSTOMERORDERITEM_CUSTOMERORDER_FK" FOREIGN KEY
 ("_CUSTOMERORDERCUSTOMERORDER_ID")
 REFERENCES "Schema"."CUSTOMERORDER"

 ("CUSTOMERORDER_ID");

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 35

Bottom Up – Composite/Atomic Pattern
Described here is a bottom up technique that can be used to develop a database that
implements the Composite/Atomic pattern. Shown here is a typical example, using
Product Offering ABE entities, but this technique can be used to transform other similar
class hierarchies in the SID, such the Performance and Usage entity hierarchies,
keeping in mind implementation guidance provided in the previous chapter of this book.

Figure 3.04 – Product Offering UML Model Fragment is typical example of the
application of the Composite/Atomic pattern that will be used to demonstrate the bottom
up technique.

Figure 3.04 – Product Offering UML Model Fragment

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 36

Figure 3.05 – Product Offering Logical Data Model shows the UML model transformed to
the logical data model. The primary difference is the introduction of foreign and primary
keys. Also, note that the validFor attribute was not transformed as mentioned in the
previous section that described the top down transformation technique.

Figure 3.05 – Product Offering Logical Data Model

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 37

Figure 3.06 – Product Offering Physical Data Model shows the transformation from the
logical data model to the physical data model. The BundledProductOffering and
SimpleProductOffering subclasses were rolled up into the superclass ProductOffering.

Figure 3.06 – Product Offering Physical Data Model

Notice that the BundledProdOfferOption entity is now related to the
ProductOfferingEntity and has been transformed into an entity. Also, note that a new
entity, ProductOfferingType, was added to the physical data model. This was done as
part of the transformation by the tool used to perform the transformation. It was added to
support the two different types of ProductOffering, bundled and simple. If the SID
implementer prefers to use some other technique to make the distinction, such as a
simple offering not having any lower level offerings, then this added entity can be
removed.

Below is the full Data Definition Language (DDL) generated from the physical data
model.
--<ScriptOptions statementTerminator=";"/>

CREATE SCHEMA "Schema";

CREATE TABLE "Schema"."BUNDLEDPRODOFFEROPTION" (
 "_BUNDLEDPRODUCTOFFERINGPRODUCTOFFERING_ID" INTEGER NOT
NULL,
 "_PRODUCTOFFERINGPRODUCTOFFERING_ID" INTEGER NOT NULL,
 "NUMBERRELOFFERLOWERLIMIT" INTEGER,
 "NUMBERRELOFFERUPPERLIMIT" INTEGER
)
 DATA CAPTURE NONE;

CREATE TABLE "Schema"."DISTCHANNELPRODOFFER" (
 "_DISTRIBUTIONCHANNELDISTRIBUTIONCHANNEL_ID" INTEGER NOT
NULL
)

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 38

 DATA CAPTURE NONE;

CREATE TABLE "Schema"."DISTRIBUTIONCHANNEL" (
 "DISTRIBUTIONCHANNEL_ID" INTEGER NOT NULL GENERATED BY
DEFAULT AS IDENTITY (START WITH 1 INCREMENT BY 1 MINVALUE 1
MAXVALUE 2147483647 NO CYCLE CACHE 20 NO ORDER),
 "ID" VARCHAR(32672),
 "NAME" VARCHAR(32672)
)
 DATA CAPTURE NONE;

CREATE TABLE "Schema"."PRODUCTOFFERING" (
 "PRODUCTOFFERING_ID" INTEGER NOT NULL GENERATED BY
DEFAULT AS IDENTITY (START WITH 1 INCREMENT BY 1 MINVALUE 1
MAXVALUE 2147483647 NO CYCLE CACHE 20 NO ORDER),
 "ID" VARCHAR(32672),
 "NAME" VARCHAR(32672),
 "DESCRIPTION" VARCHAR(32672),
 "STATUS" VARCHAR(32672),
 "PRODUCTOFFERINGTYPE_ID" INTEGER NOT NULL
)
 DATA CAPTURE NONE;

CREATE TABLE "Schema"."PRODUCTOFFERINGRELATIONSHIP" (
 "_PRODUCTOFFERINGPRODUCTOFFERING_ID" INTEGER NOT NULL,
 "_PRODUCTOFFERING1PRODUCTOFFERING_ID" INTEGER NOT NULL,
 "TYPERELATIONSHIP" VARCHAR(32672)
)
 DATA CAPTURE NONE;

CREATE TABLE "Schema"."PRODUCTOFFERINGTERM" (
 "PRODUCTOFFERINGTERM_ID" INTEGER NOT NULL GENERATED BY
DEFAULT AS IDENTITY (START WITH 1 INCREMENT BY 1 MINVALUE 1
MAXVALUE 2147483647 NO CYCLE CACHE 20 NO ORDER),
 "_PRODUCTOFFERINGPRODUCTOFFERING_ID" INTEGER
)
 DATA CAPTURE NONE;

CREATE TABLE "Schema"."PRODUCTOFFERINGTYPE" (
 "PRODUCTOFFERINGTYPE_ID" INTEGER NOT NULL,
 "NAME" CHAR(10),
 "DESCRIPTION" CHAR(40)
)
 DATA CAPTURE NONE;

CREATE TABLE "Schema"."PRODUCTOFFERING_X_DISTRIBUTIONCHANNEL" (
 "PRODUCTOFFERING_ID" INTEGER NOT NULL,
 "DISTRIBUTIONCHANNEL_ID" INTEGER NOT NULL
)
 DATA CAPTURE NONE;

ALTER TABLE "Schema"."BUNDLEDPRODOFFEROPTION" ADD CONSTRAINT
"BUNDLEDPRODOFFEROPTION_PK" PRIMARY KEY
 ("_BUNDLEDPRODUCTOFFERINGPRODUCTOFFERING_ID",
 "_PRODUCTOFFERINGPRODUCTOFFERING_ID");

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 39

ALTER TABLE "Schema"."DISTCHANNELPRODOFFER" ADD CONSTRAINT
"DISTCHANNELPRODOFFER_PK" PRIMARY KEY
 ("_DISTRIBUTIONCHANNELDISTRIBUTIONCHANNEL_ID");

ALTER TABLE "Schema"."DISTRIBUTIONCHANNEL" ADD CONSTRAINT
"DISTRIBUTIONCHANNEL_PK" PRIMARY KEY
 ("DISTRIBUTIONCHANNEL_ID");

ALTER TABLE "Schema"."PRODUCTOFFERING" ADD CONSTRAINT
"PRODUCTOFFERING_PK" PRIMARY KEY
 ("PRODUCTOFFERING_ID");

ALTER TABLE "Schema"."PRODUCTOFFERINGRELATIONSHIP" ADD CONSTRAINT
"PRODUCTOFFERINGRELATIONSHIP_PK" PRIMARY KEY
 ("_PRODUCTOFFERINGPRODUCTOFFERING_ID",
 "_PRODUCTOFFERING1PRODUCTOFFERING_ID");

ALTER TABLE "Schema"."PRODUCTOFFERINGTERM" ADD CONSTRAINT
"PRODUCTOFFERINGTERM_PK" PRIMARY KEY
 ("PRODUCTOFFERINGTERM_ID");

ALTER TABLE "Schema"."PRODUCTOFFERINGTYPE" ADD CONSTRAINT
"PRODUCTOFFERINGTYPE_PK" PRIMARY KEY
 ("PRODUCTOFFERINGTYPE_ID");

ALTER TABLE "Schema"."PRODUCTOFFERING_X_DISTRIBUTIONCHANNEL" ADD
CONSTRAINT "PRODUCTOFFERING_X_DISTRIBUTIONCHANNEL_PK" PRIMARY KEY
 ("PRODUCTOFFERING_ID",
 "DISTRIBUTIONCHANNEL_ID");

ALTER TABLE "Schema"."BUNDLEDPRODOFFEROPTION" ADD CONSTRAINT
"BUNDLEDPRODOFFEROPTION_BUNDLEDPRODUCTOFFERING_FK" FOREIGN KEY
 ("_BUNDLEDPRODUCTOFFERINGPRODUCTOFFERING_ID")
 REFERENCES "Schema"."PRODUCTOFFERING"
 ("PRODUCTOFFERING_ID");

ALTER TABLE "Schema"."BUNDLEDPRODOFFEROPTION" ADD CONSTRAINT
"BUNDLEDPRODOFFEROPTION_PRODUCTOFFERING_FK" FOREIGN KEY
 ("_PRODUCTOFFERINGPRODUCTOFFERING_ID")
 REFERENCES "Schema"."PRODUCTOFFERING"
 ("PRODUCTOFFERING_ID");

ALTER TABLE "Schema"."DISTCHANNELPRODOFFER" ADD CONSTRAINT
"DISTCHANNELPRODOFFER_DISTRIBUTIONCHANNEL_FK" FOREIGN KEY
 ("_DISTRIBUTIONCHANNELDISTRIBUTIONCHANNEL_ID")
 REFERENCES "Schema"."DISTRIBUTIONCHANNEL"
 ("DISTRIBUTIONCHANNEL_ID");

ALTER TABLE "Schema"."PRODUCTOFFERING" ADD CONSTRAINT
"PRODUCTOFFERING_PRODUCTOFFERINGTYPE_FK" FOREIGN KEY
 ("PRODUCTOFFERINGTYPE_ID")
 REFERENCES "Schema"."PRODUCTOFFERINGTYPE"
 ("PRODUCTOFFERINGTYPE_ID");

ALTER TABLE "Schema"."PRODUCTOFFERINGRELATIONSHIP" ADD CONSTRAINT
"PRODUCTOFFERINGRELATIONSHIP_PRODUCTOFFERING_FK" FOREIGN KEY
 ("_PRODUCTOFFERING1PRODUCTOFFERING_ID")

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 40

 REFERENCES "Schema"."PRODUCTOFFERING"
 ("PRODUCTOFFERING_ID");

ALTER TABLE "Schema"."PRODUCTOFFERINGRELATIONSHIP" ADD CONSTRAINT
"PRODUCTOFFERINGRELATIONSHIP_PRODUCTOFFERING_FK1" FOREIGN KEY
 ("_PRODUCTOFFERINGPRODUCTOFFERING_ID")
 REFERENCES "Schema"."PRODUCTOFFERING"
 ("PRODUCTOFFERING_ID");

ALTER TABLE "Schema"."PRODUCTOFFERINGTERM" ADD CONSTRAINT
"PRODUCTOFFERINGTERM_PRODUCTOFFERING_FK" FOREIGN KEY
 ("_PRODUCTOFFERINGPRODUCTOFFERING_ID")
 REFERENCES "Schema"."PRODUCTOFFERING"
 ("PRODUCTOFFERING_ID");

ALTER TABLE "Schema"."PRODUCTOFFERING_X_DISTRIBUTIONCHANNEL" ADD
CONSTRAINT
"PRODUCTOFFERING_X_DISTRIBUTIONCHANNEL_DISTRIBUTIONCHANNEL_FK"
FOREIGN KEY
 ("DISTRIBUTIONCHANNEL_ID")
 REFERENCES "Schema"."DISTRIBUTIONCHANNEL"
 ("DISTRIBUTIONCHANNEL_ID");

ALTER TABLE "Schema"."PRODUCTOFFERING_X_DISTRIBUTIONCHANNEL" ADD
CONSTRAINT
"PRODUCTOFFERING_X_DISTRIBUTIONCHANNEL_PRODUCTOFFERING_FK" FOREIGN
KEY
 ("PRODUCTOFFERING_ID")
 REFERENCES "Schema"."PRODUCTOFFERING"
 ("PRODUCTOFFERING_ID");

COMMENT ON COLUMN "Schema"."PRODUCTOFFERING"."DESCRIPTION" IS
'A narrative that explains what the offering is.';

COMMENT ON COLUMN "Schema"."PRODUCTOFFERING"."ID" IS
'A unique identifier for the ProductOffering.';

COMMENT ON COLUMN "Schema"."PRODUCTOFFERING"."NAME" IS
'A word, term, or phrase by which the ProductOffeirng is known and
distinguished from other ProductOfferings.';

COMMENT ON COLUMN "Schema"."PRODUCTOFFERING"."STATUS" IS
'The condition in which the offering exists, such as planned,
obsolete, active';

COMMENT ON TABLE "Schema"."DISTRIBUTIONCHANNEL" IS
'A distribution channel is the organization or entity by which a
product catalog is presented to a customer.';

COMMENT ON TABLE "Schema"."PRODUCTOFFERING" IS
'The presentation of one or more ProductSpecifications to the
marketplace for sale, rental, or lease for a ProductOfferingPrice.
A ProductOffering may target one or more MarketSegments, be included
in one or more ProductCatalog, presented in support of one or more
ProductStrategies, and made available in one or more Places.
ProductOffering may represent a simple offering of a single

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 41

ProductSpecification or could represent a bundling of one or more
other ProductOffering.';

COMMENT ON TABLE "Schema"."PRODUCTOFFERINGTERM" IS
'A condition under which a ProductOffering is made available to
Customers. ProductOfferingTerm include
ProductOfferingFinancialTerm, which includes such things as
acceptable methods of payment, ShipmentTerm, and ServiceTerm.';

Middle Up & Down (Top Down, Bottom Up)
Designing a database that employs this technique is the combination of roll up and roll
down techniques to a class somewhere in the “middle” of a class hierarchy. Therefore,
there are examples that depict this technique have not been included.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 42

Database Design & Other Modeling Patterns

This section describes database design techniques that can be used when implementing
the EntitySpecification/Entity, Entity/EntityRole, and
CharacteristicSpecification/CharacteristicValue patterns.

EntitySpecification/Entity
The previous chapter contained recommendations about collapsing specifications into
entities, specifically that it introduces insert, update, and delete anomalies. However, if
either or both of the entities in the application of this pattern involve class hierarchies,
such as the Composite/Atomic pattern applied in the Product Specification ABE, then the
techniques described in the previous section could be applied.

Entity/EntityRole
The previous chapter contained recommendations about collapsing specifications into
entities, specifically that it also, like collapsing applications of the
EntitySpecification/Entity pattern, introduces insert, update, and delete anomalies
However, if either or both of the entities in the application of this pattern involve class
hierarchies, such as the Composite/Atomic pattern, such as its application in the Product
Specification ABE, then the techniques described in the previous section could be
applied.

Figure 3.07 – Customer without Party Role shows a very basic implementation of the
Customer entity.

Figure 3.07 – Customer Without Party Role

This physical data model was generated without generating the accompanying Party,
PartyRole, and related entities, such as PartyName and ContactMedium. The next set
of figures and their associated figures will demonstrate how a complete customer
database can be generated.

A general guideline to remember is when developing a database for an entity that is a
subclass of a role entity, and the role is in another ABE, don’t forget to transform both to
the logical data model. Or, the resulting physical data model will look like the one in the
figure above.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 43

Figure 3.08 – Partial PartyRole and Customer Logical Data Model shows a possible
database design if the choice is made to develop a separate Party database.

Figure 3.08 – Partial PartyRole and Customer Logical Data Model

Figure 3.09 – Partial Party, PartyRole, and Customer Physical Database shows the
addition of the Party entity and PartyRoleType entity for the physical database. An
upcoming figure will a possible implementation where a separate Party database has not
been developed.

Figure 3.09 – Partial Party, PartyRole, and Customer Physical Database

The dashed association line in this and all figures means the association is non-
identifying.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 44

The next two figures show the development of a Customer physical data model in which
Party and PartyRole do not appear, but in which the associated entities appear as
directly related to Customer. This will be accomplished by collapsing the PartyRole
hierarchy and applying other implementation techniques, all of which will be described
following Figure 3.10 – Customer Logical Data Model.

Figure 3.10 – Customer Logical Data Model

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 45

Two transformation techniques were employed to transform the logical data model to the
physical data model:

x Rolling down Party into Individual and Organization, which creates associations
between PartyRole and these entities

x Rolling down PartyRole into Customer so that “inherits” the associations to
entities associated with PartyRole, including Individual and Organization.

Note that these could vary based on the database design tool used. However, no matter
what tool is used, the end result should be the same or close to what is shown in Figure
3.11 – Customer Physical Data Model. The figure shows the implementation of the
Customer entity, not all the other entities within the Customer ABE.

Figure 3.11 – Customer Physical Data Model

The subclasses of ContactMedium are not shown in this implementation example. They
could be rolled up so that there is a single ContactMedium entity in the physical
database, or they could be rolled down so that single tables are created for each way in
which a party can be contacted. One subclass to keep in mind is the PostalContact
subclass of Contact Medium and ContactMedium itself. Both are related to address
entities, that would provide the address of the customer as well as the address to which
instances of ContactMedium apply, such as a phone number applying to an address that
represents the home address of the Customer.

The Address (Place) part of the model is not shown, but could be implemented using a
combination of techniques that have been described here and in the previous chapter of
this book.

Further transformations can be made in either the logical data model (if the final physical
data model has already been envisioned). For example, the names of the entities
Individual and Organization could be renamed to IndividualCustomer and
OrganizationCustomer.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 46

The names of the Party related entities could also be changed to use Customer instead.
Also, not that PartyRoleType could represent the EntitySpecification portion of the
EnittySpecification/Entity pattern. This would enable dynamic attributes to be defined for
each “type of customer by incorporating the Characteristic pattern into the Customer
ABE model . This could be easily done by adding an association to the
EntitySpeCharUse entity in the UML model before any transformations are performed.
This does illustrate the point that it is often of benefit to know the intended design of the
database. If not, then several iterations of transformations will be required, which is
realistically what often occurs.

The implementation of the Customer ABE shown here represents just one
implementation option. There can be many others, such as rolling Individual and
Organization up into Party, collapsing Party into Role, and Role into Customer. These
decisions often are dependent on the use cases that will act on entities within an
application and with any other applications that require access to customer information (if
a single customer database is maintained).

If this alternate approach is taken then all the individual/organization attributes reside in
Customer. This means that from an application perspective it would be more of a
challenge to determine if an individual or organization exists as more than one instance
of a customer.

When designing any database use cases specific to the entities contained in the
database can be used as one input into determining the design of the database. In this
example, use cases associated with Individual and Organization types of Customers,
such as when setting them up, changing information, preparing for billing, including the
associated user interfaces should be taken into consideration. If the majority of use
cases vary significantly based on the type of Party, then retaining separate Individual
and Organization entities may be desirable.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 47

There may be additional tasks to perform after the initial generation of the physical data
model. Figure 3.12 – Details of Customer Physical Data Base Entity shows the
Customer entity after its transformation to its physical implementation.

Figure 3.12 – Details of Customer Physical Data Base Entity

In the figure there are both primary and foreign keys, such as PartyRoleID and
PartyPartyID, that may not be of interest from a database perspective. These can be
deleted. Note that there is also an implicit Customer_Party foreign key, which resulted
from the roll downs of entities. An implicit key represents a reference to some other
entity that is not necessarily of interest, which means it is not enforced in any way.
Various forms of foreign keys are discussed further in the Error! Reference source not
found. section of Chapter 6.

CharacteristicSpecification/CharacteristicValue
Although Characteristics are duplicated across a number of domains (this practice is no
longer continued in the SID), a single set of shareable Characteristic tables can be
implemented. The Characteristic model that is contained in the Root Business Entity
ABE in the Common Business Entity domain can be used as a “template” for this. If
there is a concern about performance, an implementation could include a set of tables
for each domain, shareable by entities where Characteristics are used by entities within
a domain.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 48

Figure 3.13 – Basic Characteristic and “Use” Entities shows a basic/simplified view of a
database design that has implemented the Characteristic model as-is. Only a subset of
the implemented entities are shown.

The complete model of characteristic specifications UML model is shown in the figure
following Figure 3.13 – Basic Characteristic and “Use” Entities.

Figure 3.13 – Basic Characteristic and “Use” Entities

Figure 3.14 – Full Characteristic Specification Model

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 49

The model shown could be transformed as-is to a logical data model. Since this is the
case, a full example of the transformation is not show here.

Figure 3.15 – Product Specification “Use” of Characteristics shows the use of the
Characteristic model to support the dynamic sub-classing of ProductSpecification
entities. This is accomplished by adding an association between the
ProductSpecifcation entity and the EntitySpecCharUse entity.

Figure 3.15 – Product Specification “Use” of Characteristics

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 50

Figure 3.16 – Product Specification and Characteristic Keys shows how the
ProductSpecfication entity “uses” the generalized Characteristic model in a physical data
model. This is an alternative to repeating the application/implementation of the
Characteristic model within the Product Specification ABE. Note that the existing
associations in the Product domain that relate ProdSpecCharValueUse to and
ComponentProdOfferPrice and to ProductOffering need to be “moved” to
EntitySpecCharValueUse. This may also mean that a subclass
EntitySpecCharValueUse should be created, possibly named
ProdDomainCharValueUse.

Figure 3.16 – Product Specification and Characteristic Keys

The figure shows primary keys but not foreign keys. Some examples of foreign keys are
shown in the next figure.

Figure 3.17 – Example Physical Entity with Columns and All Keys shows the
EntitySpecCharUse entity with all columns (attributes), key columns (primary and
foreign), as well as primary and foreign keys.

Figure 3.17 – Example Physical Entity with Columns and All Keys

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 51

There are other ways to support this, rather than associating each entity to
EntitySpecCharUse entity. One is to have a single entity (table) that contains instances
of all specifications, similar to the EntitySpecification entity shown in Figure 3.14 – Full
Characteristic Specification Model. To support the extension of just entities, such as
Customer and ProductSpec attributes, an entity similar to RootEntityType could be used.
This will be discussed further in a later chapter of this book.

Characteristic Performance Improvement Opportunities

There are a number of performance improvement opportunities associated with
implementing Characteristics. First, the specification part of the model should be cached
in some way to ensure acceptable performance. This avoids having to navigate a
database when dynamically constructing a user interface or using the
CharacteristicSpecification entities to support any other functionality.

Another opportunity is to implement the relationship between CharacteristicSpecification
and CharacteristicValue "by reference", as opposed to "by value". In this case the
reference (foreign key) is the name, but a foreign key can be created for any attribute.
The "name" attribute could also be defined as the primary key of
CharacteristicSpecification, if its values will be unique.

Essential to a successful implementation of this pattern are considerations to take into
account for the CharacteristicValue entity. This entity only has two attributes, value and
validFor (from and to effective dates). Conceptually, the value attribute is only populated
when a value is entered for the Characteristic that does not have enumerated values
specified. For example, a userId associated with an email account. From an
implementation perspective, queries are often made on CharacteristicValues.

For performance and simplicity reasons, de-normalizing key attributes from
CharacteristicSpecification entities should be considered before the UML model is
transformed. Typical candidates for de-normalization are name, value (from
enumerations in CharacteristicSpecValue), and unitOfMeasure. This enables queries to
be made on the name attribute and eliminate the need to navigate to
CharacteristicSpecification implementation of the SID.

There may be volume performance concerns with implementing the CharacteristicValue
table in general or for a given application of it. If this is the case then the planned
implementation should prototyped to ensure there are no performance issues. If there
are then refer to the Error! Reference source not found. section in Chapter 5.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 52

Working with Other SID ABEs

This section describes implementation considerations when transforming other SID
ABEs, including:

x Base Types

x Contact Medium

x Location

Working with Base Type ABE Entities
Base Type ABE entities may be treated in various ways by database design tools when
transforming the UML model to a logical data model.

Base Type entities represent composite attributes, such as a TimePeriod entity that
contains a startDateTime attribute and an endDateTime attribute. The data type of an
attribute, such as validFor, is set to this entity, currently modeled as a class, but may be
changed to a UML datatype in a future version of the SID. This avoids having to define
two attributes in an entity and does provide a consistent specification for attributes that
represent this type of composite attribute.

Some tools may replace the attribute in an entity that references the Base Type entity
with the attributes that make up the composite. Others may transform the Base Type
entity as-is and show a one-to-one association to the entity that contains an attribute that
references the Base Type entity. This type of transformation is shown in Figure 3.18 –
TimePeriod as a Related Entity. Note that the validFor attribute is shown as the name of
the association between PartyRole and TimePeriod.

Figure 3.18 – TimePeriod as a Related Entity

The TimePeriod entity can be rolled up into the entities that reference it. If the
TimePeriod entity in the logical data model contains foreign key columns these will be
rolled up into the referencing entity also. These can be deleted after the logical data
model is transformed to the physical data model. Keep in mind that if they are deleted in
the logical data model then the roll up may not happen. Depending on the database
design tool used, if the roll up is done for one entity it is done all entities that reference
the Base Type entity.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 53

Some other technique, such as doing an initial transformation to the physical data model,
then removing the foreign key columns from the logical data model, and performing the
transformation to the physical data model again. Some tools provide “compare”
functionality when a physical data model is re-generated. Coupled with merge or
replace options they provide a means to automate the removal of the foreign key
columns in the referencing entity.

The more preferred technique would be to develop a plug-in that automatically perform
the transformation if the database design tool supports plug-in development.

Figure 3.19 – Time Period Attributes Transformed As Attributes shows an example of
the final physical data model after the foreign key columns have been removed from the
PartyRole entity.

Figure 3.19 – Time Period Attributes Transformed As Attributes

Notice that validFor has disappeared from the physical data model. The names of the
two validFor attributes could be changed to include a “validFor” prefix.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 54

Implementing the Contact Medium ABE
The section in this chapter that showed how the Party ABEs and the Customer ABE
could be implemented. However, it did not show details of how the Contact ABE (within
the Party ABE) or the Location ABEs could be implemented to support a complete
Customer database. An possible implementation of the Contact ABE is shown here
followed by a possible implementation of Location ABEs.

Figure 3.20 – Contact Medium Logical Data Base Model shows the results of
transforming the UML Contact ABE to its logical data model equivalent. Note that the
subclasses of ContactMedium, EmailContact, PostalContact, FaxNumber, and
TelephoneNumber are not shown but are present in the logical data model, but are
present in it. They will be rolled up into the ContactMedium entity during the
transformation to the physical data model.

Figure 3.20 – Contact Medium Logical Data Base Model

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 55

The transformation of this model to the physical data model is shown in Figure 3.21 –
Contact Medium Physical Data Model.

Figure 3.21 – Contact Medium Physical Data Model

Note that a new entity, ContactMediumType has been automatically added to the model
during the transformation process. This was also shown in an earlier section, when the
subclasses of ProductOffering were also rolled up. The ContactMedium “type” attribute
that was rolled up from the TelephoneNumber subclass could be used instead of this
generated entity.

An intersection/link table has also been automatically added to resolve the many-to-
many association between PartyRole and ContactMedium. This entity should most likely
have been added to the UML model. An attribute in the entity could indicate the type of
contact medium, such as office, home, primary, secondary.

Also, the multiplicity of the UML association between ContactMedium and
UrbanPropertyAddress should possibly be changed to many-to-many in the UML model
to support multiple addresses that have the same contact information.

The next section will provide an example transformation of the Location ABE, which
together with implementation of the Contact ABE, and what was shown for the Customer
ABE, demonstrates a full implementation of all entities that support the Customer ABE.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 56

Implementing the Location ABE
The first two figures mirror the current UML model with its deep class hierarchy, which
will be simplified by the transformation. Roll down roll up that have been demonstrated
in other sections of this chapter will be used to simplify the physical data model.

Figure 3.22 – Partial Address Logical Data Model shows the class hierarchy associated
with UrbanPropertyAddress and UrbanPropertySubAddress. The figure only shows the
keys associated with each entity. The physical data model will show the keys as well as
the columns.

Figure 3.22 – Urban Property Addresses Logical Data Model

When transforming this part of the logical data model Place, GeographicPlace,
AbstractGeographicAddress, GeographicAddress and GeographicSubAddress entities
will be rolled down.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 57

Figure 3.23 – Postal Delivery Address Logical Data Model Model shows the class
hierarchy associated with PostalDeliveryAddress and PoBoxAddress entities. The figure
only shows the keys associated with each entity. The physical data model will show the
keys as well as the columns.

Figure 3.23 – Postal Delivery Address Logical Data Model

When transforming this part of the logical data model, in addition to the entities rolled
down in the previous figure, LogicalAddress will be rolled down, and PoBoxAddress will
be rolled up.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 58

Figure 3.24 – Address Physical Data Model shows a much simplified physical data
model that contains only three entities.

Figure 3.24 – Address Physical Data Model

A number of foreign and primary keys can be deleted from the entities, such as PlaceID,
GeographicAddressID from UrbanPropertyAddress. Removing keys, such as these,
was described in earlier sections of this chapter. This is the first time that it can be seen
that many of them inherited from super-classes that were rolled down can be removed.

The next chapter explains how conformance to the SID can still be maintained from a
model perspective and if interfaces expose this physical representation of the SID
information model.

Some SID implementers choose to use the entity spec and char patterns as an alternate
for the current Location model. This includes further normalizing some attributes in the
current model, such as Country, PostCode, StateorProvince, by creating entities for
them. Conformance to the current model can also be maintained as will be described in
the next chapter.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 59

Lessons Learned

This chapter’s final section presents some lessons that have been learned over time
when transforming the SID into its physical representation. It describes both information
model considerations and database design tool considerations that should be taken into
account when implementing the SID in its physical form.

Information Model Considerations
Within each Level 1 SID ABE there are often implied Level 2 ABEs that represent the
Level 1 concept. For example, within the Level 1 Product Offering ABE there are a
number of Level 2 ABEs, such as Product Catalog and Product Offering Price. Along
with these are a set of entities that represent the entities that define a Product Offering,
which are not included in a Level 2 ABE called Product Offering. Figure 3.25 – SID
Product Offering ABE shows the Product Offering Level 1 ABE and its decomposition.

Figure 3.25 – SID Product Offering ABE

Often a data base that supports only a subset of the Product Offering Level 1 ABE will
be designed. Most database design tools support a partial transformation of a Level 1
ABE by allowing the selection of Level 2 or lower level ABEs. However, because
Product Offering entities are included directly under the Product Offering Level 1 ABE,
the Product Offering L1 ABE must be selected in order to transform these entities. That
means that all the ABEs may have to be included. In order to enable a subset of the
ABEs to be selected, it may be necessary to add a Level 2 ABE called Product Offering
and move the Product Offering entities to it.

Database design tools should/will resolve many-to-many (*-*) associations by adding an
entity to the logical or physical data mode. This entity represents the intersection
between the two entities involved in the association. However, there is typically
information (attributes/associations/subclasses) that describes association. Therefore, it
may be advantageous to add the entity before any transformation to the logical data
model is made.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 60

Make certain all the associations are included in the correct ABE. Sometimes, an
assumption is made that an association that is to be included in the transformation is
contained within the ABE(s) being transformed. This assumption may not always be
correct! For example, the association between ContactMedium and
PostalDeliveryAddress is currently in the Association folder directly under the Party Level
1 ABE. Therefore, when transforming the Contact ABE, this association will not be
transformed, losing the association in the logical data model. Making certain about the
location of associations can prevent a lot of re-transformations!

Database Design Tool Considerations
Database design tools may transform aggregation associations in a manner which is not
expected. For example, even if an aggregation association is many-to-many (*-*), the
“aggregating role” of the association may be transformed into a 0,1. Therefore, it is a
good practice when first working with a tool to investigate how this type of association is
transformed before beginning any “real” transformations.

As mentioned in the Information Model Considerations section, a tool should support
partial transformations of the SID. Also, it is not recommended that the entire SID be
transformed at one time; some tools may not support this volume of transformations.
Additionally, some associations that are actually abstract should not be transformed,
such as the association between BusinessInteraction and BusinessInteractionItem. This
association is explicitly modeled for each type of interaction, such as in the Customer
Order ABE.

Some database design tools may not support the transformation of all UML objects,
such as data types. Any that are needed, but not supported may require the
development of a plug in that can become part of the transformation from the UML
(information model) to the logical/physical data model.

The following is copied from an earlier section of this chapter because it also applies
here:

There a number of changes that were made before and after the transformation
to the physical data model. Non-needed keys, such as those from rolled down
super-classes, may been removed. For example, requestID can be made non-
persistent in the logical model and businessInteractionID can be removed in the
physical model after the proper foreign keys were generated. Some tools allow
this to be done in logical data model, so regeneration of physical data model
does not require removal of them. Keep in mind that this is not unique to the
SID.

However, it may be necessary to retain some inherited primary key attributes in
the logical data model to correctly generate the physical data base foreign key
attributes. As with any tool that transforms an information model to various
stages of data models, practice with the tool is essential! Knowing the desired
end result will impact how the transformations are defined and the number of
manual changes that will be required at each step in the transformation.

Implementing the TM Forum Information Framework (SID): A Practitioner’s Guide

Version 1.0 � John P. Reilly, 2011 Page 61

Copy/merge (incremental updates) on transformations should be a requirement,
particularly when going from UML to the logical data model and the logical data model to
the physical data model. Figure 3.26 – Structure Compare of Two Physical Data Models
shows a compare of a new transformation to a physical data model (on the left) with the
existing physical data model (on the right). The arrow icons at the bottom right of the
figure allow for copy or merge of the new transformation to the existing physical data
model.

Figure 3.26 – Structure Compare of Two Physical Data Models

