General Physics:

1	For constant motion:	c	'v' is the velocity in m/s, 's' is the
		$v = \frac{s}{t}$	distance or displacement in meters and 't' is the time in seconds
2	For acceleration 'a'	$a = \frac{v - u}{t}$	<i>u</i> is the initial velocity, <i>v</i> is the final velocity and <i>t</i> is the time.
3	Graph	Area of a rectangular shaped graph = base × height.	In velocity-time graph the area under the graph is the total distance covered by an object.
		Area of triangular shaped graph = $\frac{1}{2} \times base \times height$	
4	Weight and mass	$w = m \times g$	w is the weight in newton (N), m is the mass in kg and g is acceleration due to gravity = 10 m/s ²
5	Density ' ρ ' in kg/m ³	$\rho = \frac{m}{V}$	m is the mass and V is the volume
6	Force F in newton (N)	$F = m \times a$	<i>m</i> is the mass and a is the acceleration
7	Terminal Velocity	Weight of an object(downward	l) = air resistance (upwards)
8	Hooke's Law	$F = k \times x$	<i>F</i> is the force, <i>x</i> is the extension in meters and <i>k</i> is the spring constant.
9	Moment of a force in N.m	moment of force = $F \times d$	<i>F</i> is the force and <i>d</i> is the distance from the pivot
10	Law of moment or equilibrium:	$Total clockwise moment = total anticlockwise moment \\ => F_1 \times d_1 = F_2 \times d_2$	
11	Work done W joules (J)	$W = F \times d$	F is the force and d is the distance covered by an object
12	Kinetic Energy E_k in joules (J)	$E_k = \frac{1}{2} \times m \times v^2$	<i>m</i> is the mass(kg) and v is the velocity (m/s)
13	Potential Energy E_p in joules (J)	$E_p = m \times g \times h$	<i>m</i> is the mass (kg) and g is the acceleration due to gravity and h is the height from the ground.
14	Law of conservation of energy:	Loss of $E_p = gain of E_k$ $m \times g \times h = \frac{1}{2} \times m \times v^2$	
15	Power in watts (W)	$P = \frac{work \ done}{time \ taken}$ $P = \frac{Energy \ transfer}{time \ taken}$	Power is the rate of doing work
16	Pressure p in pascal (Pa)	$p = \frac{F}{A}$	<i>F</i> is the force in newton(N) and A is the area in m^2
17	Pressure p due to liquid	$p = \rho \times g \times h$	ρ is the density in kg/m ³ , g is the acceleration due to garvity and h is the height or depth of liquid in meters.
		$P = 760mmHg = 76cm Hg = 1.01x10^5 Hg$	

Thermal Physics:

1	Pressure and volume relationship	<i>pV=constant</i>	p_1 and p_2 are the two pressures in Pa
	(Boyle's law)	$p_1 \times V_1 = p_2 \times V_2$	and V_1 and V_2 are the two volumes in m^3
2	Thermal Expansion (Linear)	$\Delta L = \alpha \times L_o \times \Delta \theta$ $L_o \text{ is the original length in meters,}$ $\Delta \theta \text{ is the change in temperature in } ^oC,$ $\Delta L \text{ is the change in length in meters } (L_1 - L_o) \text{ and}$ $\alpha \text{ is the linear expansivity of the material}$	
3	Thermal Expansion (Cubical)	$\Delta V = \gamma \text{ Vo } \Delta \theta$	
		V_o is the original volume in m^3 , $\Delta \theta$ is the change in temperature in oC , ΔV is the change in volume in m^3 (V_1 - V_o) and γ is the cubical expansivity of the material.	
4	Relationship between linear and cubical expansivities	$\gamma = 3\alpha$	
5	Charle's Law: Volume is directly proportional to absolute temperature $V \propto T$	$\frac{\frac{V}{T} = constant}{\frac{V_1}{T_1} = \frac{V_2}{T_2}}$	V is the volume in m ³ and T is the temperature in Kelvin (K).
6	Pressure Law: Pressure of a gas is directly proportional to the absolute temperature $p \propto T$	$\frac{\frac{p}{T} = constant}{\frac{p_1}{T_1} = \frac{p_2}{T_2}}$	p is the pressure in Pa and T is the temperature in Kelvin (K).
7	$Gas Law: \frac{pV}{T} = constant$	$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	In thermal physics the symbol θ is used of celsius scale and T is used for Kelvin scale.
8	Specific Heat Capacity: The amount of heat required to raise the temperature of 1 kg mass by 1°C.	$c = \frac{Q}{m \times \Delta \theta}$	c is the specific heat capacity in $J/kg^{\circ}C$, Q is the total heat in joules (J), m is the mass in kg and $\Delta \theta$ is the change in temperature
9	Thermal Capacity: amount of heat require to raise the temperature of a substance of any mass by 1°C	Thermal capacity= $m \times c$ Thermal capacity = $\frac{Q}{\Delta \theta}$	The unit of thermal capacity is J/C .
10	Specific latent heat of fusion (from Ice to liquid)	$L_f = \frac{Q}{m}$	L _f is the specific latent heat of fusion in J/kg or J/g, Q is the total heat in joules (J), m is the mass of liquid change from ice in kg or g.
11	Specific latent heat of vaporization (from liquid to vapour)	$L_{v} = \frac{Q}{m}$	L_v is the specific latent heat of vaporization in J/kg or J/g, Q is the total heat in joules (J), m is the mass of vapour change from liquid in kg or g.
12	Thermal or heat transfer	In solid = conduction In liquid and gas = convection and also convection current In vacuum = radiation	
13	Emitters and Radiators	Dull black surface = good emitter, good radiator, bad reflector Bright shiny surface = poor emitter, poor radiator, good reflector	

Waves, light and sound:

1	Wave equation 1	$v = f imes \lambda$	v is the speed of wave in m/s	
	_		f is the frequency in Hz	
			λ is the wavelength in meters	
2	Wave equation 2	f _ 1	<i>T</i> is the time period of wave in	
		$f = \frac{1}{T}$	seconds	
3	Movement of the particles	Longitudinal waves=> back and j	forth in the direction of the	
	of the medium	waves		
		<i>Transverse waves=> perpendicular to the direction of the waves</i>		
4	Law of reflection	Angle of incidence $i = angel$ of reflection		
		$angle i^o = angle r^o$		
5	Refraction	From lighter to denser medium –		
		From denser to lighter medium \rightarrow light bend away from the		
		normal		
6	Refractive index n	$n = \frac{\sin \angle i}{\sin \angle r}$	Refractive index has no unit	
7		sin∠r		
7	Refractive index n		in air or vacuum	
		speed of light in any other medium		
8	Image from a plane mirror	Virtual, upright, same size and la	-	
0		same distance from the mirror inside		
9	Image from a convex lens	When close: virtual, enlarge, upri	0	
10		When far: real, small, upside down		
10	Image from a concave lens	Virtual, upright, small		
11	Critical angle	When light goes from denser to li		
angle at which the reflected an				
12	Total internal reflection(TIR)	When light goes from denser to lighter medium, the refracted bend inside the same medium then this is called (TIR)		
13		\rightarrow this way the frequency decreases		
15		\rightarrow this way the frequency decreases $JV \leftrightarrow V$ isible light $\leftrightarrow IR \leftrightarrow M$ icro	-	
14	Colours of visible	VIBGYOR (from bottom-up)	waves ~ Radio waves	
17	spectrum (light)	VIDOTOR (from bollom-up)		
15	Speed of light	In air: 3×10^8 m/s	In glass: 2×10^8 m/s	
16	Light wave	<i>Electromagnetic waves</i>	In Stass. 2×10 m/s	
17	Sound wave	longitudinal waves		
1,		particle of the medium come close \rightarrow compression		
		particles of the medium far apart \rightarrow rarefaction		
18	Echo	$2 \times d$	v is the speed of sound waves,	
		$v = \frac{1}{t}$	<i>d</i> is the distance in meters	
			between source and the	
			reflection surface and	
			t is the time for echo	
19	Properties of sound waves	Pitch means the frequency of the	wave	
		Loudness means the amplitude of the wave		
20	Speed of sound waves	Air : 330-340 m/s		
		Water: 1400 m/s		
		Concrete : 5000 m/s		
		Steel: 6000 – 7000 m/s		

Electricity and magnetism:

1	Ferrous Materials	Attracted by magnet and can be magnetized	Eg. iron, steel, nickel and cobalt
2	Non-ferrous materials	Not attracted by magnet and cannot be magnetized	copper, silver, aluminum, wood, glass
3	Electric field intensity	force exerted by the field on a unit charge placed at a point around another charge	<i>E</i> is the electric field intensity in <i>N</i> / <i>C</i> $E = \frac{F}{q}$
4	<i>Current: Rate of flow of charges in a conductor</i>	$I = \frac{Q}{t}$	<i>I</i> is the current in amperes (A), <i>Q</i> is the charge in coulombs (C) <i>t</i> is the time in seconds (s)
5	Current	In circuits the current always choose	
6	Ohms law	Voltage across the resistor is directly proportional to current, $V \ltimes I$ or $\frac{V}{I} = R$	V is the voltage in volts (V), I is the current in amperes (A) and R is resistance in ohms (Ω)
7	Voltage	Energy per unit charge $V = \frac{Energy}{Q}$ e.m.f. = lost volts + terminal potenti	Q is the charge in coulombs (C), V is the voltage in volts (V) Energy is in joules (J)
8	E.M.F. Electromotive force	e.m.f. = lost volts + terminal potenti EMF=Ir+IR	al difference
9	Resistance and resistivity	$R = \rho \frac{L}{A}$ ρ is the resistivity of resistor in Ω .m	R is the resistance a resistor, L is the length of a resistor in meters A is the area of cross-section of a resistor in m ²
10	Circuit	In series circuit \rightarrow the current stays the same and voltage divides In parallel circuit \rightarrow the voltage stays the same and current divides	
11	Resistance in series	$\frac{R}{1} = \frac{R_1 + R_2 + R_3}{1 - 1 - 1 - 1}$	
12	Resistance in parallel	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	$R, R_1, R_2 and R_3 are resistances of resistor in ohms$
13	Potential divider	$\frac{\overline{V_1}}{\overline{V_2}} = \frac{\overline{R_1}}{\overline{R_2}}$	
14	Potential divider	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ $V_2 = \left(\frac{R_2}{R_1 + R_2}\right) \times V$ $P = I \times V P = I^2 \times R P = \frac{V^2}{R}$	$V_1 = \left(\frac{R_1}{R_1 + R_2}\right) \times V$
15	Power	$P = I \times V$ $P = I^2 \times R$ $P = \frac{V^2}{R}$	P is the power in watts (W)
16	Power	$P = \frac{Energy}{time}$	The unit of energy is joules (J)
17	Transformer	$P = I \times V P = I^2 \times R P = \frac{v}{R}$ $P = \frac{Energy}{time}$ $\frac{V_p}{V_s} = \frac{n_p}{n_s}$	V_p is the voltage in primary coil, V_s is the voltage in secondary coil n_p is the no of turns in primary and n_s is the no of turns in secondary
18	Transformer	Power of primary coil = power of secondary coil $P_{p} = P_{s}$ $I_{p} \times V_{p} = I_{s} \times V_{s}$ $\frac{V_{p}}{V_{s}} = \frac{I_{s}}{I_{p}}$ $I_{p} \text{ is the current in primary coil and } I_{s} \text{ the current in secondary coil}$	
19	Cathode rays	Stream of electrons emitted from hed called thermionic emission.	
20			

Prepared by Faisal Jaffer

Atomic Physics:

1	Alpha particles	Helium nucleus	
	a-particles	Stopped by paper	
		Highest ionization potential	
2	Beta-particles	Fast moving electrons	
	β -particles	Stopped by aluminum	
		Less ionization potential	
3	Gamma-particles	Electromagnetic radiation	
	γ-rays	Only stopped by thick a sheet of lead	
		Least ionization potential	
4	Half-life	Time in which the activity or mass becomes half	
5	Atomic symbol	Av	A is the total no of
		$A_Z X$	protons and neutrons
		_	Z is the total no of protons
6	Isotopes	Same number of protons but different number of	
		neutrons	