Important Equations in Physics (AS)

Unit 1: Quantities and their measurements (topics 1 and 2 from AS syllabus)

1	C.C.			<i>C.G F.P.</i>	I.K.S system, I.G.S. system, P.S. system and I system			cer	meter, kilogram, second centimetre, gram, second foot, pound, second								
2	SI system Base units				Length		Mass Time Kilogram second			Temp kelvin(K)		Current ampere(A)		luminous intensity candela (Cd)			ount of ostance l e
3	$ \begin{array}{c cccc} \textit{Multiples} & \textit{Tera} & \textit{Giga} \\ \textit{of units} & \textbf{T} & \textbf{G} \\ 10^{12} & 10^{9} \\ \end{array} $			G	Мед М 10		Kilo K 10 ³	Deci d 10 ⁻¹				micro µ 10 ⁻⁶				emto f 10 ⁻¹⁵	atto a 10 ⁻¹⁸
4	Celsius to l						273.15			kel	vin s	273.15 to scale					
5	Accuracy				Nothi	ng c	an be m	easured	absoli	ıtely a	ісси						antity.
6	Precision											rease by				ıt.	
7	Error				-			o faulty o	appara			ndom: du		_	nter		
8	Calculation	n error				_	Q=a+b $\Delta Q=\Delta a$	$a+\Delta b$				fference (b		
9	Calculating error				For product $Q=a \times b$ $\Delta Q = \left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times Q$			Fo	$\Delta Q = \Delta a + \Delta b$ For division $Q = a/b$ $\Delta Q = \left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times Q$								
10	Significant figures (sf) examples				1.234 four sj		1.2	1002 four sf	3.0	7	0.00	01 0.0. esf two	$\begin{array}{c c} 12 & 0 \\ sf & t \end{array}$	0.0230 hree sf	0.2 two	20	190 2 or 3 sf
11	Uncertainty Δvalue				the interval of confidence around the best measured value such that the measurement is certain not to lie outside this stated interval measurement = best measured value ± uncertainty												
12	Percentage and relative uncertainty			e	$percentage = \frac{uncertainty}{measured value}$ $= \frac{\Delta x}{x} \times 100$								ty alue				
13	Vector and scalar quantities				$Vector \rightarrow magnificae$ with limit and			→ only magnitude with units asity, pressure, speed, distance									
14	Magnitude of resultant vector c of two vectors a and b				a and b same direction: apply simple addition a and b opposite direction: apply simple subtraction \perp to each other: apply Pythagoras theorem $c = \sqrt{a^2 + b^2}$ Not \perp to each other: apply cosine rule $c^2 = a^2 + b^2 - 2 \times a \times b \times \cos \gamma$												
15	Direction of resultant vector c of two vectors a and b			a	a and b in same direction then c is also the in the same direction a and b opposite direction then c is in the direction of bigger vector \perp to each other apply $\theta = \tan^{-1} \frac{b}{a}$ Not \perp to each other: use protractor												
16	Components of vector \mathbf{F} making θ with x-axis			F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
17	Measureme ray oscillos	•		de	Time horiza	base	·:	or x-axis				al gain: ıl scale o					

Unit 2: Motion, force and energy (topic 3, 4, 5 and 6 from AS syllabus)

1	Average velocity \bar{v}	_ S		s is the displa	acement in meters and t		
1	Tiverage velocity v	$\bar{v} = \frac{1}{t}$		is the time in seconds.			
2	Instantaneous velocity	Velocity of an object at an	Velocity of an object at any particular instant of time.				
3	Average acceleration \bar{a}				nge of speed and Δt is		
		$\bar{a} = \frac{\Delta v}{\Delta t}$			f time. Unit of		
				acceleration	is ms ⁻²		
4	Acceleration and velocity	Same direction: accelerati		-			
		Opposite direction: accele	Opposite direction: acceleration is -ve, deceleration, retardation				
5	Graphical representation	[stationary] (six axis)	[constant speed]	(Sixe) [constant speed Time (x-axis	[constant acceleration]		
6	Speed-time graph	Area under the graph: dist Gradient of the graph: acc		y and object			
7	Distance-time graph	Gradient of the graphs: sp		<u> </u>			
8	Equation for uniform	$v = \frac{s}{-}$		•	n acceleration=0 and		
	motion, constant motion	t		no net force i			
9	Equations for uniformly	v = u + at			velocity in ms ⁻¹ ,		
	accelerated motion	$s = \frac{(u+v)}{t}$			ul velocity in ms ⁻¹ ,		
	- body start motion u=0	2,		s is the distance/displacement in m,			
	- body come to rest v=0	$s = \frac{(u+v)}{2}t$ $s = ut + \frac{1}{2}at^{2}$	2		leration in ms ⁻² and		
	- free fall g=a=9.81ms ⁻² - horizontal motion s=x	$v^2 = u^2 + 2a$	_	t is the time i	n s.		
	- norizontal motion s=x - vertical motion s=h=y	$v^- = u^- + 2u$	S				
10	Friction \rightarrow static and	Static $f_S = \mu_S \times N$		f is the static	friction in newton		
10	dynamic dynamic	Dynamic $f_k = \mu_k \times N$		f_s is the static friction in newton, f_k is the dynamic friction in newton,			
	ayname	N is the reaction or normal	-		ficient of static friction		
		perpendicular to the surface			f. of dynamic friction		
11	Air resistance or viscous	- Opposing force to the mo					
	force or viscous drag	- During free fall in the be	-	-			
		- Later: weight> air resis			•		
12	Terminal velocity	- at terminal velocity, weig		nce + upthrus	st		
13	Projectile:	x -component \rightarrow	y-component -	\rightarrow	horizontal range		
	Motion in two dimensions,	no acceleration	acceleration i	s g	v^2		
	v and angle θ with	$v_x = v \cos \theta$	$v_y = v$	$\sin \theta$	$R = \frac{1}{g} \sin 2\theta$		
	horizontal, upward is +	$x = v_x t = v t \cos \theta$	$y = v_y t -$	- ½gt²	max range at θ =45°		
14	Weight and mass:			w is the wei	ght in newton (N), m is		
	weight is force of gravity,	$w = m \times g$			kg and g is acceleration		
	mass is the amount of	$W = H \wedge g$		due to gravi	$ty=9.81 \text{ ms}^{-2}$		
	matter, it never changes						
15	Stability of an object	Lower the centre of gravity \rightarrow more stable the object is					
16	Management	Wider the base of an object \rightarrow more stable the object is					
16	Momentum	$Momentum = mass \times velocity $ unit is kg.m.s ⁻¹ or N.s					
17	Conservation of linear	Total momentum before collision = total momentum after collision					
1/	momentum	· ·					
18	Elastic collision	$m_A u_A + m_B u_B = m_A v_A + m_B v_B$ Total kinetic energy before collision =total kinetic energy after collision					
		Y2 $m_a u_a^2 + \frac{1}{2} m_b u_b^2 = \frac{1}{2} m_a v_a^2 + \frac{1}{2} m_b v_b^2$					
19	Elastic collision	$for two masses m_a \neq m_b \text{ or } m_a = m_b \text{ the equation must satisfy}$					
		Joi ino musses ma + mb		-	nse sumsjy		
L	<u>l</u>	$u_a + u_b = v_a + v_b$					

20	Inelastic collision	Total kinetic energy before collision>to	tal kinetic energy after collision		
		$V_2m_au_a^2 + V_2m_bu_b^2 >$			
21	Newton's first law of	Object in motion → stay in motion forev			
22	motion Newton's second law of	object stationary → stay stationary fore			
22		$F_{net} \ltimes a$	- Net force applied × acceleration		
	motion	$m \ltimes 1/a$	- Mass of an object × 1/acceleration		
		$F_{net} = kma$	-1 N is the amount of force require		
		$F_{net} = ma$	to create an acceleration of 1 ms ⁻² of mass of 1 kg; k=1Nkg ⁻¹ m ⁻¹ s ²		
23	Newton's third law of	Action and reaction forces applied by tw			
	motion	equal in magnitude and opposite in dire			
24	Momentum and 2nd law of	mv - mu	Rate of change of momentum is		
	motion	$F = \frac{mv - mu}{t} = ma$	equal to the net force applied		
25	Impulse	$F\Delta t = mv - mu$	Constant force acting for short time		
26	Density 'ρ' in kgm ⁻³ or	$ \rho = \frac{m}{V} $	- ρ of Mercury is 13.6gcm ⁻³		
	gcm ⁻³	$\rho - \overline{V}$	- ρ of water is 1 gcm ⁻³ at 4 °C		
		m is the mass and V is the volume	$- \rho \ of \ air \ 0.001293 gcm^{-3}$		
27	Pressure p in pascal (Pa)	F	F is the force in N and A is the area		
		$p = \frac{1}{A}$ $p = \rho g h$	on which the force applied in m ²		
28	Pressure in fluids due to	$p = \rho g h$	ρ is the density of the fluid, g is the		
	depth h in meters	, , ,	acceleration due to gravity and h is		
			the height or depth in metre		
29	Upthrust:	$upthrust = h \rho g A$	- Object floats if the density of object		
	- upward force applied by	* upthrust is equal to the weight of the	is less than or equal to the density of		
	fluid on an object	liquid displaced	the fluid and object sinks if the		
			density of object is more than the		
			density of object is more than the		
30	Measuring the density of	James to a Cilian til			
	liquid using (upthrust) -	_	upthrust in liquid		
	Archimedes principle	• •	upthrust in water		
31	Torque or moment of	$\tau = Fd \times \sin \theta$	F applied perpendicular to d		
	force				
32	Torque due to a couple or	$Couple = one force \times perpendicular dis$			
	two equal forces	$\tau =$			
33	Conditions of equilibrium	$\Sigma F_{net} = 0$	-Total or net force applied is zero		
		$\Sigma \tau_{net} = 0$	-Total torque applied is zero		
34	Work:	$\Delta W = Fs \times \cos \theta$	F is the force, s is the displacement		
	ΔW is the work in joules	work that causes motion $\rightarrow E_k$	in the direction of the force applied		
L		work that store energy $\rightarrow E_p$	and θ is the angle between F and s		
35	External work done by an	$\Delta W = p\Delta V$	p is the pressure in Pa and ΔV is the		
	expanding gas	In p-V graph the area under the graph	expansion of gas in m ³		
L		is the work done			
35	Work done in stretching a	$\Delta W = \frac{1}{2}kx^2 = \frac{1}{2}Fx$	F is the force applied and x is the		
	spring	Work= area under the F-x graph	extension		
36	Principal of conservation	Loss of gain or E_p =	$= gain \ or \ loss \ of \ E_k$		
	of mechanical energy	$\Delta E_p =$			
		mgh =			
37	Electrical potential	$E_{P,q} = qV$	q is the quantity of charge in		
	energy:	$P_{i}q = qv$	coulomb and V is the potential		
	Work done in bring the		difference between the points.		
	unit positive charge from		angerence between the points.		
	infinity to a point.				

38	Internal energy:	$\Delta Q = \Delta U + \Delta W$		plied, ΔU increase in the
	Sum of the E_k and E_p of		internal en	ergy and ΔW is the work
	the molecules of a system		done by the	e system
39	Power	$P = \frac{W}{t} = Fv$	work done,	wer in watts, W is the F is the force and t time
40	Efficiency of a machine	$Efficiency = \frac{useful\ energy\ output}{total\ energy\ input} \times 1$		Efficiency can be expressed as percentage

Unit 3: Electric charge (topic 17, 19 and 20 from the syllabus)

$1 \mid I$	Electric field intensity E:	between the two parallel plates	due to point charge Q on charge q				
	force on a unit charge q		F				
	at any point around	$E = \frac{V}{d}$	$E = \frac{1}{q}$				
a	another charge Q	uniform between the plates	decreases with distance increase,				
		separation d, unit is Vm ⁻¹	unit is NC ⁻¹				
2 (Current: Rate of flow of	, Q	I is the current in amperes (A),				
	charges in a conductor	$I = \frac{Q}{t}$	Q is the charge in coulombs (C)				
			t is the time in seconds (s)				
	Current path	In circuits the current always choose	the easiest path				
	Conduction of electric	in electrolyte liquids due chemical r	-				
	charge		etals) due to free electrons→ conduction				
5	Ohms law	Voltage across the resistor is	V is the voltage in volts (V),				
		directly proportional to current,	I is the current in amperes (A) and				
		$V \ltimes I \ or$	R is resistance in ohms (Ω)				
		$\frac{V}{I} = R$					
<i>(</i>)	17. 1.	1	0: 1 1 (0)				
6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Voltage	Energy per unit charge	Q is the charge in coulombs (C),				
		$V = \frac{Energy}{2}$	V is the voltage in volts (V)				
7 7		$V = \frac{Energy}{Q}$ $e.m.f. = lost \ volts + terminal \ p.d.$	Energy is in joules (J)				
7 E	Electromotive force(emf)	$e.m.f. = lost \ volts + terminal \ p.d.$	the energy transferred to electrical				
		e.m.f.=Ir+IR	energy and when 1C charge passes				
8 <i>N</i>	M D Ji	unit of emf is volts (V)	through a circuit.				
	Max. Power dissipated by the cell	$P = \frac{E^-R}{\sqrt{R}}$	Max. power P when $R=r$, E is the emf				
	•	$P = \frac{E^2 R}{(R+r)^2}$ $R = \rho \frac{L}{A}$					
9 F	Resistance and resistivity	$R = \rho \frac{L}{L}$	R is the resistance a resistor,				
		11	L is the length of a resistor in meters				
		$ ho$ is the resistivity of resistor in Ω .m	A is the area of cross-section of a resistor in m^2				
10 (Circuit	In series circuit \rightarrow the current stays t					
10	Circuii	In parallel circuit \rightarrow the voltage stay					
11 I	Resistance in series						
_	Resistance in parallel	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R , R_1 , R_2 and R_3 are resistances of				
	reconstantee in p in enter	$\frac{\overline{R}}{R} = \frac{\overline{R_1}}{R_1} + \frac{\overline{R_2}}{R_2} + \frac{\overline{R_3}}{R_3} + \cdots$ $V_1 \qquad R_1$	resistor in ohms				
13 I	Potential divider	V_1 R_1	V_1 voltage across R_1				
		$\frac{\frac{1}{V_2} = \frac{1}{R_2}}{V_2 = (\frac{R_2}{R_1 + R_2}) \times V}$	V_2 voltage across R_2				
14 I	Potential divider	R_2	R_1				
	(V total voltage)	$V_2 = (\frac{1}{R_1 + R_2}) \times V$	$V_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times V$				
	Power	$\frac{R_1 + R_2}{2}$	P is the power in watts (W)				
		$P = I \times V$ $P = I^2 \times R$ $P = \frac{V^2}{R}$, , , , , , , , , , , , , , , , , , , ,				
16 I	Power	$P = \frac{Energy}{I}$	The unit of energy is joules (J)				
		time					
17 I	I-V Characteristics						
			$T\uparrow, R\uparrow, I\downarrow$ $T\uparrow, R\downarrow, I\uparrow$ $L\uparrow, R\downarrow. I\uparrow$				
	Kirchhoff`s law	$\sum I = 0$ $\sum EMF = \sum IR$					
19 (Cathode rays	Stream of electrons emitted from heated metal (cathode) are called cathode					
1	rays and the process of emission is called thermionic emission.						

Unit 4: Matter (topic 9, and 10 from the syllabus)

1	Density: ratio of mass to volume, gcm ⁻³ , kgm ⁻³	$\rho = \frac{m}{V}$		o=m/V where the vol.	e m is the mass and V is		
2	Kinetic molecular	tiny particles, in constant collision, held by strong electric force, large empty					
3	theory of matter Kinetic molecular	space, temp increases the s		iquids:		Gases:	
	theory of matter - energies	vibrates at mean position called vibrational energy translational (moveme energy)			Vibrational,		
4	Brownian Motion	Random, zigzag motion of p					
5	Pressure, p	$p = \frac{force\ applied\ at\ rig}{}$		an object	Uni	it is pascal (Pa)	
		area o	f contact				
6	Pressure due to liquid	$p = \rho \times$	$g \times h$		-	density, g is gravity Th is depth	
7	Kinetic energy of the particles of a substance	proportiona	l to the therm	nal energy of o	a sub	stance	
8	Potential energy of the particles of a substance	Due to electrosto	ıtic force bet	ween particle.	s of a	a substance	
9	Types of solids (based on the arrangement of atoms or molecules)	Atoms or molecules are arranged in regular three dimensional pattern Atom			rystalline or amorphous solids: ns or molecules are not nged in regular pattern		
		Polymer solids are either o some form of regular patt	ern or amorp systematic a	phous polyme errangement	r if th	here is no particular	
10	Hooke's Law	The extension of a spring Δx is directly proportional to the force applied F_{app} provide the elastic limit is not reached $F_{app} = kx \text{ or } F_s = -kx$ k is the spring constant and F_s is the restoring force of spring					
11	Elastic limit	Gradient or slope of the graxis) is the elastic limit of a	aph between				
12	Stress σ (unit pascal)	$\sigma = \frac{F}{A}$		-	oss-s	pplied and A is the ection perpendicular	
13	Strain ε (no unit)	$\varepsilon = \frac{L}{x}$		x is the ch		in length and L is	
14	Young modulus E (unit is pascal)	$E = \frac{\sigma}{\varepsilon} = \frac{F/A}{x/L} = \frac{F}{A}$	$\frac{F \times L}{1 \times x}$	ratio	of si	tress over strain	
15	Young modulus E	Gradient or slope of the graits the Young modulus of a s		stress σ (y-ax	cis) a	nd strain ε (x-axis)	
16	Elastic Hysteresis loop	op The difference between the areas covered by force- extension during the expansion to when it is returning back to its original shape is called elastic hysteresis loop. The area under this loop is the energy dissipated by change is length for example rubber it is used as vibration absorber.					
17	Strain energy	$W = \frac{1}{2}kx^2 = \frac{1}{2}Fx$ It is the energy stored in a due to change of shape or The area under force-exte graph is strain energy				e of shape or size. er force-extension	

18	Strain energy per unit volume	$= \frac{1}{2} \times \frac{F}{A} \times \frac{x}{L}$ $= \frac{1}{2} \times stress \times strain$	The area under the stress-strain graph is called strain energy per unit volume. The unit of energy is joules (J).
19	Ductile and brittle	Ductile:	Brittle:
	material	\rightarrow drawn into wire without breaking	→ cannot drawn into wire
		\rightarrow small elastic region and large ductile	→ small or large elastic region
		→ eg copper wire	but small ductile region, eg glass

Unit 4: Nuclear physics (topic 27 from the syllabus)

1	Elementary particles	Proton: Ele		Electron:		Neutron:	
	of an atom	Positive charge, negative charge,		,	no charge,		
		inside the nucleus,	revolve are	ound the ni	ıcleus,	inside the nucleus,	
		same mass as neutron	mass is 1	!/1836 of pi	roton	same mass as proton	
2	Nucleon no 'A'	also called mass number	r or atomic v	weight, it is	sum of	protons and neutrons	
3	Proton no 'Z'	also called atomic numb	er, total nun	nber of pro	tons		
4	Alpha particles	Helium nucleus				⁴ ₂ He	
	α-particles	Stopped by paper			or	2	
	-	Highest ionization poten	tial			$^4_2\alpha$	
5	Beta-particles	Fast moving electrons				$\frac{{}^{4}\alpha}{{}^{0}_{1}e}$	
	β -particles	Stopped by aluminum			or	-	
		Less ionization potentia	l			$_{-1}^{}\!\beta$	
6	Gamma-particles	Electromagnetic radiation	on			ογ	
	γ-particles	Only stopped by thick a	sheet of lead	d		ōΥ	
		Least ionization potential					
7	Alpha decay	$_{Z}^{A}X \Rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He + energy$ Parent nu		uclei X emit two protons and two to make alpha particle			
		$ZX \Rightarrow Z-2Y + 2He + energy$ neutrons t					
8	Beta decay				rent nuclei X one of the neutrons		
				changes in	es into neutron and electron. The		
				electron ei	emits as beta		
9	Gamma decay	$11V \rightarrow 11V + 01V$		decay is the simple loss of energy			
		Z Z 01		from the n			
10	Radioactivity is a	Does not depend upon th	he environm	ental factor	rs eg atn	n. Pressure,	
	spontaneous process	temperature, humidity, b					
11	Radioactivity is a	All the nuclei have equa		of decay a	t any tin	ne, cannot predict	
	random process	which nucleus will emit					
12	Half-life	Time in which the activit	stance becomes half				
13	Atomic symbol	$ \begin{array}{c} AX\\ZX\\ Examples: \ ^1_1H, \ ^{12}_{6}C, \ ^{16}_{8}O \end{array} $			A is the	e total no of protons and	
					neutroi		
		Examples: ${}_{1}^{1}H$, ${}_{6}^{12}C$, ${}_{8}^{16}O$			Z is the	e total no of protons	
14	Isotopes	Elements having atoms of same number of			Fa 12C	$^{14}_{7,6}C \ or \ ^{1}_{1}H, \ ^{2}_{1}H, \ ^{3}_{1}H \ or$	
protons but different number of neutr				$^{235}_{92}U$, 2	$_{92}^{239}U$,		
					920,	920,	

Unit 5: Waves (topic 15 and 16 from the syllabus)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Wave equation 1	$v = f \times \lambda$	v is the speed of wave in ms ⁻¹			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Ware equation 1		2 0			
J = T second	2	Wave equation 2	. 1	T is the time period of wave in			
of the medium			$f = \overline{T}$	second			
 4 Wavelength 'λ' Distance between two crests or two troughs, unit metre (m) 5 Frequency 'f' Total number of waves in one second, unit hertz (Hz) 6 Time period 'T' Time taken for one complete wave, unit second (s) 7 Speed of wave motion 'v' Distance move by crest in direction of wave in Isecond, unit ms' Distance move by a particle from its mean position in either direction, unit metre (m) 9 Amplitude 'a' The maximum distance move by the particle, unit metre (m) 10 Wave fronts Representation of crests of a wave by straight line perpendicular to the direction of wave. Distance between two wave fronts is wavelength. 11 Progressive wave Continuous waves created by a source 12 Phase difference When the crests and troughs of two waves do not overlap each other then two waves have phase difference 13 Coherent waves Two waves of same properties and originate from same source of the think that the two waves have phase difference. 14 Intensity of a wave 'I' I = P	3		Longitudinal waves=> back a	nd forth same direction as waves			
 Frequency 'f' Total number of waves in one second, unit hertz (Hz) Time period T' Time taken for one complete wave, unit second (s) Speed of wave motion 's' Distance move by crest in direction of wave in Isecond, unit ms² Displacement of particle 's' Distance move by a particle from its mean position in either direction, unit metre (m) Amplitude 'a' The maximum distance move by the particle, unit metre (m) Wave fronts Representation of crests of a wave by straight line perpendicular to the direction of wave. Distance between two wave fronts is wavelength. Phase difference When the crests and troughs of two waves do not overlap each other then two waves have phase difference Coherent waves Two waves of same properties and originate from same source 1 P				-			
 Time period 'T' Speed of wave motion 'v' Distance move by crest in direction of wave in Isecond, unit ms² Distance more particle s' direction, unit metre (m) Displacement of particle s' Distance move by a particle from its mean position in either direction, unit metre (m) Amplitude 'a' The maximum distance move by the particle, unit metre (m) Wave fronts Representation of crests of a wave by straight line perpendicular to the direction of wave. Distance between two wave fronts is wavelength. Progressive wave Continuous waves created by a source When the crests and troughs of two waves do not overlap each other then two waves have phase difference Two waves of same properties and originate from same source other then two waves have phase difference Intensity of a wave 'I' I =		· ·					
 Speed of wave motion 'v' Distance move by crest in direction of wave in I second, unit ms¹ Displacement of particle so in either direction, unit metre (m) Amplitude 'a' The maximum distance move by the particle, unit metre (m) Wave fronts Representation of crests of a wave by straight line perpendicular to the direction of wave. Distance between two wave fronts is wavelength. Progressive wave Continuous waves created by a source Phase difference When the crests and troughs of two waves do not overlap each other then two waves have phase difference Coherent waves Two waves of same properties and originate from same source intensity of a wave 'I' I = A P the amount of wave energy per second at particular point falling on surface area A Intensity of a wave 'I' Intensity of wave is directly proportional to the amplitude square I × a² Compression region When particles of a medium come close to each other Rarefaction region When waves pass through a narrow gap, they spread out. Interference of light waves Constructive interference: When the crests-crests and troughs of two waves overlap each other, amplitudes cancel each other waves overlap each other, amplitudes cancel each other solved the stift experiment Young double slit experiment For bright fringes: For dark fringes: (n + 1)λD a a a is the distance between the two slits, D is the distance between slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre of bright or dark fringe counting from the first bright fringe at the cen		1 , ,					
Displacement of particle Distance move by a particle from its mean position in either direction, unit metre (m)		*	v i				
Second			·	v			
9 Amplitude 'a' The maximum distance move by the particle, unit metre (m) Wave fronts Representation of crests of a wave by straight line perpendicular to the direction of wave. Distance between two wave fronts is wavelength. 11 Progressive wave Continuous waves created by a source When the crests and troughs of two waves do not overlap each other then two waves have phase difference 13 Coherent waves 14 Intensity of a wave '1' Intensity of wave is directly proportional to the amplitude square 15 Intensity of a wave '1' Intensity of wave is directly proportional to the amplitude square 16 Compression region When particles of a medium come close to each other 17 Rarefaction region When particles of a medium come close to each other 18 Diffraction When waves pass through a narrow gap, they spread out. When the crests-crests and troughs-troughs of two waves overlap each other, amplitudes become added 20 Young double slit experiment For bright fringes: x = \frac{n\D}{a} x = \frac{n\D}{a} x = \frac{(n+1)\D}{a} a is the distance between the two slits, D is the distance between slits and the screen, \(\lambda\) is the distance between slits and the screen, \(\lambda\) is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre d is the gap between two grating lines, \(\theta\) d is the angle of the order of maxima, n is the order of a maxima and \(\lambda\) is the wavelength Place of a maxima and \(\lambda\) is the wavelength When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. A wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and	8			om its mean position in either			
Representation of crests of a wave by straight line perpendicular to the direction of wave. Distance between two wave fronts is wavelength. Progressive wave Continuous waves created by a source	0	1					
to the direction of wave. Distance between two wave fronts is wavelength. 11 Progressive wave		-					
Wavelength.	10	wave fronts					
 Progressive wave				nce between two wave froms is			
12 Phase difference When the crests and troughs of two waves do not overlap each other then two waves have phase difference 13 Coherent waves Two waves of same properties and originate from same source 14 Intensity of a wave 'I' P the amount of wave energy per second at particular point falling on surface area A 15 Intensity of a wave 'I' Intensity of wave is directly proportional to the amplitude square I \times \alpha^2 16 Compression region When particles of a medium come close to each other 17 Rarefaction region When particles of a medium come close to each other 18 Diffraction When waves pass through a narrow gap, they spread out. 19 Interference of light waves Constructive interference: When the crests-crests and troughs-troughs of two waves overlap each other, amplitudes cancel each other amplitudes cancel each other become added 20 Young double slit experiment For bright fringes:	11	Progressive wave		a source			
ther then two waves have phase difference 13 Coherent waves Two waves of same properties and originate from same source 14 Intensity of a wave ' I'		<u> </u>	ž				
13 Coherent waves Two waves of same properties and originate from same source 14 Intensity of a wave 'I' I = P/I = A/I Unit of intensity is Wm² P the amount of wave energy per second at particular point falling on surface area A 15 Intensity of a wave 'I' Intensity of wave is directly proportional to the amplitude square I ⋈ α² 16 Compression region When particles of a medium come close to each other 18 Diffraction When particles of a medium move further apart from each other 19 Interference of light waves Constructive interference: When the crests-crests and troughs-troughs of two waves overlap each other, amplitudes Destructive interference: When crests-troughs of two waves overlap each other, amplitudes cancel each other 20 Young double slit experiment For bright fringes: The propertional to the amplitude square I ⋈ α² For bright fringes: When the crests-troughs of two waves overlap each other The propertional to the amplitude square I ⋈ α² 20 Young double slit experiment For bright fringes: The propertional to the amplitude square I ⋈ α² The propertional to the amplitudes and the propertional to the amplitudes of two waves overlap each other 20 Young double slit experiment For bright fringes: The propertional to the amplitudes overlap each other, amplitudes cancel each other, amplitudes cancel each other, amplitudes cancel each other and the propertional to the amplitud	12	Thuse afference		-			
14 Intensity of a wave 'Γ' $I = \frac{P}{A}$ P the amount of wave energy per second at particular point falling on surface area A 15 Intensity of a wave 'Γ' Intensity of wave is directly proportional to the amplitude square $I \times a^2$ 16 Compression region When particles of a medium come close to each other 17 Rarefaction region When particles of a medium come close to each other 18 Diffraction When waves pass through a narrow gap, they spread out. 19 Interference of light waves Constructive interference: When crests-troughs of two waves overlap each other, amplitudes cancel each other overlap each other, amplitudes cancel each other. 20 Young double slit experiment For bright fringes: $x = \frac{n\lambda D}{a}$ For dark fringes: $x = \frac{(n+1)\lambda D}{a}$ 20 Young double slit experiment For bright fringes: $x = \frac{n\lambda D}{a}$ $x = \frac{(n+1)\lambda D}{a}$ 21 Diffraction grating Intensity of wave some added of the conder of the first bright fringe at the centre, x is the distance of nth fringe from the first bright fringe at the centre, x is the distance of nth fringe from the centre 21 Diffraction grating Diffraction grating Intensity of wave some added of the order of maxima, n is the order of a maxima and \(\lambda\) is the wavelength 22 Polarized light When the electric and magnetic field of	13	Coherent waves	•	00			
		I .	P				
Unit of intensity is Wm² falling on surface area A			$I = \frac{1}{A}$				
15 Intensity of a wave 'I' Intensity of wave is directly proportional to the amplitude square I × α^2 16 Compression region When particles of a medium come close to each other 17 Rarefaction region When waves pass through a narrow gap, they spread out. 19 Interference of light waves Constructive interference: When the crests-crests and troughs-troughs of two waves overlap each other, amplitudes become added When crests-troughs of two waves overlap each other, amplitudes cancel each other amplitudes cancel each other. 20 Young double slit experiment For bright fringes: $x = \frac{n\lambda D}{a}$ For dark fringes: amplitudes cancel each other. 21 Young double slit experiment x = $\frac{n\lambda D}{a}$ x = $\frac{(n+1)\lambda D}{a}$ 22 x = $\frac{n\lambda D}{a}$ x = $\frac{(n+1)\lambda D}{a}$ 23 Young double slit experiment For bright fringes: pringes: for dark fringes: a sit the distance between the two slits, D is the distance between slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre 21 Diffraction grating d is the gap between two grating lines, θ is the angle of the order of maxima, n is the order of a maxima and λ is the wavelength 22 Polarized light When the electric and magnetic field of l			Unit of intensity is Wm ⁻²	1 -			
16Compression regionWhen particles of a medium come close to each other17Rarefaction regionWhere particles of a medium move further apart from each other18DiffractionWhen waves pass through a narrow gap, they spread out.19Interference of light wavesConstructive interference: When the crests-crests and troughs-troughs of two waves overlap each other, amplitudes become addedDestructive interference: When crests-troughs of two waves overlap each other, amplitudes cancel each other, amplitudes cancel each other20Young double slit experimentFor bright fringes: $x = \frac{n\lambda D}{a}$ For dark fringes: $(n+1)\lambda D$ $x = \frac{(n+1)\lambda D}{a}$ $x = \frac{n\lambda D}{a}$ $x = \frac{(n+1)\lambda D}{a}$ <	15	Intensity of a wave 'I'	Intensity of wave is directly pr	oportional to the amplitude square			
 Rarefaction region Diffraction When waves pass through a narrow gap, they spread out. Interference of light waves Constructive interference: When the crests-crests and troughs-troughs of two waves overlap each other, amplitudes become added Young double slit experiment Tor bright fringes: \[$l \ltimes a^2$			
 Diffraction When waves pass through a narrow gap, they spread out. Interference of light waves Constructive interference: When the crests-crests and troughs-troughs of two waves overlap each other, amplitudes become added Young double slit experiment Tor bright fringes: x = nλD							
 Interference of light waves							
When the crests-crests and troughs-troughs of two waves overlap each other, amplitudes become added 20 Young double slit experiment $ x = \frac{n\lambda D}{a} $ To bright fringes: $ x = \frac{n\lambda D}{a} $ To bright fringes: $ x = \frac{n\lambda D}{a} $ To bright fringes: $ x = \frac{n\lambda D}{a} $ To bright fringes: $ x = \frac{n\lambda D}{a} $ To bright fringes: $ x = \frac{n\lambda D}{a} $ To bright fringes: $ x = \frac{(n+1)\lambda D}{a} $ To bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre. 21 Diffraction grating $ x = \frac{(n+1)\lambda D}{a} $ To distance between the two slits, D is the distance between slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre. 21 Diffraction grating $ x = \frac{(n+1)\lambda D}{a} $ $ x = \frac$		00					
troughs-troughs of two waves overlap each other, amplitudes become added 20 Young double slit experiment For bright fringes: $x = \frac{n\lambda D}{a}$ a is the distance between the two slits, D is the distance between slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre 21 Diffraction grating $d\sin\theta = n\lambda$ $d\sin\theta = n\lambda$ When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. 23 Standing or stationary waves $d\sin\theta = n\lambda$ Wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and	19	Interference of light waves	· ·	o a			
overlap each other, amplitudes become added Young double slit experiment For bright fringes: $x = \frac{n\lambda D}{a}$ For dark fringes: $x = \frac{(n+1)\lambda D}{a}$ a is the distance between the two slits, D is the distance between slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre Diffraction grating $dsin \theta = n\lambda$ $dsin \theta = n\lambda$ $dsin \theta = n\lambda$ When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. Standing or stationary waves A wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and				9 9			
20 Young double slit experiment For bright fringes: $x = \frac{n\lambda D}{a}$ For dark fringes: $(n+1)\lambda D$ $x = \frac{n\lambda D}{a}$ $x = \frac{(n+1)\lambda D}{a}$ $x = \frac{n\lambda D}{a}$ $x = \frac{(n+1)\lambda D}{a}$ <td></td> <td></td> <td>_ =</td> <td>s amplituaes cancel each other</td>			_ =	s amplituaes cancel each other			
experiment $x = \frac{n\lambda D}{a}$ $x = \frac{(n+1)\lambda D}{a}$ a is the distance between the two slits, D is the distance between slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre 21 Diffraction grating $dsin \theta = n\lambda$ $dist he gap between two grating lines, \theta is the angle of the order of maxima, n is the order of a maxima and \lambda is the wavelength 22 Polarized light dsin \theta = n\lambda When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. 23 Standing or stationary waves direction, and which have the same speed and frequency and$	20	Voung double slit					
$x = \frac{1}{a}$ $x = \frac{1}{a}$ a is the distance between the two slits, D is the distance between slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre 21 Diffraction grating $dsin \theta = n\lambda$ $dsin \theta =$	20	_					
 a is the distance between the two slits, D is the distance between slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre Diffraction grating d is the gap between two grating lines, θ is the angle of the order of maxima, n is the order of a maxima and λ is the wavelength Polarized light When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. Standing or stationary waves A wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and 		experiment	$x = \frac{n \lambda D}{n}$	$x = \frac{(n+1)\lambda D}{n}$			
slits and the screen, λ is the wavelength of light, n is the order of bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre 21 Diffraction grating $dsin \theta = n\lambda$ $dsin \theta$			a				
 bright or dark fringe counting from the first bright fringe at the centre, x is the distance of nth fringe from the centre Diffraction grating dsin θ = nλ dsin θ = nλ dis the gap between two grating lines, θ is the angle of the order of maxima, n is the order of a maxima and λ is the wavelength When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. Standing or stationary waves A wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and 			·				
 centre, x is the distance of nth fringe from the centre Diffraction grating d is the gap between two grating lines, θ is the angle of the order of maxima, n is the order of a maxima and λ is the wavelength Polarized light When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. Standing or stationary waves A wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and 							
 Diffraction grating dsin θ = nλ dis the gap between two grating lines, θ is the angle of the order of maxima, n is the order of a maxima and λ is the wavelength Polarized light							
 dsin θ = nλ	21	Diffraction arating					
the order of a maxima and λ is the wavelength 22 Polarized light When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. 23 Standing or stationary waves A wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and	<i>21</i>	Diffiction graining	is the	0 1			
wavelength 22 Polarized light When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. 23 Standing or stationary waves A wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and							
22 Polarized light When the electric and magnetic field of light waves oscillates only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. 23 Standing or stationary waves Which are traveling in opposite direction, and which have the same speed and frequency and				-			
only in one dimensions, this process of transforming un-polarized light into polarized light is called polarization. 23 Standing or stationary A wave results when two waves which are traveling in opposite direction, and which have the same speed and frequency and	22	Polarized light		Ü			
light into polarized light is called polarization. Standing or stationary waves which are traveling in opposite direction, and which have the same speed and frequency and			only in one dimensions, this process of transforming un-polarized				
waves direction, and which have the same speed and frequency and			_ =				
	23	Standing or stationary	ary A wave results when two waves which are traveling in opposite				
approx. equal amplitudes, are superimposed (overlapped)		waves					
111 1 1 / · · · · · · · · · · · · · · ·			approx. equal amplitudes, are	superimposed (overlapped)			

24	Stationary v string of len speed of wa	igth 'L' and	or first		First overtone or second harmonic: $L = \lambda$ or $f_2 = \frac{1}{L}$ (two loops)			
25	Stationary v				r nth harmonic frequence $=\frac{nv}{2l}$ where $n=1, 2,$	•		
26	6 Stationary wave in an air column one end open one end close			damental mode irst harmonic: Second harmonic: Second overtone or second harmonic: $L = \frac{3}{4}\lambda$ or $f_2 = \frac{3v}{4L}$ Second overtone or third harmonic: $L = \frac{5\lambda}{4}$ or $f_3 = \frac{5v}{4L}$ Second overtone or third harmonic: $L = \frac{5\lambda}{4}$ or $L $				
27	Speed of lig	ht	In air:	$3 \times 10^{8} \text{m/s}$ 1	in alass: 2×108m/s	<i>In water:</i> 2.25×10 ⁸ m/s		
28					cy decreases and way			
20	_	-			$R \leftrightarrow Micro\ waves \leftrightarrow$	S		
29	ĺ	·		Electromagneti				
			c	Chart by LASP/University of Co	lorado, Boulder			
		10-6 nm						
		10-5 nm		<u>5</u>				
		10-4 nm		Gamma-Rays				
		10-3 nm						
		10-2 nm 1 Å						
		10-1 nm						
		1 nm		X-Rays		Violet		
		10 nm				Indigo		
		100 nm		Ultraviolet		Blue		
		10 ³ nm 1 μm	- 1	Visible Light	isible Light: ~400 nm - ~700 nm	Green		
		_10 μm		Near Infrared		Yellow		
		100 μm		Far Infrared		Orange		
		1000 μm 1 mm				Red		
		10 mm1 cm						
		10 cm		Microwave				
		100 cm 1 m			UHF			
		10 m		Н	VHF			
		100 m	-		HF	<u> </u>		
		1000 m 1 km		Radio	MF LF			
		10 km			77,5 12,000 10,5			
		100 km						
		1 Mm			Audio	3		
		10 Mm						
		100 Mm	[
		nm=nanometer, Å=angstrom, μm=micrometer, mm=millimeter, cm=centimeter, m=meter, km=kilometer, Mm=Megameter						