

Improved AMG8833 PyGamer Thermal

Camera

Created by Jan Goolsbey

https://learn.adafruit.com/improved-amg8833-pygamer-thermal-camera

Last updated on 2021-12-21 05:15:19 PM EST

©Adafruit Industries Page 1 of 70

5

5

8

10

10

11

12

12

12

13

13

13

14

14

15

15

15

16

16

18

20

20

21

21

21

22

23

23

26

27

27

28

28

38

39

39

41

43

43

Table of Contents

Overview

• Thermal Camera Features

• Parts

• Acknowledgements

Features and Operation

• Display Layout

• Hold Mode

• Image / Histogram Mode

• Focus Range / Default Range

• Setup Function

Build the Camera

• Assembling the PyGamer

• Prepare the FeatherWing

• Preparing the PyGamer with CircuitPython, Libraries, and Accessories

Software Setup

• Preparing the PyGamer with CircuitPython and Software Libraries

CircuitPython

• Set up CircuitPython Quick Start!

• Further Information

CircuitPython Libraries

• The Adafruit CircuitPython Library Bundle

• Downloading the Adafruit CircuitPython Library Bundle

• The CircuitPython Community Library Bundle

• Downloading the CircuitPython Community Library Bundle

• Understanding the Bundle

• Example Files

• Copying Libraries to Your Board

• Understanding Which Libraries to Install

• Example: ImportError Due to Missing Library

• Library Install on Non-Express Boards

• Updating CircuitPython Libraries and Examples

CircuitPython Code

• PyGamer Thermal Camera Source Code

CircuitPython Code Details

• Code Details

Import and Initialize

Constants

Helpers

• Helpers for Display, Buttons, and Setup Functions

©Adafruit Industries Page 2 of 70

50

50

54

54

57

60

60

61

61

62

63

64

67

Display

• Define Display Group Layers

Primary Process

• Primary Process Loop, Part I

• Primary Process Loop, Part II

Other Modules

• Startup Configuration

• Converter Helpers

• Pseudocolor Spectrum Converter

• map_range()

• index_to_rgb()

1-2-3s of Bilinear Interpolation

Performance Monitoring

©Adafruit Industries Page 3 of 70

©Adafruit Industries Page 4 of 70

Overview

As with the original PyGamer Thermal Camera (https://adafru.it/Tb4), this portable

thermal camera project combines an AMG8833 IR Thermal Camera FeatherWing with

a PyGamer. The upgraded CircuitPython code used in this version increases the

camera resolution from 64 pixels (8 x 8) to 225 pixels (15 x 15) and deepens the color

depth from 8 colors to 100 colors, all without hardware modifications.

The new code improves the camera's ability to visualize thermal images to help

discern heating and air conditioning ventilation issues, to evaluate the quality of your

home's insulation, and to avoid the sleeping cat when heading to the kitchen in the

middle of the night.

Increasing the display's resolution required changes to the original camera's code to

maintain a useful image frame display rate. As a result, performance monitoring was

built-in to the new CircuitPython code as a series of time markers with a summary

performance report printed to the serial port at the end of each frame update. See the

section on Performance Monitoring for more information.

Thermal Camera Features

The camera's thermal image can be frozen or focused at the touch of a button. The

focus feature fine-tunes the display's temperature range to match the current image's

maximum and maximum measurements, improving the detail of the image. To get a

statistical view of an object's heat, switch to histogram mode. A settable alarm flashes

©Adafruit Industries Page 5 of 70

https://learn.adafruit.com/pygamer-thermal-camera-amg8833

lights and beeps when the camera sees a temperature at or above the threshold. The

setup function is used to set the temperature display range and the alarm threshold.

An editable configuration file contains the camera's power-up settings for the default

temperature range and camera sensor direction.

The camera's thermal imaging sensor is an 8 by 8 thermopile array that reads

temperatures from 32°F to 176°F (0°C to 80°C) with an absolute accuracy of +- 4.5°F

(2.5°C) and resolution of 0.9°F (0.5°C). To improve object recognition, the camera

software algorithmically enlarges the number of imaged elements from 64 to 225 by

calculating the in-between values using a technique called bilinear interpolation. See

the guide section 1-2-3s of Bilinear Interpolation for more detail about the technique.

Temperatures are represented in the displayed image as colors in a spectrum,

ranging from a cold blue to white-hot. The color spectrum is based on a frequently-

used palette similar to the range of colors seen when an iron bar is heated -- a

technique a blacksmith might use to gauge the malleability of metal.

The camera's numeric temperature values are displayed as degrees Fahrenheit.

Converting the values to Celsius is possible but is left as an exercise.

©Adafruit Industries Page 6 of 70

The PyGamer Thermal Camera's custom cover skin was produced by a commercial

on-line sticker printing service using the image file below.

CAUTION: The AMG8833 sensor used in this project is not accurate or stable

enough to be used for health or safety purposes.

©Adafruit Industries Page 7 of 70

Parts

Adafruit AMG8833 IR Thermal Camera

FeatherWing

A Feather board without ambition is a

Feather board without FeatherWings! This

is the Thermal Camera FeatherWing:

thanks to the Panasonic AMG8833 8x8

GridEYE sensor,...

https://www.adafruit.com/product/3622

Adafruit PyGamer for MakeCode Arcade,

CircuitPython or Arduino

What fits in your pocket, is fully Open

Source, and can run CircuitPython,

MakeCode Arcade or Arduino games you

write yourself? That's right, it's the

Adafruit...

https://www.adafruit.com/product/4242

Lithium Ion Polymer Battery with Short

Cable - 3.7V 350mAh

Lithium-ion polymer (also known as 'lipo'

or 'lipoly') batteries are thin, light, and

powerful. The output ranges from 4.2V

when completely charged to 3.7V. This...

https://www.adafruit.com/product/4237

©Adafruit Industries Page 8 of 70

https://www.adafruit.com/product/3622
https://www.adafruit.com/product/3622
https://www.adafruit.com/product/3622
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4242
https://www.adafruit.com/product/4237
https://www.adafruit.com/product/4237
https://www.adafruit.com/product/4237

Adafruit PyGamer Acrylic Enclosure Kit

You've got your PyGamer, and you're

ready to start jammin' on your favorite

arcade games. You gaze adoringly at the

charming silkscreen designed by Ada-

friend...

https://www.adafruit.com/product/4238

Mini Oval Speaker with Short Wires - 8

Ohm 1 Watt

Hear the good news! This wee

speaker is a great addition to any audio

project where you need 8 ohm

impedance and 1W or less of power. We

particularly like...

https://www.adafruit.com/product/4227

Plastic Button Caps For Square Top (10-

pack) - 8mm Diameter

These Reese's Piece's lookin' bits fit

perfectly on top of tactile buttons with

2.4mm square tops and give a satisfying

8mm diameter surface area for your

fingers to...

https://www.adafruit.com/product/4228

Other than the AMG8833 Thermal Camera FeatherWing, the following kit contains the

PyGamer parts for this project including a nifty carrying case.

©Adafruit Industries Page 9 of 70

https://www.adafruit.com/product/4238
https://www.adafruit.com/product/4238
https://www.adafruit.com/product/4227
https://www.adafruit.com/product/4227
https://www.adafruit.com/product/4227
https://www.adafruit.com/product/4228
https://www.adafruit.com/product/4228
https://www.adafruit.com/product/4228

Adafruit PyGamer Starter Kit

Please note: you may get a royal blue or

purple case with your starter kit (they're

both lovely colors)What fits in your

pocket, is fully Open...

https://www.adafruit.com/product/4277

Acknowledgements

Thank you to Adam McCombs for the highly detailed optical and electron microscope

photographs of the de-capped AMG8833 sensor. It's fascinating to see how it

operates under the covers.

Special thanks to David Glaude and Zoltán Vörös for the ulab-based bilinear

interpolation helper. Array calculations using CircuitPython's integral ulab (micro

lab) library are amazingly fast and efficient!

For more information about ulab, check out Jeff Epler's ulab: Crunch Numbers Fast in

CircuitPython (https://adafru.it/KaJ) learning guide.

Features and Operation

©Adafruit Industries Page 10 of 70

https://www.adafruit.com/product/4277
https://www.adafruit.com/product/4277
https://learn.adafruit.com/ulab-crunch-numbers-fast-with-circuitpython
https://learn.adafruit.com/ulab-crunch-numbers-fast-with-circuitpython

The Thermal Camera's controls are used to switch display modes, take snapshots,

automatically increase or decrease image temperature gradient detail, and facilitate

setting alarm and maximum/minimum display range parameters. The display shows

the image or histogram and the currently measured maximum, minimum, and average

temperature values in Fahrenheit.

Display Layout

The camera's display is divided into four zones. The temperature value sidebar is

used to display the alarm (alm) threshold setting, the measured maximum temperature

(max), the average temperature calculation (ave), and the measured minimum

temperature (min). The sidebar continuously displays measured values during normal

operation. When in the Setup mode, the sidebar indicates the current alarm threshold,

the maximum display range, and the minimum display range.

The image grid area consists of 225 blocks in a 15 column by 15 row array. The image

grid is used to display a thermal sensor image or histogram.

Superimposed over the display grid are the status message area (centered in the

image array area) and the histogram legend area (near the bottom of the image array

area). The status message area indicates various operational states including Hold, Fo

cus, and the Setup mode. The histogram legend area shows the current minimum and

maximum display range settings when viewing a histogram

©Adafruit Industries Page 11 of 70

Hold Mode

The HOLD button (PyGamer BUTTON_A) freezes and releases the image or histogram

display contents. Press the button once to hold the display; press it again to resume

normal operation. The IMAGE and FOCUS buttons continue to operate normally

regardless of whether or not the display is held.

Image / Histogram Mode

The IMAGE (PyGamer BUTTON_B) is used to toggle between a temperature gradient

image and a temperature distribution representation of the thermopile sensor's

measurements. The IMAGE button is operational when in Hold mode to allow analysis

of held measurements.

Focus Range / Default Range

The FOCUS button (PyGamer BUTTON_SELECT) automatically changes the minimum

and maximum display range values to provide increased or decreased detail based

on the currently measured maximum and minimum temperatures. Press FOCUS once

to change the current display range from the current setting to a range that matches

the measured minimum and maximum values. Press it again to return to the original

display range settings. Focus mode is useful when looking for increased temperature

gradient detail or when the temperature of the object is outside of the default display

range.

©Adafruit Industries Page 12 of 70

Setup Function

Pressing the SET button (PyGamer BUTTON_START) will stop normal operation and

enter the Setup mode to adjust the alarm threshold and maximum/minimum display

range. Use the joystick or the PyBadge D-Pad buttons to highlight the parameter to

change, then press the HOLD button to select. Use the joystick to increase or

decrease the parameter value. Press the HOLD button to select the new value. To exit

the Setup mode, press the SET button.

The newly selected values will go into effect when exiting Setup mode, but will not be

preserved if the camera's power is turned off. To change power-on parameter values,

edit the thermal_cam_config.py file with mu or your favorite text editor.

Build the Camera

It's time to get the PyGamer ready by installing CircuitPython and its libraries, plug in

the speaker and battery, and put it into an elegant enclosure. Once the enclosure is in

place, we'll attach the AMG8833 FeatherWing and load the Thermal Camera code.

You can build the Thermal Camera from individual components or from the PyGamer

Starter Kit (https://adafru.it/IAh). Add the AMG8833 FeatherWing (https://adafru.it/IAi)

and you'll be ready to go.

Assembling the PyGamer

The PyGamer Introduction (https://adafru.it/pygamer) will guide you through the

process of setting up the PyGamer to include the case, battery, and speaker.

You may follow the Starter Kit enclosure instructions (https://adafru.it/IAj) for installing

the speaker and battery, even if you don't plan to use the enclosure.

©Adafruit Industries Page 13 of 70

https://www.adafruit.com/product/4277
https://www.adafruit.com/product/4277
https://www.adafruit.com/product/3622
https://learn.adafruit.com/adafruit-pygamer
https://learn.adafruit.com/adafruit-pygamer/build-the-pygamer-case

Prepare the FeatherWing

Solder the included male headers onto

the AMG8833 FeatherWing and attach it

through the acrylic back panel into the

PyGamer's Feather connector. Refer to

the soldering guide (https://adafru.it/dxy)

if this is your first time with a soldering

iron.

Preparing the PyGamer with CircuitPython, Libraries, and

Accessories

The PyGamer Introduction (https://adafru.it/pygamer) guide also has the information

needed to install CircuitPython (https://adafru.it/FoA) and its libraries (https://adafru.it/

IAk).

©Adafruit Industries Page 14 of 70

https://learn.adafruit.com//assets/87149
https://learn.adafruit.com//assets/87149
https://learn.adafruit.com/adafruit-guide-excellent-soldering/tools
https://learn.adafruit.com/adafruit-pygamer
https://learn.adafruit.com/adafruit-pygamer/circuitpython
https://learn.adafruit.com/adafruit-pygamer/circuitpython-libraries

Software Setup

This project uses CircuitPython, a user friendly version of Python for microcontrollers.

The files are just text files and are copied over to the PyGamer to the flash drive CIRC

UITPY which appears when the PyGamer is attached to a computer via a USB cable.

Preparing the PyGamer with CircuitPython and Software

Libraries

The PyGamer Introduction (https://adafru.it/pygamer) guide also has the information

needed to install CircuitPython (https://adafru.it/FoA) and its libraries (https://adafru.it/

IAk).

See the following pages on how to perform these operations.

CircuitPython

CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)

designed to simplify experimentation and education on low-cost microcontrollers. It

makes it easier than ever to get prototyping by requiring no upfront desktop software

downloads. Simply copy and edit files on the CIRCUITPY flash drive to iterate.

The following instructions will show you how to install CircuitPython. If you've already

installed CircuitPython but are looking to update it or reinstall it, the same steps work

for that as well!

©Adafruit Industries Page 15 of 70

https://learn.adafruit.com/adafruit-pygamer
https://learn.adafruit.com/adafruit-pygamer/circuitpython
https://learn.adafruit.com/adafruit-pygamer/circuitpython-libraries
https://github.com/adafruit/circuitpython
https://micropython.org

Set up CircuitPython Quick Start!

Follow this quick step-by-step for super-fast Python power :)

Download the latest version of

CircuitPython for PyGamer via

circuitpython.org

https://adafru.it/FxM

Further Information

For more detailed info on installing CircuitPython, check out Installing CircuitPython (h

ttps://adafru.it/Amd).

Click the link above and download the

latest UF2 file.

Download and save it to your desktop (or

wherever is handy).

©Adafruit Industries Page 16 of 70

https://circuitpython.org/board/pygamer/
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com//assets/76054
https://learn.adafruit.com//assets/76054

Plug your PyGamer into your computer

using a known-good USB cable.

A lot of people end up using charge-only

USB cables and it is very frustrating! So

make sure you have a USB cable you

know is good for data sync.

Double-click the Reset button on the top

of your board (indicated by the red arrow

in the first image). You will see an image

on the display instructing you to drag a

UF2 file to your board, and the row of

NeoPixel RGB LEDs on the front will turn

green (indicated by the green arrow and

square in the image). If they turn red,

check the USB cable, try another USB

port, etc.

If double-clicking doesn't work the first

time, try again. Sometimes it can take a

few tries to get the rhythm right!

©Adafruit Industries Page 17 of 70

https://learn.adafruit.com//assets/76055
https://learn.adafruit.com//assets/76055

You will see a new disk drive appear

called PYGAMERBOOT.

Drag the adafruit_circuitpython_etc.uf2

file to PYGAMERBOOT.

The LEDs will flash. Then, the

PYGAMERBOOT drive will disappear and

a new disk drive called CIRCUITPY will

appear.

That's it, you're done! :)

CircuitPython Libraries

As CircuitPython development continues and there are new releases, Adafruit

will stop supporting older releases. Visit https://circuitpython.org/downloads to

download the latest version of CircuitPython for your board. You must download

the CircuitPython Library Bundle that matches your version of CircuitPython.

Please update CircuitPython and then visit https://circuitpython.org/libraries to

download the latest Library Bundle.

©Adafruit Industries Page 18 of 70

https://learn.adafruit.com//assets/76056
https://learn.adafruit.com//assets/76056
https://learn.adafruit.com//assets/76057
https://learn.adafruit.com//assets/76057
https://learn.adafruit.com//assets/76058
https://learn.adafruit.com//assets/76058
https://circuitpython.org/downloads
https://circuitpython.org/libraries

Each CircuitPython program you run needs to have a lot of information to work. The

reason CircuitPython is so simple to use is that most of that information is stored in

other files and works in the background. These files are called libraries. Some of them

are built into CircuitPython. Others are stored on your CIRCUITPY drive in a folder

called lib. Part of what makes CircuitPython so great is its ability to store code

separately from the firmware itself. Storing code separately from the firmware makes

it easier to update both the code you write and the libraries you depend.

Your board may ship with a lib folder already, it's in the base directory of the drive. If

not, simply create the folder yourself. When you first install CircuitPython, an empty lib

directory will be created for you.

CircuitPython libraries work in the same way as regular Python modules so the Python

docs (https://adafru.it/rar) are an excellent reference for how it all should work. In

Python terms, you can place our library files in the lib directory because it's part of the

Python path by default.

One downside of this approach of separate libraries is that they are not built in. To

use them, one needs to copy them to the CIRCUITPY drive before they can be used.

Fortunately, there is a library bundle.

The bundle and the library releases on GitHub also feature optimized versions of the

libraries with the .mpy file extension. These files take less space on the drive and

have a smaller memory footprint as they are loaded.

Due to the regular updates and space constraints, Adafruit does not ship boards with

the entire bundle. Therefore, you will need to load the libraries you need when you

begin working with your board. You can find example code in the guides for your

board that depends on external libraries.

Either way, as you start to explore CircuitPython, you'll want to know how to get

libraries on board.

©Adafruit Industries Page 19 of 70

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

The Adafruit CircuitPython Library Bundle

Adafruit provides CircuitPython libraries for much of the hardware they provide,

including sensors, breakouts and more. To eliminate the need for searching for each

library individually, the libraries are available together in the Adafruit CircuitPython

Library Bundle. The bundle contains all the files needed to use each library.

Downloading the Adafruit CircuitPython Library Bundle

You can download the latest Adafruit CircuitPython Library Bundle release by clicking

the button below. The libraries are being constantly updated and improved, so you'll

always want to download the latest bundle.

Match up the bundle version with the version of CircuitPython you are running. For

example, you would download the 6.x library bundle if you're running any version of

CircuitPython 6, or the 7.x library bundle if you're running any version of CircuitPython

7, etc. If you mix libraries with major CircuitPython versions, you will get incompatible

mpy errors due to changes in library interfaces possible during major version

changes.

Click to visit circuitpython.org for the

latest Adafruit CircuitPython Library

Bundle

https://adafru.it/ENC

Download the bundle version that matches your CircuitPython firmware version. If you

don't know the version, check the version info in boot_out.txt file on the CIRCUITPY

drive, or the initial prompt in the CircuitPython REPL. For example, if you're running

v7.0.0, download the 7.x library bundle.

There's also a py bundle which contains the uncompressed python files, you probably

don't want that unless you are doing advanced work on libraries.

©Adafruit Industries Page 20 of 70

https://circuitpython.org/libraries

The CircuitPython Community Library Bundle

The CircuitPython Community Library Bundle is made up of libraries written and

provided by members of the CircuitPython community. These libraries are often

written when community members encountered hardware not supported in the

Adafruit Bundle, or to support a personal project. The authors all chose to submit

these libraries to the Community Bundle make them available to the community.

These libraries are maintained by their authors and are not supported by Adafruit. As

you would with any library, if you run into problems, feel free to file an issue on the

GitHub repo for the library. Bear in mind, though, that most of these libraries are

supported by a single person and you should be patient about receiving a response.

Remember, these folks are not paid by Adafruit, and are volunteering their personal

time when possible to provide support.

Downloading the CircuitPython Community Library Bundle

You can download the latest CircuitPython Community Library Bundle release by

clicking the button below. The libraries are being constantly updated and improved,

so you'll always want to download the latest bundle.

Click for the latest CircuitPython

Community Library Bundle release

https://adafru.it/VCn

The link takes you to the latest release of the CircuitPython Community Library

Bundle on GitHub. There are multiple versions of the bundle available. Download the

bundle version that matches your CircuitPython firmware version. If you don't know

the version, check the version info in boot_out.txt file on the CIRCUITPY drive, or the

initial prompt in the CircuitPython REPL. For example, if you're running v7.0.0,

download the 7.x library bundle.

Understanding the Bundle

After downloading the zip, extract its contents. This is usually done by double clicking

on the zip. On Mac OSX, it places the file in the same directory as the zip.

©Adafruit Industries Page 21 of 70

https://github.com/adafruit/CircuitPython_Community_Bundle/releases

Open the bundle folder. Inside you'll find two information files, and two folders. One

folder is the lib bundle, and the other folder is the examples bundle.

Now open the lib folder. When you open the folder, you'll see a large number of .mpy

files, and folders.

Example Files

All example files from each library are now included in the bundles in an examples

directory (as seen above), as well as an examples-only bundle. These are included for

two main reasons:

Allow for quick testing of devices.

Provide an example base of code, that is easily built upon for individualized

purposes.

•

•

©Adafruit Industries Page 22 of 70

Copying Libraries to Your Board

First open the lib folder on your CIRCUITPY drive. Then, open the lib folder you

extracted from the downloaded zip. Inside you'll find a number of folders and .mpy

files. Find the library you'd like to use, and copy it to the lib folder on CIRCUITPY.

If the library is a directory with multiple .mpy files in it, be sure to copy the entire

folder to CIRCUITPY/lib.

This also applies to example files. Open the examples folder you extracted from the

downloaded zip, and copy the applicable file to your CIRCUITPY drive. Then, rename

it to code.py to run it.

Understanding Which Libraries to Install

You now know how to load libraries on to your CircuitPython-compatible

microcontroller board. You may now be wondering, how do you know which libraries

you need to install? Unfortunately, it's not always straightforward. Fortunately, there is

an obvious place to start, and a relatively simple way to figure out the rest. First up:

the best place to start.

When you look at most CircuitPython examples, you'll see they begin with one or

more import statements. These typically look like the following:

import library_or_module

However, import statements can also sometimes look like the following:

from library_or_module import name

If a library has multiple .mpy files contained in a folder, be sure to copy the entire

folder to CIRCUITPY/lib.

•

•

©Adafruit Industries Page 23 of 70

from library_or_module.subpackage import name

from library_or_module import name as local_name

They can also have more complicated formats, such as including a try / except

block, etc.

The important thing to know is that an import statement will always include the

name of the module or library that you're importing.

Therefore, the best place to start is by reading through the import statements.

Here is an example import list for you to work with in this section. There is no setup or

other code shown here, as the purpose of this section involves only the import list.

import time

import board

import neopixel

import adafruit_lis3dh

import usb_hid

from adafruit_hid.consumer_control import ConsumerControl

from adafruit_hid.consumer_control_code import ConsumerControlCode

Keep in mind, not all imported items are libraries. Some of them are almost always

built-in CircuitPython modules. How do you know the difference? Time to visit the

REPL.

In the Interacting with the REPL section (https://adafru.it/Awz) on The REPL page (http

s://adafru.it/Awz) in this guide, the help("modules") command is discussed. This

command provides a list of all of the built-in modules available in CircuitPython for

your board. So, if you connect to the serial console on your board, and enter the

REPL, you can run help("modules") to see what modules are available for your

board. Then, as you read through the import statements, you can, for the purposes

of figuring out which libraries to load, ignore the statement that import modules.

The following is the list of modules built into CircuitPython for the Feather RP2040.

Your list may look similar or be anything down to a significant subset of this list for

smaller boards.

•

•

©Adafruit Industries Page 24 of 70

https://learn.adafruit.com/welcome-to-circuitpython/the-repl#interacting-with-the-repl-2977486-14
https://learn.adafruit.com/welcome-to-circuitpython/the-repl

Now that you know what you're looking for, it's time to read through the import

statements. The first two, time and board , are on the modules list above, so they're

built-in.

The next one, neopixel , is not on the module list. That means it's your first library!

So, you would head over to the bundle zip you downloaded, and search for neopixel.

There is a neopixel.mpy file in the bundle zip. Copy it over to the lib folder on your CI

RCUITPY drive. The following one, adafruit_lis3dh , is also not on the module list.

Follow the same process for adafruit_lis3dh, where you'll find adafruit_lis3dh.mpy,

and copy that over.

The fifth one is usb_hid , and it is in the modules list, so it is built in. Often all of the

built-in modules come first in the import list, but sometimes they don't! Don't assume

that everything after the first library is also a library, and verify each import with the

modules list to be sure. Otherwise, you'll search the bundle and come up empty!

The final two imports are not as clear. Remember, when import statements are

formatted like this, the first thing after the from is the library name. In this case, the

library name is adafruit_hid . A search of the bundle will find an adafruit_hid folder.

When a library is a folder, you must copy the entire folder and its contents as it is in

the bundle to the lib folder on your CIRCUITPY drive. In this case, you would copy the

entire adafruit_hid folder to your CIRCUITPY/lib folder.

Notice that there are two imports that begin with adafruit_hid . Sometimes you will

need to import more than one thing from the same library. Regardless of how many

times you import the same library, you only need to load the library by copying over

the adafruit_hid folder once.

That is how you can use your example code to figure out what libraries to load on

your CircuitPython-compatible board!

©Adafruit Industries Page 25 of 70

There are cases, however, where libraries require other libraries internally. The

internally required library is called a dependency. In the event of library

dependencies, the easiest way to figure out what other libraries are required is to

connect to the serial console and follow along with the ImportError printed there.

The following is a very simple example of an ImportError , but the concept is the

same for any missing library.

Example: ImportError Due to Missing Library

If you choose to load libraries as you need them, or you're starting fresh with an

existing example, you may end up with code that tries to use a library you haven't yet

loaded. This section will demonstrate what happens when you try to utilise a library

that you don't have loaded on your board, and cover the steps required to resolve the

issue.

This demonstration will only return an error if you do not have the required library

loaded into the lib folder on your CIRCUITPY drive.

Let's use a modified version of the Blink example.

import board

import time

import simpleio

led = simpleio.DigitalOut(board.LED)

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Save this file. Nothing happens to your board. Let's check the serial console to see

what's going on.

You have an ImportError . It says there is no module named 'simpleio' . That's

the one you just included in your code!

©Adafruit Industries Page 26 of 70

Click the link above to download the correct bundle. Extract the lib folder from the

downloaded bundle file. Scroll down to find simpleio.mpy. This is the library file you're

looking for! Follow the steps above to load an individual library file.

The LED starts blinking again! Let's check the serial console.

No errors! Excellent. You've successfully resolved an ImportError !

If you run into this error in the future, follow along with the steps above and choose

the library that matches the one you're missing.

Library Install on Non-Express Boards

If you have an M0 non-Express board such as Trinket M0, Gemma M0, QT Py M0, or

one of the M0 Trinkeys, you'll want to follow the same steps in the example above to

install libraries as you need them. Remember, you don't need to wait for an ImportE

rror if you know what library you added to your code. Open the library bundle you

downloaded, find the library you need, and drag it to the lib folder on your CIRCUITPY

drive.

You can still end up running out of space on your M0 non-Express board even if you

only load libraries as you need them. There are a number of steps you can use to try

to resolve this issue. You'll find suggestions on the Troubleshooting page (https://

adafru.it/Den).

Updating CircuitPython Libraries and Examples

Libraries and examples are updated from time to time, and it's important to update the

files you have on your CIRCUITPY drive.

To update a single library or example, follow the same steps above. When you drag

the library file to your lib folder, it will ask if you want to replace it. Say yes. That's it!

©Adafruit Industries Page 27 of 70

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting

A new library bundle is released every time there's an update to a library. Updates

include things like bug fixes and new features. It's important to check in every so

often to see if the libraries you're using have been updated.

CircuitPython Code

PyGamer Thermal Camera Source Code

Download the project's source files and copy them to the PyGamer's CIRCUITPY root

directory, including the fonts and index_to_rgb folders.

In the code window below, click the link Download Project Bundle. This will download

a zip file containing the code (4 .py files), the index_to_rgb folder, needed library files

and the font folder.

The zip folder contains the following folders and files:

fonts folder

OpenSans-9.bdf font file

index_to_rgb folder

iron_spectrum.py color converter method file

code.py main thermal camera code

thermal_cam_config.py start-up default settings

thermal_cam_converters.py temperature converter helpers

thermal_cam_splash.bmp startup screen graphic

•

◦

•

◦

•

•

•

•

©Adafruit Industries Page 28 of 70

A lib folder containing these required libraries:

adafruit_amg88xx

adafruit_bitmap_font

adafruit_display_text

adafruit_display_shapes

adafruit_register

neopixel

Here's the main CircuitPython code for the Thermal Camera. It's contained in the

project zip folder as code.py. Copy this to the main (root) folder of the CIRCUITPY

drive that appears when your PyGamer is connected to your computer via a known

good USB cable.

SPDX-FileCopyrightText: 2021 Jan Goolsbey for Adafruit Industries

SPDX-License-Identifier: MIT

Thermal_Cam_v70_PyBadge_code.py

2021-12-21 v7.0 # CircuitPython v7.x compatible

import time

import board

import busio

import gc

import ulab

import displayio

import neopixel

from analogio import AnalogIn

from digitalio import DigitalInOut

from simpleio import map_range, tone

from adafruit_display_text.label import Label

from adafruit_bitmap_font import bitmap_font

from adafruit_display_shapes.rect import Rect

import adafruit_amg88xx

from gamepadshift import GamePadShift

from index_to_rgb.iron_spectrum import index_to_rgb

from thermal_cam_converters import celsius_to_fahrenheit, fahrenheit_to_celsius

from thermal_cam_config import ALARM_F, MIN_RANGE_F, MAX_RANGE_F, SELFIE

Instantiate display, joystick, speaker, and neopixels

display = board.DISPLAY

Load the text font from the fonts folder

font_0 = bitmap_font.load_font("/fonts/OpenSans-9.bdf")

if hasattr(board, "JOYSTICK_X"):

 has_joystick = True # PyGamer with joystick

 joystick_x = AnalogIn(board.JOYSTICK_X)

 joystick_y = AnalogIn(board.JOYSTICK_Y)

else:

 has_joystick = False # PyBadge with buttons

speaker_enable = DigitalInOut(board.SPEAKER_ENABLE)

speaker_enable.switch_to_output(value=True)

pixels = neopixel.NeoPixel(board.NEOPIXEL, 5, pixel_order=neopixel.GRB)

pixels.brightness = 0.25 # Set NeoPixel brightness

pixels.fill(0x000000) # Clear all NeoPixels

•

◦

◦

◦

◦

◦

◦

©Adafruit Industries Page 29 of 70

Define and instantiate front panel buttons

BUTTON_LEFT = 0b10000000

BUTTON_UP = 0b01000000

BUTTON_DOWN = 0b00100000

BUTTON_RIGHT = 0b00010000

BUTTON_SELECT = 0b00001000

BUTTON_START = 0b00000100

BUTTON_A = 0b00000010

BUTTON_B = 0b00000001

panel = GamePadShift(

 DigitalInOut(board.BUTTON_CLOCK),

 DigitalInOut(board.BUTTON_OUT),

 DigitalInOut(board.BUTTON_LATCH),

)

Establish I2C interface for the AMG8833 Thermal Camera

i2c = busio.I2C(board.SCL, board.SDA, frequency=400000)

amg8833 = adafruit_amg88xx.AMG88XX(i2c)

Display splash graphics

splash = displayio.Group(scale=display.width // 160)

bitmap = displayio.OnDiskBitmap("/thermal_cam_splash.bmp")

splash.append(displayio.TileGrid(bitmap, pixel_shader=bitmap.pixel_shader))

board.DISPLAY.show(splash)

time.sleep(0.1) # Allow the splash to display

Set up ulab arrays

n = 8 # Thermal sensor grid axis size; AMG8833 sensor is 8x8

sensor_data = ulab.numpy.array(range(n * n)).reshape((n, n)) # Color index narray

grid_data = ulab.numpy.zeros(((2 * n) - 1, (2 * n) - 1)) # 15x15 color index narray

histogram = ulab.numpy.zeros((2 * n) - 1) # Histogram accumulation narray

Convert default alarm and min/max range values from config file

ALARM_C = fahrenheit_to_celsius(ALARM_F)

MIN_RANGE_C = fahrenheit_to_celsius(MIN_RANGE_F)

MAX_RANGE_C = fahrenheit_to_celsius(MAX_RANGE_F)

The board's integral display size

WIDTH = display.width

HEIGHT = display.height

GRID_AXIS = (2 * n) - 1 # Number of cells along the grid x or y axis

GRID_SIZE = HEIGHT # Maximum number of pixels for a square grid

GRID_X_OFFSET = WIDTH - GRID_SIZE # Right-align grid with display boundary

CELL_SIZE = GRID_SIZE // GRID_AXIS # Size of a grid cell in pixels

PALETTE_SIZE = 100 # Number of colors in spectral palette (must be > 0)

Default colors for temperature value sidebar

BLACK = 0x000000

RED = 0xFF0000

YELLOW = 0xFFFF00

CYAN = 0x00FFFF

BLUE = 0x0000FF

WHITE = 0xFFFFFF

Text colors for setup helper's on-screen parameters

param_colors = [("ALARM", WHITE), ("RANGE", RED), ("RANGE", CYAN)]

Helpers

def play_tone(freq=440, duration=0.01):

 tone(board.A0, freq, duration)

 return

def flash_status(text="", duration=0.05): # Flash status message once

 status_label.color = WHITE

 status_label.text = text

©Adafruit Industries Page 30 of 70

 time.sleep(duration)

 status_label.color = BLACK

 time.sleep(duration)

 status_label.text = ""

 return

def spectrum(): # Load a test spectrum into the grid_data array

 for row in range(0, GRID_AXIS):

 for col in range(0, GRID_AXIS):

 grid_data[row][col] = ((row * GRID_AXIS) + col) * 1 / 235

 return

def update_image_frame(selfie=False): # Get camera data and update display

 for row in range(0, GRID_AXIS):

 for col in range(0, GRID_AXIS):

 if selfie:

 color_index = grid_data[GRID_AXIS - 1 - row][col]

 else:

 color_index = grid_data[GRID_AXIS - 1 - row][GRID_AXIS - 1 - col]

 color = index_to_rgb(round(color_index * PALETTE_SIZE, 0) /

PALETTE_SIZE)

 if color != image_group[((row * GRID_AXIS) + col)].fill:

 image_group[((row * GRID_AXIS) + col)].fill = color

 return

def update_histo_frame(): # Calculate and display histogram

 min_histo.text = str(MIN_RANGE_F) # Display histogram legend

 max_histo.text = str(MAX_RANGE_F)

 histogram = ulab.numpy.zeros(GRID_AXIS) # Clear histogram accumulation array

 for row in range(0, GRID_AXIS): # Collect camera data and calculate histo

 for col in range(0, GRID_AXIS):

 histo_index = int(map_range(grid_data[col, row], 0, 1, 0, GRID_AXIS -

1))

 histogram[histo_index] = histogram[histo_index] + 1

 histo_scale = ulab.numpy.max(histogram) / (GRID_AXIS - 1)

 if histo_scale <= 0:

 histo_scale = 1

 for col in range(0, GRID_AXIS): # Display histogram

 for row in range(0, GRID_AXIS):

 if histogram[col] / histo_scale > GRID_AXIS - 1 - row:

 image_group[((row * GRID_AXIS) + col)].fill = index_to_rgb(

 round((col / GRID_AXIS), 3)

)

 else:

 image_group[((row * GRID_AXIS) + col)].fill = BLACK

 return

def ulab_bilinear_interpolation(): # 2x bilinear interpolation

 # Upscale sensor data array; by @v923z and @David.Glaude

 grid_data[1::2, ::2] = sensor_data[:-1, :]

 grid_data[1::2, ::2] += sensor_data[1:, :]

 grid_data[1::2, ::2] /= 2

 grid_data[::, 1::2] = grid_data[::, :-1:2]

 grid_data[::, 1::2] += grid_data[::, 2::2]

 grid_data[::, 1::2] /= 2

 return

def setup_mode(): # Set alarm threshold and minimum/maximum range values

 status_label.color = WHITE

 status_label.text = "-SET-"

©Adafruit Industries Page 31 of 70

 ave_label.color = BLACK # Turn off average label and value display

 ave_value.color = BLACK

 max_value.text = str(MAX_RANGE_F) # Display maximum range value

 min_value.text = str(MIN_RANGE_F) # Display minimum range value

 time.sleep(0.8) # Show SET status text before setting parameters

 status_label.text = "" # Clear status text

 param_index = 0 # Reset index of parameter to set

 # Select parameter to set

 buttons = panel.get_pressed()

 while not buttons & BUTTON_START:

 buttons = panel.get_pressed()

 while (not buttons & BUTTON_A) and (not buttons & BUTTON_START):

 up, down = move_buttons(joystick=has_joystick)

 if up:

 param_index = param_index - 1

 if down:

 param_index = param_index + 1

 param_index = max(0, min(2, param_index))

 status_label.text = param_colors[param_index][0]

 image_group[param_index + 226].color = BLACK

 status_label.color = BLACK

 time.sleep(0.25)

 image_group[param_index + 226].color = param_colors[param_index][1]

 status_label.color = WHITE

 time.sleep(0.25)

 buttons = panel.get_pressed()

 buttons = panel.get_pressed()

 if buttons & BUTTON_A: # Hold (button A) pressed

 play_tone(1319, 0.030) # E6

 while buttons & BUTTON_A: # Wait for button release

 buttons = panel.get_pressed()

 time.sleep(0.1)

 # Adjust parameter value

 param_value = int(image_group[param_index + 230].text)

 buttons = panel.get_pressed()

 while (not buttons & BUTTON_A) and (not buttons & BUTTON_START):

 up, down = move_buttons(joystick=has_joystick)

 if up:

 param_value = param_value + 1

 if down:

 param_value = param_value - 1

 param_value = max(32, min(157, param_value))

 image_group[param_index + 230].text = str(param_value)

 image_group[param_index + 230].color = BLACK

 status_label.color = BLACK

 time.sleep(0.05)

 image_group[param_index + 230].color = param_colors[param_index][1]

 status_label.color = WHITE

 time.sleep(0.2)

 buttons = panel.get_pressed()

 buttons = panel.get_pressed()

 if buttons & BUTTON_A: # Button A pressed

 play_tone(1319, 0.030) # E6

 while buttons & BUTTON_A: # Wait for button release

 buttons = panel.get_pressed()

 time.sleep(0.1)

 # Exit setup process

 buttons = panel.get_pressed()

 if buttons & BUTTON_START: # Start button pressed

 play_tone(784, 0.030) # G5

©Adafruit Industries Page 32 of 70

 while buttons & BUTTON_START: # Wait for button release

 buttons = panel.get_pressed()

 time.sleep(0.1)

 status_label.text = "RESUME"

 time.sleep(0.5)

 status_label.text = ""

 # Display average label and value

 ave_label.color = YELLOW

 ave_value.color = YELLOW

 return int(alarm_value.text), int(max_value.text), int(min_value.text)

def move_buttons(joystick=False): # Read position buttons and joystick

 move_u = move_d = False

 if joystick: # For PyGamer: interpret joystick as buttons

 if joystick_y.value < 20000:

 move_u = True

 elif joystick_y.value > 44000:

 move_d = True

 else: # For PyBadge read the buttons

 buttons = panel.get_pressed()

 if buttons & BUTTON_UP:

 move_u = True

 if buttons & BUTTON_DOWN:

 move_d = True

 return move_u, move_d

play_tone(440, 0.1) # A4

play_tone(880, 0.1) # A5

Define the display group

t0 = time.monotonic() # Time marker: Define Display Elements

image_group = displayio.Group(scale=1)

Define the foundational thermal image grid cells; image_group[0:224]

image_group[#] = image_group[(row * GRID_AXIS) + column]

for row in range(0, GRID_AXIS):

 for col in range(0, GRID_AXIS):

 cell_x = (col * CELL_SIZE) + GRID_X_OFFSET

 cell_y = row * CELL_SIZE

 cell = Rect(

 x=cell_x,

 y=cell_y,

 width=CELL_SIZE,

 height=CELL_SIZE,

 fill=None,

 outline=None,

 stroke=0,

)

 image_group.append(cell)

Define labels and values

status_label = Label(font_0, text="", color=None)

status_label.anchor_point = (0.5, 0.5)

status_label.anchored_position = ((WIDTH // 2) + (GRID_X_OFFSET // 2), HEIGHT // 2)

image_group.append(status_label) # image_group[225]

alarm_label = Label(font_0, text="alm", color=WHITE)

alarm_label.anchor_point = (0, 0)

alarm_label.anchored_position = (1, 16)

image_group.append(alarm_label) # image_group[226]

max_label = Label(font_0, text="max", color=RED)

max_label.anchor_point = (0, 0)

max_label.anchored_position = (1, 46)

image_group.append(max_label) # image_group[227]

©Adafruit Industries Page 33 of 70

min_label = Label(font_0, text="min", color=CYAN)

min_label.anchor_point = (0, 0)

min_label.anchored_position = (1, 106)

image_group.append(min_label) # image_group[228]

ave_label = Label(font_0, text="ave", color=YELLOW)

ave_label.anchor_point = (0, 0)

ave_label.anchored_position = (1, 76)

image_group.append(ave_label) # image_group[229]

alarm_value = Label(font_0, text=str(ALARM_F), color=WHITE)

alarm_value.anchor_point = (0, 0)

alarm_value.anchored_position = (1, 5)

image_group.append(alarm_value) # image_group[230]

max_value = Label(font_0, text=str(MAX_RANGE_F), color=RED)

max_value.anchor_point = (0, 0)

max_value.anchored_position = (1, 35)

image_group.append(max_value) # image_group[231]

min_value = Label(font_0, text=str(MIN_RANGE_F), color=CYAN)

min_value.anchor_point = (0, 0)

min_value.anchored_position = (1, 95)

image_group.append(min_value) # image_group[232]

ave_value = Label(font_0, text="---", color=YELLOW)

ave_value.anchor_point = (0, 0)

ave_value.anchored_position = (1, 65)

image_group.append(ave_value) # image_group[233]

min_histo = Label(font_0, text="", color=None)

min_histo.anchor_point = (0, 0.5)

min_histo.anchored_position = (GRID_X_OFFSET, 121)

image_group.append(min_histo) # image_group[234]

max_histo = Label(font_0, text="", color=None)

max_histo.anchor_point = (1, 0.5)

max_histo.anchored_position = (WIDTH - 2, 121)

image_group.append(max_histo) # image_group[235]

range_histo = Label(font_0, text="-RANGE-", color=None)

range_histo.anchor_point = (0.5, 0.5)

range_histo.anchored_position = ((WIDTH // 2) + (GRID_X_OFFSET // 2), 121)

image_group.append(range_histo) # image_group[236]

###--- PRIMARY PROCESS SETUP ---###

t1 = time.monotonic() # Time marker: Primary Process Setup

fm1 = gc.mem_free() # Monitor free memory

display_image = True # Image display mode; False for histogram

display_hold = False # Active display mode; True to hold display

display_focus = False # Standard display range; True to focus display range

orig_max_range_f = 0 # Establish temporary range variables

orig_min_range_f = 0

Activate display and play welcome tone

display.show(image_group)

spectrum()

update_image_frame()

flash_status("IRON", 0.75)

play_tone(880, 0.010) # A5

###--- PRIMARY PROCESS LOOP ---###

while True:

 t2 = time.monotonic() # Time marker: Acquire Sensor Data

 if display_hold:

 flash_status("-HOLD-", 0.25)

 else:

 sensor = amg8833.pixels # Get sensor_data data

©Adafruit Industries Page 34 of 70

 sensor_data = ulab.numpy.array(sensor) # Copy to narray

 t3 = time.monotonic() # Time marker: Constrain Sensor Values

 for row in range(0, 8):

 for col in range(0, 8):

 sensor_data[col, row] = min(max(sensor_data[col, row], 0), 80)

 # Update and display alarm setting and max, min, and ave stats

 t4 = time.monotonic() # Time marker: Display Statistics

 v_max = ulab.numpy.max(sensor_data)

 v_min = ulab.numpy.min(sensor_data)

 v_ave = ulab.numpy.mean(sensor_data)

 alarm_value.text = str(ALARM_F)

 max_value.text = str(celsius_to_fahrenheit(v_max))

 min_value.text = str(celsius_to_fahrenheit(v_min))

 ave_value.text = str(celsius_to_fahrenheit(v_ave))

 # Normalize temperature to index values and interpolate

 t5 = time.monotonic() # Time marker: Normalize and Interpolate

 sensor_data = (sensor_data - MIN_RANGE_C) / (MAX_RANGE_C - MIN_RANGE_C)

 grid_data[::2, ::2] = sensor_data # Copy sensor data to the grid array

 ulab_bilinear_interpolation() # Interpolate to produce 15x15 result

 # Display image or histogram

 t6 = time.monotonic() # Time marker: Display Image

 if display_image:

 update_image_frame(selfie=SELFIE)

 else:

 update_histo_frame()

 # If alarm threshold is reached, flash NeoPixels and play alarm tone

 if v_max >= ALARM_C:

 pixels.fill(RED)

 play_tone(880, 0.015) # A5

 pixels.fill(BLACK)

 # See if a panel button is pressed

 buttons = panel.get_pressed()

 if buttons & BUTTON_A: # Toggle display hold (shutter)

 play_tone(1319, 0.030) # E6

 display_hold = not display_hold

 while buttons & BUTTON_A:

 buttons = panel.get_pressed()

 time.sleep(0.1)

 if buttons & BUTTON_B: # Toggle image/histogram mode (display image)

 play_tone(659, 0.030) # E5

 display_image = not display_image

 while buttons & BUTTON_B:

 buttons = panel.get_pressed()

 time.sleep(0.1)

 if display_image:

 min_histo.color = None

 max_histo.color = None

 range_histo.color = None

 else:

 min_histo.color = CYAN

 max_histo.color = RED

 range_histo.color = BLUE

 if buttons & BUTTON_SELECT: # Toggle focus mode (display focus)

 play_tone(698, 0.030) # F5

 display_focus = not display_focus

 if display_focus:

 # Set range values to image min/max for focused image display

 orig_min_range_f = MIN_RANGE_F

©Adafruit Industries Page 35 of 70

 orig_max_range_f = MAX_RANGE_F

 MIN_RANGE_F = celsius_to_fahrenheit(v_min)

 MAX_RANGE_F = celsius_to_fahrenheit(v_max)

 # Update range min and max values in Celsius

 MIN_RANGE_C = v_min

 MAX_RANGE_C = v_max

 flash_status("FOCUS", 0.2)

 else:

 # Restore previous (original) range values for image display

 MIN_RANGE_F = orig_min_range_f

 MAX_RANGE_F = orig_max_range_f

 # Update range min and max values in Celsius

 MIN_RANGE_C = fahrenheit_to_celsius(MIN_RANGE_F)

 MAX_RANGE_C = fahrenheit_to_celsius(MAX_RANGE_F)

 flash_status("ORIG", 0.2)

 while buttons & BUTTON_SELECT:

 buttons = panel.get_pressed()

 time.sleep(0.1)

 if buttons & BUTTON_START: # Activate setup mode

 play_tone(784, 0.030) # G5

 while buttons & BUTTON_START:

 buttons = panel.get_pressed()

 time.sleep(0.1)

 # Invoke startup helper; update alarm and range values

 ALARM_F, MAX_RANGE_F, MIN_RANGE_F = setup_mode()

 ALARM_C = fahrenheit_to_celsius(ALARM_F)

 MIN_RANGE_C = fahrenheit_to_celsius(MIN_RANGE_F)

 MAX_RANGE_C = fahrenheit_to_celsius(MAX_RANGE_F)

 t7 = time.monotonic() # Time marker: End of Primary Process

 gc.collect()

 fm7 = gc.mem_free()

 print("*** PyBadge/Gamer Performance Stats ***")

 print(f" define displayio: {(t1 - t0):6.3f} sec")

 print(f" startup free memory: {fm1/1000:6.3} Kb")

 print("")

 print(

 f" 1) data acquisition: {(t4 - t2):6.3f} rate: {(1 / (t4 - t2)):

5.1f} /sec"

)

 print(f" 2) display stats: {(t5 - t4):6.3f}")

 print(f" 3) interpolate: {(t6 - t5):6.3f}")

 print(f" 4) display image: {(t7 - t6):6.3f}")

 print(f" =======")

 print(

 f"total frame: {(t7 - t2):6.3f} sec rate: {(1 / (t7 - t2)):

5.1f} /sec"

)

 print(f" free memory: {fm7/1000:6.3} Kb")

 print("")

The Thermal Camera needs some helpers to convert back and forth between Celsius

and Fahrenheit units. This file is contained in the project zip folder as thermal_cam_c

onverters.py.

©Adafruit Industries Page 36 of 70

thermal_cam_converters.py

def celsius_to_fahrenheit(deg_c=None): # convert C to F; round to 1 degree C

 return round(((9 / 5) * deg_c) + 32)

def fahrenheit_to_celsius(deg_f=None): # convert F to C; round to 1 degree F

 return round((deg_f - 32) * (5 / 9))

The color spectrum is calculated by the index_to_rgb helper of the iron_spectrum.

py file within the index_to_rgb folder. The helper calculates a 24-bit red, green, and

blue (RGB) color value from an input value of 0 to 1.0.

iron_spectrum.py

2021-05-27 version 1.2

Copyright 2021 Cedar Grove Studios

Temperature Index to Iron Pseudocolor Spectrum RGB Converter Helper

def map_range(x, in_min, in_max, out_min, out_max):

 """

 Maps and constrains an input value from one range of values to another.

 (from adafruit_simpleio)

 :return: Returns value mapped to new range

 :rtype: float

 """

 in_range = in_max - in_min

 in_delta = x - in_min

 if in_range != 0:

 mapped = in_delta / in_range

 elif in_delta != 0:

 mapped = in_delta

 else:

 mapped = 0.5

 mapped *= out_max - out_min

 mapped += out_min

 if out_min <= out_max:

 return max(min(mapped, out_max), out_min)

 return min(max(mapped, out_max), out_min)

def index_to_rgb(index=0, gamma=0.5):

 """

 Converts a temperature index to an iron thermographic pseudocolor spectrum

 RGB value. Temperature index in range of 0.0 to 1.0. Gamma in range of

 0.0 to 1.0 (1.0=linear), default 0.5 for color TFT displays.

 :return: Returns a 24-bit RGB value

 :rtype: integer

 """

 band = index * 600 # an arbitrary spectrum band index; 0 to 600

 if band < 70: # dark gray to blue

 red = 0.1

 grn = 0.1

 blu = (0.2 + (0.8 * map_range(band, 0, 70, 0.0, 1.0))) ** gamma

 if band >= 70 and band < 200: # blue to violet

 red = map_range(band, 70, 200, 0.0, 0.6) ** gamma

 grn = 0.0

 blu = 1.0 ** gamma

 if band >= 200 and band < 300: # violet to red

 red = map_range(band, 200, 300, 0.6, 1.0) ** gamma

 grn = 0.0

 blu = map_range(band, 200, 300, 1.0, 0.0) ** gamma

 if band >= 300 and band < 400: # red to orange

 red = 1.0 ** gamma

 grn = map_range(band, 300, 400, 0.0, 0.5) ** gamma

©Adafruit Industries Page 37 of 70

 blu = 0.0

 if band >= 400 and band < 500: # orange to yellow

 red = 1.0 ** gamma

 grn = map_range(band, 400, 500, 0.5, 1.0) ** gamma

 blu = 0.0

 if band >= 500: # yellow to white

 red = 1.0 ** gamma

 grn = 1.0 ** gamma

 blu = map_range(band, 500, 580, 0.0, 1.0) ** gamma

 return (int(red * 255) << 16) + (int(grn * 255) << 8) + int(blu * 255)

Finally, the power-up alarm threshold, temperature display range settings, and camera

orientation are contained in the thermal_cam_config.py file. All values are in degrees

Fahrenheit. A SELFIE value of True adjusts the image for a front-facing camera ori

entation; False is used for cameras facing away from the viewer.

thermal_cam_config.py

Alarm and range default values in Farenheit

ALARM_F = 120

MIN_RANGE_F = 60

MAX_RANGE_F = 120

Display characteristics

SELFIE = False # Rear camera view; True for front view

After copying all the project files to the PyGamer, you'll see the camera's splash

graphics and a sample of the iron color spectrum. After a couple of beeps, the

thermal image will appear.

The next section shows the features of the camera and how it operates.

CircuitPython Code Details

The CircuitPython code for the Thermal Camera project is contained in four files:

code.py, the main code module,

thermal_cam_converters.py the temperature unit conversion helper,

iron_spectrum.py (in the index_to_rgb folder), the iron pseudocolor spectrum

conversion helper, and

thermal_cam_config.py, the start-up default parameter file.

Because of changes to ulab with the release of CircuitPython v7.x, the thermal

camera code is no longer compatible with CircuitPython version 6.3.0 or earlier.

•

•

•

•

©Adafruit Industries Page 38 of 70

Code Details

Let's take a walk through the code and look in more detail how each section works

starting with code.py.

The main module, code.py, prepares and operates the Thermal Camera. It consists of

the following major sections:

Import and Initialize: Libraries, Devices, and Welcome Screen

Constants: Display, Min/Max, and Alarm Threshold Values

Helpers: Display, Buttons, and Setup Functions

Display: Define Group Layers

Primary Process: Setup and Loop

Things are started with importing libraries, establishing devices, and saying hello, all

of which are described on the following pages.

Import and Initialize

When the PyGamer's power is turned on, the code.py module first imports all the

required libraries. That includes the thermal_cam_converters and index_to_rgb help

er files that we'll review later.

import time

import board

import busio

import gc

import ulab

import displayio

import neopixel

from analogio import AnalogIn

from digitalio import DigitalInOut

from simpleio import map_range, tone

from adafruit_display_text.label import Label

from adafruit_bitmap_font import bitmap_font

from adafruit_display_shapes.rect import Rect

import adafruit_amg88xx

from gamepadshift import GamePadShift

from index_to_rgb.iron_spectrum import index_to_rgb

from thermal_cam_converters import celsius_to_fahrenheit, fahrenheit_to_celsius

from thermal_cam_config import ALARM_F, MIN_RANGE_F, MAX_RANGE_F, SELFIE

•

•

•

•

•

Because of changes to ulab with the release of CircuitPython v7.x, the thermal

camera code is no longer compatible with CircuitPython version 6.3.0 or earlier.

©Adafruit Industries Page 39 of 70

After importing libraries, the display and default font are instantiated, the speaker is

enabled, and the on-board NeoPixels are defined.

If the PyGamer's joystick is present, the has_joystick flag is set to True . If not,

then the host device is probably a PyBadge or EdgeBadge. This allows the code to

work for those devices in addition to the PyGamer, interpreting the Badge D-Pad

buttons like the Gamer's joystick.

Instantiate display, joystick, speaker, and neopixels

display = board.DISPLAY

Load the text font from the fonts folder

font_0 = bitmap_font.load_font("/fonts/OpenSans-9.bdf")

if hasattr(board, "JOYSTICK_X"):

 has_joystick = True # PyGamer with joystick

 joystick_x = AnalogIn(board.JOYSTICK_X)

 joystick_y = AnalogIn(board.JOYSTICK_Y)

else:

 has_joystick = False # PyBadge with buttons

speaker_enable = DigitalInOut(board.SPEAKER_ENABLE)

speaker_enable.switch_to_output(value=True)

pixels = neopixel.NeoPixel(board.NEOPIXEL, 5, pixel_order=neopixel.GRB)

pixels.brightness = 0.25 # Set NeoPixel brightness

pixels.fill(0x000000) # Clear all NeoPixels

The PyGamer and PyBadge control buttons are connected to a hardware shift register

chip that is controlled by the GamePadShift class. This section of the code defines

each button's bit position within the shift register. The local GamePadShift class,

panel, will be used to read the buttons in the primary process loop and setup helper.

Define and instantiate front panel buttons

BUTTON_LEFT = 0b10000000

BUTTON_UP = 0b01000000

BUTTON_DOWN = 0b00100000

BUTTON_RIGHT = 0b00010000

BUTTON_SELECT = 0b00001000

BUTTON_START = 0b00000100

BUTTON_A = 0b00000010

BUTTON_B = 0b00000001

panel = GamePadShift(

 DigitalInOut(board.BUTTON_CLOCK),

 DigitalInOut(board.BUTTON_OUT),

 DigitalInOut(board.BUTTON_LATCH),

)

Now it's time to connect to and instantiate the AMG8833 thermal camera FeatherWing

using the I2C bus connection. The I2C serial bus speed is increased from the default

100K to 400K bits per second to improve data acquisition speed and ultimately the

display frame rate.

©Adafruit Industries Page 40 of 70

This section of the code will also work if the AMG8833 thermal camera STEMMA

breakout is used in place of the FeatherWing version. STEMMA cable length may

impact sensor performance, so if you encounter issues with the breakout version, try

reducing the I2C bus speed to the default 100K bits per second rate.

Establish I2C interface for the AMG8833 Thermal Camera

i2c = busio.I2C(board.SCL, board.SDA, frequency=400000)

amg8833 = adafruit_amg88xx.AMG88XX(i2c)

Next, the welcome graphics screen, thermal_cam_splash.bmp is displayed. The size

of the image is scaled to fit the size of the PyGamer's display.

Display splash graphics

splash = displayio.Group(scale=display.width // 160)

bitmap = displayio.OnDiskBitmap("/thermal_cam_splash.bmp")

splash.append(displayio.TileGrid(bitmap, pixel_shader=bitmap.pixel_shader))

board.DISPLAY.show(splash)

time.sleep(0.1) # Allow the splash to display

Finally, the ulab (micro lab) arrays needed to hold the normalized 8x8 sensor index

and the transformed 15x15 display grid index are defined. In addition, an array to hold

histogram statistical data is established.

An array defined for ulab use is an narray type; a format different than other

CircuitPython arrays. The special narray array type (named after a close cousin, the

numpy array) is designed to support rapid array calculation and transformation.

Set up ulab arrays

n = 8 # Thermal sensor grid axis size; AMG8833 sensor is 8x8

sensor_data = ulab.numpy.array(range(n * n)).reshape((n, n)) # Color index narray

grid_data = ulab.numpy.zeros(((2 * n) - 1, (2 * n) - 1)) # 15x15 color index narray

histogram = ulab.numpy.zeros((2 * n) - 1) # Histogram accumulation narray

A series of numerical constants are needed to set boundaries and limits for thermal

camera calculations. We'll talk about those next.

Constants

After setting up the hardware devices and saying hello, a few commonly used

constants and variables are defined. These include the alarm threshold, display

minimum/maximum, and camera orientation settings that were previously loaded from

the thermal_cam_config.py file. Default values in Celsius are converted to Fahrenheit

where needed.

©Adafruit Industries Page 41 of 70

Convert default alarm and min/max range values from config file

ALARM_C = fahrenheit_to_celsius(ALARM_F)

MIN_RANGE_C = fahrenheit_to_celsius(MIN_RANGE_F)

MAX_RANGE_C = fahrenheit_to_celsius(MAX_RANGE_F)

Display width and height are retrieved from the PyGamer's board definitions. The size

of individual grid image cells is calculated from the display's height and the number of

displayed cells along one grid access.

By calculating the grid and cell dimensions in this manner, the code becomes

adaptable for use with displays larger than the PyGamer's integral TFT display.

The board's integral display size

WIDTH = display.width

HEIGHT = display.height

GRID_AXIS = (2 * n) - 1 # Number of cells along the grid x or y axis

GRID_SIZE = HEIGHT # Maximum number of pixels for a square grid

GRID_X_OFFSET = WIDTH - GRID_SIZE # Right-align grid with display boundary

CELL_SIZE = GRID_SIZE // GRID_AXIS # Size of a grid cell in pixels

Color values are defined next. PALETTE_SIZE is used to select the maximum number

of display colors across the iron spectrum to map to temperature values. The palette

size of 100 colors was selected empirically as a value that balanced the sensor

resolution of 0.5°C with the ability to visually discern objects. Increasing the number

of colors beyond 160 does not improve readability and can slow the display frame

rate. Fewer than 80 palette colors significantly decreases visual object detection.

The remaining color definitions are used for the various text labels and measured

values in the display's sidebar. The param_colors list is used by the setup helper

that we'll discuss in the next section.

PALETTE_SIZE = 100 # Number of colors in spectral palette (must be > 0)

Default colors for temperature value sidebar

BLACK = 0x000000

RED = 0xFF0000

YELLOW = 0xFFFF00

CYAN = 0x00FFFF

BLUE = 0x0000FF

WHITE = 0xFFFFFF

Text colors for setup helper's on-screen parameters

param_colors = [("ALARM", WHITE), ("RANGE", RED), ("RANGE", CYAN)]

©Adafruit Industries Page 42 of 70

Helpers

Helpers for Display, Buttons, and Setup Functions

Helpers are used to simplify the primary loop code. The helpers:

Play a tone to signify a button press or alert;

Display a status message in the center of the image area;

Load a set of test color spectrum values into the display array;

Display and refresh the sensor image;

Display and refresh the histogram image;

Enlarge the 8x8 sensor data into a 15x15 display array;

Change default parameters for temperature range and alarm threshold;

Convert joystick movement to simulate up, down, left, and right button presses

to support use with PyGamer or PyBadge boards.

play_tone() Helper

Using the tone() helper that's contained in the simpleio library, the thermal

camera's play_tone() helper plays a musical note through the PyGamer's speaker.

The frequency in Hertz and duration in seconds are passed to the helper as the

parameters freq and duration .

Helpers

def play_tone(freq=440, duration=0.01):

 tone(board.A0, freq, duration)

 return

flash_status() Helper

The flash_status() helper accepts a text string and displays it in the status area of

the display. The text appears as white letters for a time specified by duration then

as black letters for duration length in seconds. This is very useful for flashing a

message that can be seen regardless of the background colors, especially handy

while displaying a sensor image.

def flash_status(text="", duration=0.05): # Flash status message once

 status_label.color = WHITE

 status_label.text = text

 time.sleep(duration)

 status_label.color = BLACK

 time.sleep(duration)

•

•

•

•

•

•

•

•

©Adafruit Industries Page 43 of 70

 status_label.text = ""

 return

spectrum() Helper

Initially used to help debug the iron spectrum conversion code, the spectrum()

helper loads the image grid array with a sequence of index values that sweep through

the colors of the thermal camera's visual pseudocolor spectrum. This helper is used in

conjunction with the update_image_frame() helper to display a sample of the

default spectrum upon startup.

def spectrum(): # Load a test spectrum into the grid_data array

 for row in range(0, GRID_AXIS):

 for col in range(0, GRID_AXIS):

 grid_data[row][col] = ((row * GRID_AXIS) + col) * 1 / 235

 return

update_image_frame() Helper

The update_image_frame() helper looks through a list of 225 indexed color values

stored by row and column in the grid_data list. The helper converts the color index

into a displayable RGB color value and updates the fill color of the corresponding

display cell.

To save processing time and improve image frame rate, a cell is only updated if the

calculated RGB value has changed from one frame to the next.

def update_image_frame(selfie=False): # Get camera data and update display

 for row in range(0, GRID_AXIS):

 for col in range(0, GRID_AXIS):

 if selfie:

 color_index = grid_data[GRID_AXIS - 1 - row][col]

 else:

 color_index = grid_data[GRID_AXIS - 1 - row][GRID_AXIS - 1 - col]

 color = index_to_rgb(round(color_index * PALETTE_SIZE, 0) /

PALETTE_SIZE)

 if color != image_group[((row * GRID_AXIS) + col)].fill:

 image_group[((row * GRID_AXIS) + col)].fill = color

 return

©Adafruit Industries Page 44 of 70

update_histo_frame() Helper

The update_histo_frame() helper collects a distribution of 15 temperature sub-

ranges within the current temperature display range (one for each color) and displays

a histogram of relative temperature values. The helper scans all 225 sensor color

index values in the grid_data array and counts the number of times a value falls

within one of 15 sub-ranges.

When invoked, the helper displays the histogram range legend values and clears the

histogram array used to accumulate the 15 sub-range values. After collecting the

histogram data from the array, the largest sub-range value is stored in the histo_sc

ale variable is used to scale the results when the histogram is displayed.

The second part of the helper updates the image area to display the histogram as a

series of vertical bars with height proportional to the accumulated sub-range value.

The display update starts at the upper left of the display's image area and works

down to the lower right. Each cell is filled with a color that corresponds to the color

index value. The remainder of boxes in the histogram display area are colored black if

not used to build a histogram bar.

def update_histo_frame(): # Calculate and display histogram

 min_histo.text = str(MIN_RANGE_F) # Display histogram legend

 max_histo.text = str(MAX_RANGE_F)

 histogram = ulab.numpy.zeros(GRID_AXIS) # Clear histogram accumulation array

 for row in range(0, GRID_AXIS): # Collect camera data and calculate histo

 for col in range(0, GRID_AXIS):

 histo_index = int(map_range(grid_data[col, row], 0, 1, 0, GRID_AXIS -

1))

 histogram[histo_index] = histogram[histo_index] + 1

 histo_scale = ulab.numpy.max(histogram) / (GRID_AXIS - 1)

 if histo_scale <= 0:

 histo_scale = 1

 for col in range(0, GRID_AXIS): # Display histogram

 for row in range(0, GRID_AXIS):

 if histogram[col] / histo_scale > GRID_AXIS - 1 - row:

 image_group[((row * GRID_AXIS) + col)].fill = index_to_rgb(

 round((col / GRID_AXIS), 3)

)

 else:

 image_group[((row * GRID_AXIS) + col)].fill = BLACK

 return

ulab_bilinear_interpolation() Helper

The ulab_bilinear_interpolation() helper utilizes ulab array calculations to find

values for cells in the 225-cell grid_data array that fall between the 64 known sensor

©Adafruit Industries Page 45 of 70

element values. First, the even rows are scanned, assigning the average of the

adjacent known cells to each unknown cell. Next, odd rows are scanned, assigning

the average of the values above and below to every cell in the row. See the section, 1-

2-3s of Bilinear Interpolation for the details of the interpolation method.

def ulab_bilinear_interpolation(): # 2x bilinear interpolation

 # Upscale sensor data array; by @v923z and @David.Glaude

 grid_data[1::2, ::2] = sensor_data[:-1, :]

 grid_data[1::2, ::2] += sensor_data[1:, :]

 grid_data[1::2, ::2] /= 2

 grid_data[::, 1::2] = grid_data[::, :-1:2]

 grid_data[::, 1::2] += grid_data[::, 2::2]

 grid_data[::, 1::2] /= 2

 return

setup_mode() Helper

The setup_mode() helper pauses normal operation and collects user input to set

alarm threshold and display range min/max values. During the Setup mode, the

display's average value and label are blanked.

The joystick or PyBadge D-Pad is used to select the parameter to change and to

increase or decrease the parameter value. The HOLD button acts as the parameter

select button. Pressing the SET button at any time during the Setup mode will exit

back to the primary process loop.

The first task is to temporarily display a status message that indicates the camera is in

the Setup mode. The display's average value and label are blanked and the measured

maximum and minimum values are replaced with the current maximum and minimum

display range values (MAX_RANGE_F and MIN_RANGE_F).

After waiting a bit for the status message to be read and prior to watching for button

and joystick changes, the index pointer (param_index) is reset to point to the alarm

threshold parameter.

def setup_mode(): # Set alarm threshold and minimum/maximum range values

 status_label.color = WHITE

 status_label.text = "-SET-"

 ave_label.color = BLACK # Turn off average label and value display

 ave_value.color = BLACK

 max_value.text = str(MAX_RANGE_F) # Display maximum range value

 min_value.text = str(MIN_RANGE_F) # Display minimum range value

 time.sleep(0.8) # Show SET status text before setting parameters

 status_label.text = "" # Clear status text

 param_index = 0 # Reset index of parameter to set

©Adafruit Industries Page 46 of 70

The following is the meat of the setup process. Before moving on to choosing which

parameter to set, the process waits until the SET button has been released.

As long as the HOLD (select) or the SET (setup mode exit) buttons have not been

pressed, the code loops. During the loop, the joystick is watched using the move_bu

ttons() helper. If the joystick is moved down, the parameter index is incremented,

pointing to the next parameter. If moved up, the index will point to the previous

parameter. The parameter label text flashes black and white, indicating which

parameter is ready to be changed.

In the image_group list (that is defined later in the display portion of the code just

before the primary process loop), the three parameter text labels for alarm, maximum,

and minimum are sequentially positioned in the list:

Alarm text label --> image_group[226]

Maximum text label --> image_group[227]

Minimum text label --> image_group[228]

Using an indexed position in image_group for the parameters makes it simpler to

sequentially step from one parameter to the next.

Select parameter to set

buttons = panel.get_pressed()

while not buttons & BUTTON_START:

 buttons = panel.get_pressed()

 while (not buttons & BUTTON_A) and (not buttons & BUTTON_START):

 up, down = move_buttons(joystick=has_joystick)

 if up:

 param_index = param_index - 1

 if down:

 param_index = param_index + 1

 param_index = max(0, min(2, param_index))

 status_label.text = param_colors[param_index][0]

 image_group[param_index + 226].color = BLACK

 status_label.color = BLACK

 time.sleep(0.25)

 image_group[param_index + 226].color = param_colors[param_index][1]

 status_label.color = WHITE

 time.sleep(0.25)

 buttons = panel.get_pressed()

After the HOLD button is pressed and released, the selected parameter, represented

by the value of param_index , can be changed.

•

•

•

©Adafruit Industries Page 47 of 70

The selected parameter value is incrementally changed by the joystick's up and down

movements as provided to this helper from the move_buttons() helper. The new

value is checked against and limited to the sensor's factory min/max limits (MIN_SENS

OR_F , MAX_SENSOR_F).

In the image_group list the three parameter value labels for alarm, maximum, and

minimum are sequentially positioned in the list:

Alarm value label --> image_group[230]

Maximum value label --> image_group[231]

Minimum value label --> image_group[232]

The value label for the selected parameter is changed and displayed.

Meanwhile, a flashing status message indicates which type of parameter is being

changed, either the alarm or one of the range values.

When the desired value is reached and the HOLD (select) button is pressed, the

Setup process continues back to the parameter select mode.

buttons = panel.get_pressed()

if buttons & BUTTON_A: # Hold (button A) pressed

 play_tone(1319, 0.030) # E6

while buttons & BUTTON_A: # Wait for button release

 buttons = panel.get_pressed()

 time.sleep(0.1)

Adjust parameter value

param_value = int(image_group[param_index + 230].text)

buttons = panel.get_pressed()

while (not buttons & BUTTON_A) and (not buttons & BUTTON_START):

 up, down = move_buttons(joystick=has_joystick)

 if up:

 param_value = param_value + 1

 if down:

 param_value = param_value - 1

 param_value = max(32, min(157, param_value))

 image_group[param_index + 230].text = str(param_value)

 image_group[param_index + 230].color = BLACK

 status_label.color = BLACK

 time.sleep(0.05)

 image_group[param_index + 230].color = param_colors[param_index][1]

 status_label.color = WHITE

 time.sleep(0.2)

 buttons = panel.get_pressed()

buttons = panel.get_pressed()

if buttons & BUTTON_A: # Button A pressed

 play_tone(1319, 0.030) # E6

while buttons & BUTTON_A: # Wait for button release

 buttons = panel.get_pressed()

 time.sleep(0.1)

•

•

•

©Adafruit Industries Page 48 of 70

If SET is pressed instead of HOLD, the Setup process prepares to exit back to the

primary process loop.

Exit setup process

buttons = panel.get_pressed()

if buttons & BUTTON_START: # Start button pressed

 play_tone(784, 0.030) # G5

while buttons & BUTTON_START: # wait for button release

 buttons = panel.get_pressed()

 time.sleep(0.1)

Before exiting, a resumption status message is displayed and the display of the

average label and value are restored.

Finally, the text strings that may have changed during the Setup process are

converted to integer numeric values and returned to the primary process loop.

status_label.text = "RESUME"

time.sleep(0.5)

status_label.text = ""

Display average label and value

ave_label.color = YELLOW

ave_value.color = YELLOW

return int(alarm_value.text), int(max_value.text), int(min_value.text)

move_buttons() Helper

The move_buttons() helper first resets the variables that indicate joystick

movement or D-Pad button presses. If the joystick argument is True , the joystick

movements beyond set thresholds are represented as button depressions. For

example, a value for panel.joystick[1] of less than 20000 means that the joystick

was moved upwards; greater than 44000 indicates downward movement.

If the joystick argument is False , instead of watching the joystick, the D-Pad

buttons are checked to see if any are depressed.

Finally, the movement indicating values are returned to the calling module.

def move_buttons(joystick=False): # Read position buttons and joystick

 move_u = move_d = False

 if joystick: # For PyGamer: interpret joystick as buttons

 if joystick_y.value < 20000:

 move_u = True

 elif joystick_y.value > 44000:

 move_d = True

 else: # For PyBadge read the buttons

 buttons = panel.get_pressed()

 if buttons & BUTTON_UP:

 move_u = True

©Adafruit Industries Page 49 of 70

 if buttons & BUTTON_DOWN:

 move_d = True

 return move_u, move_d

After the helpers are defined, we move on to specifying the text and graphic features

of the display.

Display

Define Display Group Layers

Within CircuitPython's displayio library, a display group is a list of label or graphic

attributes that are defined for each object of the display. This section of the Thermal

Camera's primary process module defines the image_group display group that the

camera will use to show measured values, the sensor image or histogram, status

message, and the histogram legend.

The camera's display group, image_group , consists of layered objects. The first 225

objects of the display make up the colored cells used for the image grid area.

The status message label comes next, followed by the values and labels in the display

sidebar area. Finally, objects that make up the histogram legend top off the stack of

display objects in image_group .

The objects and their attributes are appended to the image_group list one-at-a-time

when first defined. When appended to image_group , the attributes of each object

©Adafruit Industries Page 50 of 70

are defined. For example, the alarm label alm is defined as a Label object with

attributes that include the label's font, text contents, text color, and maximum

character count (glyphs):

status_label = Label(font_0, text="", color=None)

status_label.anchor_point = (0.5, 0.5)

status_label.anchored_position = ((WIDTH // 2) + (GRID_X_OFFSET // 2), HEIGHT // 2)

image_group.append(status_label) # image_group[225]

The anchored_position (x/y coordinates) and anchor_point (left/right/center

justification) of the alarm label on the PyGamer's display screen are calculated

to appear in the center of the image grid area. Other display label and value positions

were determined and fine-tuned empirically. After defining the display object's

attributes, it is appended to the image_group display group.

This process is repeated, starting from the back of the display and progressing

towards the front, as each new object is appended to the display group.

Define the Image Group

After playing a couple of musical tones and storing the elapsed time to mark the

beginning of the display definition process, the image_group definition list for

display group objects comes next. The scale argument adjusts image group

element position and size parameters. For the PyGamer's display, no adjustment is

required so scale=1 .

The time marker t0 along with seven other process time markers will be reported at

the end of each displayed frame to calculate thermal camera code performance. This

marker establishes the time that the display group definition phase began.

play_tone(440, 0.1) # A4

play_tone(880, 0.1) # A5

Define the display group

t0 = time.monotonic() # Time marker: Define Display Elements

image_group = displayio.Group(scale=1)

Define the Thermal Image Display Group Layers

Next, the 225 square cells used to represent sensor array temperatures are defined

and appended to image_group . Two for loops are used to step through each

column and row of cells. Each square is defined as a rectangle with width and height

equal to CELL_SIZE . No color attribute is defined for the cell, making it transparent --

for now.

©Adafruit Industries Page 51 of 70

Define the foundational thermal image grid cells; image_group[0:224]

image_group[#]=(row * GRID_AXIS) + column

for row in range(0, GRID_AXIS):

 for col in range(0, GRID_AXIS):

 cell_x = (col * CELL_SIZE) + GRID_X_OFFSET

 cell_y = row * CELL_SIZE

 cell = Rect(

 x=cell_x,

 y=cell_y,

 width=CELL_SIZE,

 height=CELL_SIZE,

 fill=None,

 outline=None,

 stroke=0,

)

 image_group.append(cell)

Define the Text Label Display Group Layers

Finally, the remaining text objects that display legends and values are defined and

appended to the image_group display group.

For each object, the label name is defined along with the font, text contents, font

color, and the maximum number of characters (glyphs) to display. Next, the object's

anchor_point (justification) and anchored_position (x/y coordinates) attributes

are defined. After the attributes are defined, each object is appended to image_gro

up .

Define labels and values

status_label = Label(font_0, text="", color=None)

status_label.anchor_point = (0.5, 0.5)

status_label.anchored_position = ((WIDTH // 2) + (GRID_X_OFFSET // 2), HEIGHT // 2)

image_group.append(status_label) # image_group[225]

alarm_label = Label(font_0, text="alm", color=WHITE)

alarm_label.anchor_point = (0, 0)

alarm_label.anchored_position = (1, 16)

image_group.append(alarm_label) # image_group[226]

max_label = Label(font_0, text="max", color=RED)

max_label.anchor_point = (0, 0)

max_label.anchored_position = (1, 46)

image_group.append(max_label) # image_group[227]

min_label = Label(font_0, text="min", color=CYAN)

min_label.anchor_point = (0, 0)

min_label.anchored_position = (1, 106)

image_group.append(min_label) # image_group[228]

ave_label = Label(font_0, text="ave", color=YELLOW)

ave_label.anchor_point = (0, 0)

ave_label.anchored_position = (1, 76)

image_group.append(ave_label) # image_group[229]

alarm_value = Label(font_0, text=str(ALARM_F), color=WHITE)

alarm_value.anchor_point = (0, 0)

alarm_value.anchored_position = (1, 5)

image_group.append(alarm_value) # image_group[230]

©Adafruit Industries Page 52 of 70

max_value = Label(font_0, text=str(MAX_RANGE_F), color=RED)

max_value.anchor_point = (0, 0)

max_value.anchored_position = (1, 35)

image_group.append(max_value) # image_group[231]

min_value = Label(font_0, text=str(MIN_RANGE_F), color=CYAN)

min_value.anchor_point = (0, 0)

min_value.anchored_position = (1, 95)

image_group.append(min_value) # image_group[232]

ave_value = Label(font_0, text="---", color=YELLOW)

ave_value.anchor_point = (0, 0)

ave_value.anchored_position = (1, 65)

image_group.append(ave_value) # image_group[233]

min_histo = Label(font_0, text="", color=None)

min_histo.anchor_point = (0, 0.5)

min_histo.anchored_position = (GRID_X_OFFSET, 121)

image_group.append(min_histo) # image_group[234]

max_histo = Label(font_0, text="", color=None)

max_histo.anchor_point = (1, 0.5)

max_histo.anchored_position = (WIDTH - 2, 121)

image_group.append(max_histo) # image_group[235]

range_histo = Label(font_0, text="-RANGE-", color=None)

range_histo.anchor_point = (0.5, 0.5)

range_histo.anchored_position = ((WIDTH // 2) + (GRID_X_OFFSET // 2), 121)

image_group.append(range_histo) # image_group[236]

Whew. We've imported libraries, listed the essential constants, established some

helpers, and defined the elements of the display. After a quick aside to talk about how

a display group can be accessed, it'll be time to bring it all together in the thermal

camera's primary process.

Fun Facts about Display Group Objects

Objects and their attributes in the display group can be accessed in two ways. The

most commonly-used method is to assign a name attribute to the object. For example,

the text of the status message label can be set to display the text WELCOME in this

manner:

status_label.text = "WELCOME"

Objects in image_group can also be accessed by their indexed position in the

display group. An index of 0 is the back-most object in the display group; the highest

index value is front-most. The status message text can also be changed using the

index:

image_group[225].text = "WELCOME"

©Adafruit Industries Page 53 of 70

The Thermal Camera uses both techniques. Named display objects are used

whenever possible to clearly identify which object is being changed. For efficiency,

however, the index position method is used when stepping through a sequence of im

age_group objects, as when displaying the 225 colored cells for the sensor image.

The index position method is also used by the setup_mode() helper when moving

on-screen to select the alarm, maximum, or minimum parameter.

Primary Process

We've finally arrived at the portion of the code that controls the Thermal Camera's

primary process. Before getting started in the main process, we need to define a

couple of things to get the camera ready for looping.

After taking a performance time stamp at the beginning with the time marker variable

t1 , the default display mode flags and the initial ranges values are established. Next,

the image_group display group is activated, a sample of the iron spectrum colors

is displayed for 0.75 seconds, and a "ready" tone is sounded.

###--- PRIMARY PROCESS SETUP ---###

t1 = time.monotonic() # Time marker: Primary Process Setup

fm1 = gc.mem_free() # Monitor free memory

display_image = True # Image display mode; False for histogram

display_hold = False # Active display mode; True to hold display

display_focus = False # Standard display range; True to focus display range

orig_max_range_f = 0 # Establish temporary range variables

orig_min_range_f = 0

Activate display and play welcome tone

display.show(image_group)

spectrum()

update_image_frame()

flash_status("IRON", 0.75)

play_tone(880, 0.010) # A5

Primary Process Loop, Part I

Because of its complexity, the primary process loop is divided into two sections to

make it easier to understand. The first section fetches the image sensor's data,

analyzes and displays the sensor data as an image or histogram, and checks to see if

any of the sensor elements have exceeded the alarm threshold. The second section

looks at the buttons and joystick to select display modes and to run the Setup helper.

©Adafruit Industries Page 54 of 70

Retrieve Sensor Data, Display Image or Histogram, Check Alarm

Threshold

At time t2 , the image sensor's 64 data elements are moved into the sensor list

when the display_hold flag is false; otherwise a "-HOLD-" status message is

displayed. To allow the sensor's temperature data to be used by the ultra fast ulab

interpolation helper, the sensor list is copied into a ulab-compatible array, sensor_d

ata .

Starting at time marker t3 , the temperature value of each element of the the senso

r_data array is constrained to the valid temperature range of the AMG8833 sensor,

0°C to 80°C.

###--- PRIMARY PROCESS LOOP ---###

while True:

 t2 = time.monotonic() # Time marker: Acquire Sensor Data

 if display_hold:

 flash_status("-HOLD-", 0.25)

 else:

 sensor = amg8833.pixels # Get sensor_data data

 sensor_data = ulab.numpy.array(sensor) # Copy to narray

 t3 = time.monotonic() # Time marker: Constrain Sensor Values

 for row in range(0, 8):

 for col in range(0, 8):

 sensor_data[col, row] = min(max(sensor_data[col, row], 0), 80)

Before the temperature data in the sensor_data array is altered for the interpolation

process, the minimum, maximum, and average values of the array are captured in the

variables v_min , v_max , and v_ave . The display is then updated with the

Fahrenheit values of the current alarm setting as well as the converted minimum,

maximum, and average Fahrenheit values. This section starts at time marker t4 .

Update and display alarm setting and max, min, and ave stats

t4 = time.monotonic() # Time marker: Display Statistics

v_max = ulab.numpy.max(sensor_data)

v_min = ulab.numpy.min(sensor_data)

v_ave = ulab.numpy.mean(sensor_data)

alarm_value.text = str(ALARM_F)

max_value.text = str(celsius_to_fahrenheit(v_max))

min_value.text = str(celsius_to_fahrenheit(v_min))

ave_value.text = str(celsius_to_fahrenheit(v_ave))

It's time to use bilinear interpolation to enlarge the sensor's 64 elements (8x8) into a

grid of 225 elements (15x 15). The interpolation process commences at time marker t

5 and begins by converting each of the 64 temperature values in the sensor_data

array to a normalized value that ranges from 0.0 to 1.0 depending on the recorded

temperature value as compared to the currently displayed temperature range. For

©Adafruit Industries Page 55 of 70

example, a normalized value of 0.0 represents a temperature at the minimum of the

currently displayed range, MIN_RANGE_C; a normalized value of 1.0 represents the

maximum of the range, MAX_RANGE_C . Normalizing the temperature values makes it

easier to display a full range of pseudocolors for any temperature range that the

FOCUS mode may invoke.

After normalization, the known values from the sensor_data array are copied into

the grid_data array, starting at [0, 0], the upper left corner, and placed into the cells

of the even columns. The odd rows in the grid_data array are initially left blank.

Once the grid_data array is filled, the missing values are replaced with the results of

the interpolation helper, ulab_bilinear_interpolation() . Refer to the 1-2-3s of

Bilinear Interpolation section for details of the image enlargement process.

Normalize temperature to index values and interpolate

t5 = time.monotonic() # Time marker: Normalize and Interpolate

sensor_data = (sensor_data - MIN_RANGE_C) / (MAX_RANGE_C - MIN_RANGE_C)

grid_data[::2, ::2] = sensor_data # Copy sensor data to the grid array

ulab_bilinear_interpolation() # Interpolate to produce 15x15 result

This section checks the display_image flag to see whether to display a sensor

image or histogram. If display_image is True , the update_image_frame()

helper is used to display the data contained in the grid_data array as an thermal

image. When False , update_histo_frame() displays the data as a histogram

distribution.

©Adafruit Industries Page 56 of 70

Display image or histogram

t6 = time.monotonic() # Time marker: Display Image

if display_image:

 update_image_frame(selfie=SELFIE)

else:

 update_histo_frame()

The next step in the primary process loop checks the returned maximum value

against the current alarm threshold (ALARM_C). If the threshold is met or exceeded,

the NeoPixels flash red and a warning tone is played through the speaker.

If alarm threshold is reached, flash NeoPixels and play alarm tone

if v_max >= ALARM_C:

 pixels.fill(RED)

 play_tone(880, 0.015) # A5

 pixels.fill(BLACK)

Primary Process Loop, Part II

The second portion of the primary process loop checks to see if any buttons have

been pressed and sets the appropriate flags to select camera functions. This section

also watches the SET button to activate the setup_mode() helper to permit

changing camera parameters. Finally, all the time markers are analyzed and a code

performance report is printed.

Watch the Buttons and Change Parameters

First the HOLD button (the PyGamer's BUTTON_A) is checked. If pressed, an acknowl

edgment tone is sounded and the boolean display_hold parameter is toggled to

the opposite state. After display_hold is toggled, the code waits until the button is

released.

See if a panel button is pressed

buttons = panel.get_pressed()

if buttons & BUTTON_A: # Toggle display hold (shutter)

 play_tone(1319, 0.030) # E6

 display_hold = not display_hold

 while buttons & BUTTON_A:

 buttons = panel.get_pressed()

 time.sleep(0.1)

If the IMAGE button (BUTTON_B) is pressed, a tone is played and the boolean displ

ay_image value is toggled to the opposite state. After waiting until the button is

released, the variable display_image is checked. If True (display image), the

©Adafruit Industries Page 57 of 70

histogram legend colors are disabled. If False (display histogram), the histogram

legend colors are enabled.

if buttons & BUTTON_B: # Toggle image/histogram mode (display image)

 play_tone(659, 0.030) # E5

 display_image = not display_image

 while buttons & BUTTON_B:

 buttons = panel.get_pressed()

 time.sleep(0.1)

 if display_image:

 min_histo.color = None

 max_histo.color = None

 range_histo.color = None

 else:

 min_histo.color = CYAN

 max_histo.color = RED

 range_histo.color = BLUE

When the FOCUS button (PyGamer BUTTON_SELECT) is pressed, a tone is played

and the boolean display_focus value is toggled to the opposite state.

If display_focus is True , the default display range values MIN_RANGE_F and MAX

_RANGE_F are stored in temporary variables orig_min_range_f and orig_max_ra

nge_f . The display range is then updated with the current minimum and maximum

values v_min and v_max . This change causes the color spectrum of the display to

conform to the new range. The status "FOCUS" is then flashed on the display.

If display_focus is False , the previously stored range variables become the

current display range. The display range reverts to the original default values and the

colors match the original range. The display flashes the "ORIG" status message.

Finally, the code waits until the button is released before moving on.

if buttons & BUTTON_SELECT: # Toggle focus mode (display focus)

 play_tone(698, 0.030) # F5

 display_focus = not display_focus

 if display_focus:

 # Set range values to image min/max for focused image display

 orig_min_range_f = MIN_RANGE_F

 orig_max_range_f = MAX_RANGE_F

 MIN_RANGE_F = celsius_to_fahrenheit(v_min)

 MAX_RANGE_F = celsius_to_fahrenheit(v_max)

 # Update range min and max values in Celsius

 MIN_RANGE_C = v_min

 MAX_RANGE_C = v_max

 flash_status("FOCUS", 0.2)

 else:

 # Restore previous (original) range values for image display

 MIN_RANGE_F = orig_min_range_f

 # Update range min and max values in Celsius

 MIN_RANGE_C = fahrenheit_to_celsius(MIN_RANGE_F)

 MAX_RANGE_C = fahrenheit_to_celsius(MAX_RANGE_F)

 flash_status("ORIG", 0.2)

 while buttons & BUTTON_SELECT:

©Adafruit Industries Page 58 of 70

 buttons = panel.get_pressed()

 time.sleep(0.1)

When the SET button (BUTTON_START) is pressed, a tone is played and the code

waits for the button to be released. The setup_mode() helper is then executed

returning new values for ALARM_F , MAX_RANGE_F , and MIN_RANGE_F that are

promptly converted to Celsius.

if buttons & BUTTON_START: # Activate setup mode

 play_tone(784, 0.030) # G5

 while buttons & BUTTON_START:

 buttons = panel.get_pressed()

 time.sleep(0.1)

 # Invoke startup helper; update alarm and range values

 ALARM_F, MAX_RANGE_F, MIN_RANGE_F = setup_mode()

 ALARM_C = fahrenheit_to_celsius(ALARM_F)

 MIN_RANGE_C = fahrenheit_to_celsius(MIN_RANGE_F)

 MAX_RANGE_C = fahrenheit_to_celsius(MAX_RANGE_F)

Before looping to the start of the primary process loop to display the next image, the

time marker t7 is used to record the time at the end of the code loop. The code

performance time markers are analyzed and performance results printed to the REPL's

serial output.

t7 = time.monotonic() # Time marker: End of Primary Process

 gc.collect()

 fm7 = gc.mem_free()

 print("*** PyBadge/Gamer Performance Stats ***")

 print(f" define displayio: {(t1 - t0):6.3f} sec")

 print(f" startup free memory: {fm1/1000:6.3} Kb")

 print("")

 print(

 f" 1) data acquisition: {(t4 - t2):6.3f} rate: {(1 / (t4 - t2)):

5.1f} /sec"

)

 print(f" 2) display stats: {(t5 - t4):6.3f}")

 print(f" 3) interpolate: {(t6 - t5):6.3f}")

 print(f" 4) display image: {(t7 - t6):6.3f}")

 print(f" =======")

 print(

 f"total frame: {(t7 - t2):6.3f} sec rate: {(1 / (t7 - t2)):

5.1f} /sec"

)

 print(f" free memory: {fm7/1000:6.3} Kb")

 print("")

Each phase of code execution is calculated from the time markers:

define displayio: the time in seconds to define the displayio elements before the

primary loop begins

1) data acquisition: elapsed time and the calculated ideal rate for acquiring and

conditioning sensor data

•

•

©Adafruit Industries Page 59 of 70

2) display stats: update the on-screen alarm, min, max, and average values

3) interpolate: normalize the 8 x 8 sensor data and enlarge the image to a 15 x

15

4) display image: using displayio, refresh the screen image

total frame: the elapsed time to generate a frame (steps 1 through 4); also

includes the frame-per-second rate of the just-displayed frame

The PyGamer displays approximately 4 to 5 image frames per second depending on

the quantity of changed display grid elements from one frame to the next. Here's a

screen shot of a typical performance report:

Does performance reporting slow performance? Yes, but not significantly. Capturing

the time markers and printing the performance report adds less than 0.005 seconds

to each frame. That's a frame rate performance impact of approximately 2.5%.

Refer to the Performance Monitoring section for a further discussion of the method

used and comparison of the Thermal Camera code performance on a variety of

Adafruit development boards.

Other Modules

Startup Configuration

When imported, the thermal_cam_config.py file provides the Thermal Camera's initial

power-up alarm threshold as well as minimum and maximum display range values.

The power-up configuration parameters can be changed by editing the file with your

favorite text editor.

Values are in degrees Fahrenheit.

•

•

•

•

©Adafruit Industries Page 60 of 70

thermal_cam_config.py

Alarm and range default values in Farenheit

ALARM_F = 120

MIN_RANGE_F = 60

MAX_RANGE_F = 120

Display characteristics

SELFIE = False # Rear camera view; True for front view

Converter Helpers

The thermal_cam_converters.py module consists of two temperature converters, one

for Celsius to Fahrenheit and the other for Fahrenheit to Celsius. The value to be

converted is passed as an argument to the appropriate helper. Because the Thermal

Camera's sensor has limited accuracy, a rounded integer value is returned.

thermal_cam_converters.py

def celsius_to_fahrenheit(deg_c=None): # convert C to F; round to 1 degree C

 return round(((9 / 5) * deg_c) + 32)

def fahrenheit_to_celsius(deg_f=None): # convert F to C; round to 1 degree F

 return round((deg_f - 32) * (5 / 9))

Pseudocolor Spectrum Converter

Showing a visual image of temperatures requires the use of a spectrum of gradual

color changes that correspond to the range of temperatures to be displayed. Since

the colors are representative of the measured temperature, the collection of colors is

called a pseudocolor spectrum. The pseudocolor spectrum of heated iron was used

for this thermographic imaging project.

The color of a heated iron bar as a temperature scale originated with blacksmiths to

determine when the metal can be shaped, joined, or hardened. Cold iron starts as a

blueish color that changes to purple, red, orange, yellow, and eventually glows white-

hot as the temperature increases.

©Adafruit Industries Page 61 of 70

For this project, a helper was created that converts a temperature index value of 0.0

to 1.0 to the RGB values needed to create the iron pseudocolor spectrum on the

PyGamer's color TFT display.

Within the iron_spectrum.py file are two helpers, the primary index_to_rgb()

code that converts the index to the corresponding RGB value and a map_range()

helper used to calculate values within the i ndex_to_rgb() helper.

map_range()

The map_range() helper accepts an input value inside of a specified input range

and returns a proportional value constrained by a specified output range. The input

value x is contained in the range in_min to in_max . The returned output value is

constrained to the range out_min and out_max .

def map_range(x, in_min, in_max, out_min, out_max):

 """

 Maps and constrains an input value from one range of values to another.

 (from adafruit_simpleio)

 :return: Returns value mapped to new range

 :rtype: float

 """

 in_range = in_max - in_min

 in_delta = x - in_min

 if in_range != 0:

 mapped = in_delta / in_range

 elif in_delta != 0:

 mapped = in_delta

 else:

 mapped = 0.5

 mapped *= out_max - out_min

 mapped += out_min

 if out_min <= out_max:

 return max(min(mapped, out_max), out_min)

 return min(max(mapped, out_max), out_min)

©Adafruit Industries Page 62 of 70

index_to_rgb()

The index_to_rgb helper accepts an index input value from 0.0 to 1.0, returning a

24-bit RGB color value. Within this helper, the input value is converted to an internal

spectrum, represented by the band variable. The spectrum band value ranges from 0

to 600, arbitrarily selected to provide a simple way to understand the gradual color

shifting within the spectrum.

Within each sub-band, the red, green, and blue components are established and

calculated. In the red to orange sub-band (300 to 399) for example, the red value is

held at 1.0, blue at 0.0, where green changes proportionally from 0.0 to 0.5 as the

band value increases.

if band >= 300 and band < 400: # red to orange

 red = 1.0 ** gamma

 grn = map_range(band, 300, 400, 0.0, 0.5) ** gamma

 blu = 0.0

The gamma parameter is applied to improve the visual perception of the color

spectrum, improving the continuity or smoothness of the spectrum, helping to

compensate for the differences between human color perception and the source

display's rendition of color. For the PyGamer's TFT display, a gamma value of 0.5

works nicely. A gamma value of 1.0 seems to work the best with the MatrixPortal's 32

x 64 RGB LED display.

Finally, the resulting 0.0 to 1.0 values for red, green, and blue determined within a

sub-band are used to calculate the returned 24-bit RGB value.

def index_to_rgb(index=0, gamma=0.5):

 """

 Converts a temperature index to an iron thermographic pseudocolor spectrum

 RGB value. Temperature index in range of 0.0 to 1.0. Gamma in range of

 0.0 to 1.0 (1.0=linear), default 0.5 for color TFT displays.

 :return: Returns a 24-bit RGB value

 :rtype: integer

 """

 band = index * 600 # an arbitrary spectrum band index; 0 to 600

 if band < 70: # dark gray to blue

 red = 0.1

 grn = 0.1

 blu = (0.2 + (0.8 * map_range(band, 0, 70, 0.0, 1.0))) ** gamma

 if band >= 70 and band < 200: # blue to violet

 red = map_range(band, 70, 200, 0.0, 0.6) ** gamma

 grn = 0.0

 blu = 1.0 ** gamma

 if band >= 200 and band < 300: # violet to red

 red = map_range(band, 200, 300, 0.6, 1.0) ** gamma

 grn = 0.0

 blu = map_range(band, 200, 300, 1.0, 0.0) ** gamma

©Adafruit Industries Page 63 of 70

 if band >= 300 and band < 400: # red to orange

 red = 1.0 ** gamma

 grn = map_range(band, 300, 400, 0.0, 0.5) ** gamma

 blu = 0.0

 if band >= 400 and band < 500: # orange to yellow

 red = 1.0 ** gamma

 grn = map_range(band, 400, 500, 0.5, 1.0) ** gamma

 blu = 0.0

 if band >= 500: # yellow to white

 red = 1.0 ** gamma

 grn = 1.0 ** gamma

 blu = map_range(band, 500, 580, 0.0, 1.0) ** gamma

 return (int(red * 255) << 16) + (int(grn * 255) << 8) + int(blu *

255)

1-2-3s of Bilinear Interpolation

With just 64 display elements, the thermal camera can only display blocky object

shapes. It's surprising how visual recognition improves when a bilinear interpolation

technique is applied to the thermal sensor data to increase the resolution of the

image.

Interpolation is a technique for enhancing limited data sets by estimating "in-

between" values. It's often used for enlarging images to make patterns and objects

easier to discern. Two varieties of interpolation are commonly used for images,

bilinear and bicubic. The bilinear method, based on a linear equation like y = mx + b,

is the simplest and the least computationally intensive. By comparison, bicubic

interpolation is computationally more complicated, usually involving a polynomial

function of the second degree or higher such as the quadratic form y = ax
2

+ bx + c.

The bicubic method can produce enlarged images with smoother and clearer object

edges than the bilinear method -- but at the price of increased computational power

and elapsed processing time.

Given the computational power of the PyGamer's SAMD-51 processor, the simpler

bilinear approach was chosen to enlarge the thermal camera's image. The AMG8833

sensor's image is enlarged from 8 x 8 (64 elements) to a display grid of 15 x 15 (225

cells). Let's talk about how that is done. For the sake of simplicity, the following

conceptual example of the method is limited to a 4 x 4 sensor array (16 elements) and

7 x 7 display grid (49 cells).

©Adafruit Industries Page 64 of 70

The first step in the bilinear interpolation process is to copy the contents of the

sensor value array into an image grid array of (2n - 1) rows and (2n - 1) columns. In this

example n = 4, so the display grid array will have 7 rows and columns.

The first row of the display grid array contains the contents of the first row of the

sensor value array with a blank element between each known sensor value. A row is

skipped and the next row of sensor data is copied into the display grid array. After the

sensor data is placed in the display grid array, the interpolation will replace the

unknown cells with a calculated value from the closest known cells using a two-pass

process.

©Adafruit Industries Page 65 of 70

The first pass starts with the first unknown cell and calculates its value from the

preceding and following known cells in that row. For example, the cell between

columns 0 and 1 of row 0 is calculated using an average of the two adjacent cells. The

unknown cell is updated with the value of 3. The process continues to calculate the

remaining unknown cells in the evenly numbered rows. The missing values in the odd

numbered rows will be calculated next.

The second pass starts by processing the unknown cells of row 1, calculating the

value from the average of the cells directly above and below. For example, the first

cell of row 1 is updated with the value 3. The second pass continues to update the

remaining unknown cells in the display grid array.

Here's the finished product, colored to roughly represent each cell's value. Compared

to the original 4 x 4 sensor image, the newly interpolated 7 x 7 image has added

detail with color gradients that can help to identify the object in the field of view.

Because an unknown cell is flanked by known cells, its calculated value is the

average of the known cells -- the unknown cell is halfway between the known

cells. If the target image is enlarged to create two unknown cells between known

cells, then the value of each unknown cell is calculated based on its proportional

display distance from each of the two known cells.

©Adafruit Industries Page 66 of 70

Performance Monitoring

Because some significant timing and memory challenges were anticipated from the

start, the structure of the improved thermal camera CircuitPython code was

instrumented to measure its performance. Five functional areas were identified that

would provide obvious hints as to where architectural or speed issues may live. Not

only did the performance monitoring help solve some tricky timing and memory

allocation issues, the resulting structure of the code allowed it to be easily adapted

for testing on other development boards. The five code performance areas were:

Define Display Elements

The one-time display definitions for rectangles, labels, and on-screen status.

This process uses large blocks of memory to build the displayio group of display

element attributes.

Acquire Sensor Data

The first portion of the repeating primary loop that acquires and conditions the

thermal sensor data. The acquisition process uses I2C input/output resources,

the AMG88xx sensor library, and creates two large arrays in memory to hold and

process the data. Floating point calculations constrain the sensor data to a valid

temperature range.

©Adafruit Industries Page 67 of 70

Display Statistics

Updates the on-screen alarm, min, max, and average values. This process

manipulates display element attributes in memory, requires floating point

calculations to support displayio, utilizes SPI input/output resources, and uses ul

ab to quickly determine min, max, and average.

Normalize and Interpolate

Normalizes the 8 x 8 sensor data, copies it to the display grid array, and

interpolates the values within the 15 x 15 display grid array. ulab is used for all

calculations.

Display Image

Scans elements in the display grid array, calculates the iron spectrum color, and

uses displayio to update an on-screen rectangle if the color has changed from

the previous frame. After updating the image, this code segment checks the

operational controls and modifies the display mode as selected. This segment

heavily uses floating point, memory, and SPI input/output for the displayio

functionality.

An elapsed time marker is stored at the beginning of each code segment. At the end

of the primary process loop, the markers are analyzed and a report is printed to the

serial output to be viewed via the REPL. Here's a screen shot of the performance

report:

After improvements, the code was ported to run on 9 other development boards in

the workshop inventory ranging from SAMD-51 (M4) boards to ESP32-S2, nRF52840,

and the RP2040. All of the PyGamer code was left intact except where specific

display or button interface requirements were needed. For example, since the

©Adafruit Industries Page 68 of 70

PyPortal has no hardware buttons, its touch screen was used to implement button-like

controls. Similarly, the Setup helper code was removed if memory capacity issues

were identified for a particular development board.

The PyGamer platform performed the best in this comparison. Generally, development

boards that use the M4 (SAMD-51) processor performed well, beating the 2 frames-

per-second performance threshold.

Since the thermal camera code uses a unique combination of resources suited for

displaying temperature images, the comparison of thermal camera performance on

the different platforms should not be construed as revealing intractable flaws of a

particular development board or processor architecture. Instead, the comparison

helps to point out performance bottlenecks unique to the thermal camera application

that could benefit from further code refinement.

Many factors from processor architecture to the board's TFT display bus could impact

thermal camera performance. For example, the current version of the thermal camera

depends heavily on floating point calculations for almost everything, from normalizing

and constraining sensor data to the internal calculations of CircuitPython displayio

functions when it positions objects and justifies on-screen text. Development boards

that use the SAMD-51 (M4) have an integral floating point processor in hardware that

makes calculations a breeze -- so much so that little attention is given to tuning the

code to calculate with integers when floating point math really isn't needed.

Development boards such as those with the RP2040 processor do not have integral

hardware floating point. Can you see where this is going?

©Adafruit Industries Page 69 of 70

So this comparison wasn't a completely fair test. The thermal camera's code was

written to work best with the M4 architecture, not to take advantage of the RP2040's

faster clock speed and huge memory capacity (and low cost!). What would it take to

modify the code to work better with the RP2040? Are CircuitPython displayio and

AMG8833 libraries tuned to take advantage of the RP2040's talents? We're going to

have to add that project to the list.

©Adafruit Industries Page 70 of 70

	Improved AMG8833 PyGamer Thermal Camera
	Table of Contents
	Overview
	Features and Operation
	Build the Camera
	Software Setup
	CircuitPython
	CircuitPython Libraries
	CircuitPython Code
	CircuitPython Code Details
	Import and Initialize
	Constants
	Helpers
	Display
	Primary Process
	Other Modules
	1-2-3s of Bilinear Interpolation
	Performance Monitoring

	Overview
	Thermal Camera Features
	Parts
	Acknowledgements

	Features and Operation
	Display Layout
	Hold Mode
	Image / Histogram Mode
	Focus Range / Default Range
	Setup Function

	Build the Camera
	Assembling the PyGamer
	Prepare the FeatherWing
	Preparing the PyGamer with CircuitPython, Libraries, and Accessories

	Software Setup
	Preparing the PyGamer with CircuitPython and Software Libraries

	CircuitPython
	Set up CircuitPython Quick Start!
	Further Information

	CircuitPython Libraries
	The Adafruit CircuitPython Library Bundle
	Downloading the Adafruit CircuitPython Library Bundle
	The CircuitPython Community Library Bundle
	Downloading the CircuitPython Community Library Bundle
	Understanding the Bundle
	Example Files
	Copying Libraries to Your Board
	Understanding Which Libraries to Install
	Example: ImportError Due to Missing Library
	Library Install on Non-Express Boards
	Updating CircuitPython Libraries and Examples

	CircuitPython Code
	PyGamer Thermal Camera Source Code

	CircuitPython Code Details
	Code Details

	Import and Initialize
	Constants
	Helpers
	Helpers for Display, Buttons, and Setup Functions
	play_tone() Helper
	flash_status() Helper
	spectrum() Helper
	update_image_frame() Helper
	update_histo_frame() Helper
	ulab_bilinear_interpolation() Helper
	setup_mode() Helper
	move_buttons() Helper

	Display
	Define Display Group Layers
	Define the Image Group
	Define the Thermal Image Display Group Layers
	Define the Text Label Display Group Layers
	Fun Facts about Display Group Objects

	Primary Process
	Primary Process Loop, Part I
	Retrieve Sensor Data, Display Image or Histogram, Check Alarm Threshold

	Primary Process Loop, Part II
	Watch the Buttons and Change Parameters

	Other Modules
	Startup Configuration
	Converter Helpers
	Pseudocolor Spectrum Converter
	map_range()
	index_to_rgb()

	1-2-3s of Bilinear Interpolation
	Performance Monitoring
	Define Display Elements
	Acquire Sensor Data
	Display Statistics
	Normalize and Interpolate
	Display Image

