
IEEE TRANSACTIONS ON RELIABILITY September 2002 
Per IEEE, Copyright may be transferred without notice, after which this version may no longer be accessible 

1

Improved Disk Drive Failure Warnings 
G. F. Hughes, Fellow, J. F. Murray, K. Kreutz-Delgado Senior Member, and  C. Elkan 

 
Abstract-— Improved methods are proposed for disk 
drive failure prediction. The SMART (Self Monitoring and 
Reporting Technology) failure prediction system is 
currently implemented in disk drives. Its purpose is to 
predict the near-term failure of an individual hard disk 
drive, and issue a backup warning to prevent data loss. 
Two experimentally tests of SMART showed only 
moderate accuracy at low false alarm rates. (A rate of 0.2% 
of total drives per year implies that 20% of drive returns 
would be good drives, relative to ≈1% annual failure rate 
of drives). This requirement for very low false alarm rates 
is well known in medical diagnostic tests for rare diseases, 
and methodology used there suggests ways to improve 
SMART. 

ACRONYMS 
ATA Standard drive interface, desktop computers 
FA Failure analysis of apparently failed drive 
FAR False alarm rate, 100 times probability value 
MVRS Multivariate rank sum statistical test  
NPF Drive failed, but “No problem found” in FA 
RS Rank sum statistical hypothesis test 
R Sum of ranks of warning set data 
Rc Predict fail if R> Rc critical value 
SCSI Standard drive interface, high-end computers 
SMART “Self monitoring and reporting technology” 
WA Failure warning accuracy (probability) 
 

Two improved SMART algorithms are proposed here. 
They use the SMART internal drive attribute 
measurements in present drives. The present warning 
algorithm based on maximum error thresholds is replaced 
by distribution-free statistical hypothesis tests. These 
improved algorithms are computationally simple enough to 
be implemented in drive microprocessor firmware code. 
They require only integer sort operations to put several 
hundred attribute values in rank order. Some tens of these 
ranks are added up and the SMART warning is issued if 
the sum exceeds a prestored limit.  

NOTATION: 
n Number of reference (old) measurements 
m Number of warning (new) measurements 
N Total ranked measurements (n+m) 
p Number of different attributes measured 
Q(X) Normal probability Pr(x>X) 
RS Rank sum statistical hypothesis test 
R Sum of ranks of warning set data 
Rc Predict fail if R> Rc critical value 

I. INTRODUCTION These new algorithms were tested on 3744 drives of two 
models from one manufacturer. They gave 3-4 times 
higher correct prediction accuracy than error thresholds on 
will-fail drives, at 0.2% false alarm rate. The highest 
accuracies achievable are modest (40%-60%). Care was 
taken to test “will-fail” drive prediction accuracy on data 
independent of the algorithm design data. 

C 
OMPUTER disk drives are reliable data storage devices 
with annual failure rates of 0.3% to 3% per year [1,2]. 

(A  1% nominal failure rate will be used for comparisons 
here.) Nonetheless, drive failure can cause a catastrophic 
loss of user data. This is often far more serious than the 
hardware cost of replacing the failed drive. If impending 
drive failure could be predicted a warning could be issued 
to the drive user to back up the data onto another storage 
device.  

Additional work is needed in order to verify and apply 
these algorithms in actual drive design. They may also be 
useful in drive failure analysis engineering. It may be 
possible to screen drives in manufacturing using SMART 
attributes. Marginal drives might be detected before 
substantial final test time is invested in them, thereby 
decreasing manufacturing cost and possibly decreasing 
overall field failure rates. 

In 1995, the drive industry adopted a standardized 
specification for such failure warnings, called “SMART” 
(see definitions, Section IV).  SMART is based on 
monitoring a number of internal drive technology 
measurements relevant to impending failure. A failure 
warning algorithm is run by the drive microprocessor 
firmware. This checks whether the measurements exceed 
maximum thresholds and produces a binary (won’t-
fail/will-fail) warning. The SMART warning time goal is 
24 hours before drive failure.  

 
Index terms—disk drive, failure prediction, predictive failure 
analysis, SMART, magnetic recording  
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Computer operating systems can issue standardized drive 
commands to enable and to read this failure warning. 
These commands are defined for the two predominant 
computer to drive interface standards, ATA and SCSI [3]. 
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Additionally, the SCSI “Enclosure Services” specification 
allows RAID array controllers to be notified if thresholds 
are exceeded on drive external environments such as 
power supply voltage, current, and ambient temperature 
[3]. 

 SMART technology is implemented in most 3.5-inch 
disk drives manufactured today, the most widest used disk 
drives from personal computers to supercomputers. 
However, it is unknown how many computer systems 
today enable or read the SMART warning. In some 
personal computers, SMART is checked on computer 
bootup by the CMOS/BIOS firmware. Drive 
manufacturers supply diagnostic programs that read the 
SMART warning. Information on SMART warning 
accuracy is anecdotal at best, and much of the drive 
internal monitoring technology is manufacturer 
proprietary. 

This paper assesses the accuracy of the existing 
“SMART” failure warning algorithm in drives, and an 
improved algorithm. Experimental data is from drive 
design reliability testing of two different Quantum 
Corporation disk drive models. Tradeoff curves of the will-
fail-drive correct warning accuracy “WA” are calculated, 
vs. the false alarm rate “FAR” (defined as the probability 
that a fail warning will occur in a drive that doesn’t 
subsequently fail). 

II. FAILURE WARNING TECHNOLOGY 

A. Background 
Failure warning markedly differs from normal disk drive 
reliability methodology. The latter statistically predicts 
failure probability over an entire drive population, and 
assumes that all drives are equally likely to fail [2,4,5]. 
SMART predicts individual drive failure. 

Failure warning technologies such as condition 
monitoring and predictive maintenance are also used, in 
process control and large motor monitoring [6,7,8].  

B. “SMART” disk drive failure warning 
The SMART ATA drive specification [3] allows up to 30 
internal drive measurements. These are termed failure 
attributes and are periodically measured by a drive. 
Attribute values are stored in the drive reserved data area 
with other drive operational parameters. For a drive user to 
receive a SMART warning the computer system must issue 
specific drive interface commands to enable the algorithm 
and then to read the resultant “won’t-fail/will-fail” warning 
[9]. Some drives will unilaterally shut down if internal 
sensors detect extreme temperature or mechanical g-shock 
[10].  

Maximum thresholds are defined for each attribute by the 
drive manufacturer. The SMART warning flag is set in 
response to an ATA SMART “Return Status” command, if 
any attribute exceeds its threshold. This is a logical ‘OR’ 
operation among the several attribute threshold tests, and is 
used because some drive failures may be predicted by only 
one attribute. But this ‘OR’ operation can also cause a high 

false alarm rate, since it does not require multiple 
confirming attribute “signatures” to trigger the warning. 

Table I lists SMART attributes, starting with basic nearly 
universal attributes, to proposed future attributes. The 
basic attributes exploit existing drive internal technology 
(thus allowing minimal added cost). Many were 
historically adopted for drive error recovery and for 
reliability analysis, with SMART warning thresholds 
added later. Most attributes are incremental error counts 
over a fixed time interval. For example, certain rates of 
seek and read soft errors are allowed by drive designers, 
and if the incremental counts of these errors remains 
stable, then failure is not indicated. Cumulative counting 
would mislead. 

Power on hours (POH) is a traditional measure of drive 
age. Low POH may imply infant mortality failure risk and 
high POH may imply end of life failure risk. But for failure 
warning, both need corroboration by other attributes. A 
related attribute is contact start-stops (CSS) which is a 
count of drive power cycles; i.e., power on, disks spin up, 
heads fly, power off, heads contact disk while spinning to 
stop. High CSS increases the risk of head/disk sliding 
contact wear. (Some drives avoid head-disk contact and 
have no CSS attribute). These attributes are cumulative. 

Seek errors (SKE) is an incremental count of track seeks 
that require a second re-seek to find the intended track. 
The count is reset to zero after a fixed number of 
thousands of seek commands. If a re-seek also fails a 
recalibrate retry (RRT) reinitializes the head tracking servo 
system, and is counted in a separate RRT attribute.  

A read soft error (RSE) is a data read error detected and 
corrected by an error correction code. It can indicate disk 
defects, high head fly, or head off-track. Repeated RSE 
errors at the same user data disk location can invoke drive 
error recovery which moves the user data to a new location 
and records a grown defect (GDC) count. Read channel 
parameters such as the Viterbi detector mean-square error 
(MSE) can warn of an approaching GDC before an RSE 
occurs [11]. 

 
TABLE I: SMART ATTRIBUTES 

 
POH Drive aging C 
CSS Drive power cycles C, F 
SKE Heads seek to wrong track I,T 
RRT Drive re-initializes I 
RSE Errors corrected by inner ECC code I, F 

T 
MSE Precursor of RSE I 
GDC New disk defects, found after manufacture C, F 

T 
SUT Power on to drive ready I, F 
TMR Head-track misregistry I,T 
GMX Mechanical shock I 
TAS Thermal asperity count I,F 
FLY By PW50, or Wallace, or read IC MSE, FIR 

taps 
I 

TMP Drive internal limit I 
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DCL Read IC ok I 
- Acoustics, start current, or control loop 

analysis 
I,T 

POH Drive aging C 
 
 Keys: C (cumulative measurement), I (incremental), F(head/disk 
interface indicative), T(track servo indicative) 

 
Disk spinup time (SUT) is the elapsed time from power 

on to drive ready for data transfer. Increasing SUT may 
indicate head-disk stiction, raising the risk that the drive 
spin motor may be close to its maximum starting torque 
limit. Disk spin motor current and spin servo parameters 
can detect late head fly takeoff, bearing damage or runout.  

TMR monitors the track servo misregistry error signal 
[12], which can indicate mechanical G-shock, head 
mechanical resonance faults, or spindle bearing runout. It 
is also used to inhibit writing, to eliminate the risk of 
corrupting data on an adjacent track.  

Head/disk fly height (FLY) can be measured using 
magnetic recording physics, such as playback pulse width 
PW50, or the pulse peak amplitude normalized by pulse 
area, or read channel equalization parameters [11]. The 
Wallace spacing loss formula can also be used [13]. One 
head flying significantly high (referenced to the average of 
other heads in the drive) indicates a risk of poor writing or 
reading, and a low fly head increases head-disk wear risk. 

Internal drive temperature (TMP) is measured by some 
manufacturers using a dedicated thermal sensor in the 
drive, or from read preamplifier outputs which indicate the 
magnetoresistive read sensor resistance, and hence its 
temperature. High temperature stresses the 
electromechanics of the drive, and low temperature can 
allow moisture condensation on the disks, leading to head 
stiction. G-shock can be monitored (GMX) by a G-sensor 
MEMS IC.  

C. The failure rarity problem 
Tests of SMART failure warning algorithms can be made 
using experimental data sets of periodic attribute reads 
over the life of drives. Times when drives appear to fail are 
noted and failure verified by physical failure analysis. 
Because drive failure rates are only about 1% per year, 
thousands of drives must be tested for more than a year to 
get statistically significant numbers (>15) of failed drives. 
This is larger than the number of drives in most large 
RAID arrays, even in many supercomputers. 

Controlling the false alarm rate places the most critical 
demand on SMART warning algorithms. A seemingly 
small false alarm rate of 1% per year would double the 
total number of drives returned for failure, because this 
rate is about equal to actual annual failure rates. This 
requirement for very low false alarm rates is well-known 
in medical diagnostic epidemiology tests for rare diseases 
[14].  

One good source of experimental data (used here) is 
testing new drive designs. Typically, several thousand 
drives of a new design are tested by a drive manufacturer 
to expose latent design and reliability problems. So more 

failures are expected than in production drives. The testing 
includes drives with experimental components or built 
under experimental conditions that are not used in full-
scale mass production. Consequently, significant numbers 
and types of failures are likely to occur. This has the 
advantage of producing more failures for statistical 
SMART test development. However, caution is necessary 
to guard against failure modes caused by test conditions 
rather than inherent drive technology. It is felt that the test 
data used here are valid for SMART analysis because the 
failure types are representative and typical of field failures. 

Failure analysis (“FA”) is performed to verify failed 
drives and determine failure causes for corrective redesign. 
Typically 20%-30% of apparently failed drives are no-
problem-found “NPF” drives, which operate normally 
when analyzed. Therefore, FA is important for a valid data 
set, and is also highly effective in gathering definitive 
failure data and statistics, which can guide attribute 
performance and selection. 

These NPF rates also imply that disk drives have a false 
alarm rate of 0.2%-0.3% even in the absence of SMART 
(20%-30% of the 1% annual “perceived failure” rate). 
 Another possibility (not tried here) is to mathematically 
characterize the experimental data sets in order to generate 
simulated attribute data using Monte Carlo methods.  

D. Attribute data characteristics 
In addition to the SMART warning flag, the original ATA 
SMART specifications [3] define a 512-byte SMART data 
record format. This allows the drive internal SMART 
attributes to be read out, as 1-12 byte integers (raw, 
unnormalized attribute data are used here, see [3]). 

Figure 1 shows histograms of GDC, SKE, and RSE 
attribute data from one of the two drive design tests. Data 
on top is from won’t-fail drives, and data below from will-
fail drives (which subsequently failed during the test). 
These histograms are all the attribute data from all the 
drives of one model, to illustrate the nature of the attribute 
data. For example, there were about 55,000 occurrences of 
zero grown defects among all the attribute data reads taken 
from all drives that did not fail, and 75 zero GDC reads 
from drives that did ultimately fail during the test. 
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Fig. 1a. Grown-defect data histograms, all  won’t-fail drives (top) vs. all 
will-fail drives (bottom) 
 
 

 
Fig. 1b. Seek Errors histograms, all won’t-fail drives (top) vs. all will-fail 
drives (bottom) 

 
Fig. 1c. Read Soft Errors histograms, all won’t-fail drives (top) vs. all 
will-fail drives (bottom) 
 

The characteristic distinguishing the will-fail drives from 
the won’t-fail drives is a pattern of high attribute values 

during a warning measurement interval. A single high 
value could be a statistical or transitory accident, but a 
“scatter dominance” pattern appears significant in Fig. 1. 
Precise attribute values are not as important as a pattern of 
scatter.  

In statistical terms, this is “ordinal” data, in that 
increasing attribute values imply increased failure risk, but 
a doubled attribute value does not necessarily double the 
risk. 

Although there appears to be randomness in these 
histograms, they certainly do not resemble continuous 
parametric distributions, such as Gaussian, Poisson or 
Weibull. Because drive failure is caused by significant 
physical changes, the only relationship between will-fail 
and won’t-fail drive data may be simply that they 
significantly differ from each other, more than would be 
expected from statistical “noise.” 

E. Special data factors in drive design tests. 
Low POH and CSS values are generally indicative of 
infant mortality risk, and high values suggest increased 
end-of-life failure potential. But these are not conclusive 
without other confirming attributes. Additionally, in drive 
design tests of fixed duration, these attributes can appear 
100% predictive but misleading. (All won’t-fail drives get 
the full test duration POH and CSS, will-fail drives 
obviously get less.) 

Drive design testing is done to expose latent problems, in 
order to eliminate them by redesign. The drives being 
tested have higher failure rate than mass production drives 
(see Sect. II-C). This is similar to medical research 
conditions that accelerate the disease under study [14]. 

Using the same drive test data to both select a SMART 
algorithm and to test its accuracy can be misleading. Here, 
the algorithm parameters are selected to give an acceptable 
FAR on won’t-fail drives, and then tested for WA on a 
different data set, namely the will-fail drives. In addition 
the same algorithm is tested on two independent drive 
models. The FAR on production drive data should be 
lower, since the test purpose is to remove drive design 
failure modes. 

F. Rank sum statistical SMART tests 
SMART algorithms can be regarded as statistical 
hypothesis tests. They use SMART data to test the 
hypothesis that a drive will fail against the null hypothesis 
that a drive is remaining stable and will not fail. The 
existing SMART threshold algorithm uses only the most 
recent attribute values, and issues a failure warning if any 
attribute is above its critical failure threshold. This is a 
logical “OR’ of independent tests on each attribute. 

Wilcoxon rank sum [15] statistical tests are proposed 
here to replace the threshold tests, to improve failure 
warning accuracy and lower false alarm rates. 

Rank sum tests are widely recommended for rare failure 
situations (such as rare disease epidemiology) where false 
alarms are costly. They are particularly useful when the 
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statistical distributions are unknown and suspected of 
being non-gaussian [14,16]. 

For drive failure warning, an appropriate hypothesis test 
is to use a “warning” data set of recent attribute values and 
compare it to an original “reference” data set taken from 
the drive population during manufacture. If the two data 
sets vary only in probable statistical “noise” the null 
hypothesis is selected. Namely, the drive is stable and no 
warning is issued. Figure 1 illustrates the general idea, 
with the upper histogram of each attribute representing the 
reference set, and the lower the warning set. (But the 
warning histogram would be data from an individual drive, 
not all the drives as in Figs. 1) 

The warning data set for each drive is taken to be its last 
five samples of each attribute (the most-recent 5 days of 
data for these drive models).  

The reference data set for each attribute is taken to be 50 
random samples of that attribute taken from initial  
SMART reads, averaged over many good drives. The 
optimum data set sizes will vary depending on factors such 
as the SMART attribute read interval. These data set sizes 
gave the best WA and FAR results for this test data.  

The best reference sets were using the first few attribute 
values from the (several thousand) good drives. They were 
randomly divided into 50 groups, and each attribute for the 
group taken as the (single) average of 50 values (rounded 
to an integer). Will-fail drives are not included in the 
reference set averaging. They can be kept as independent 
data for predictive accuracy testing. (Even if they were 
included in a production drive situation, a ≈1% FAR 
implies that the averaging should wash out their influence.) 

So if 50 typical measurements from new drives have one 
or two seek errors (SKE), an example SKE reference data 
set might consist of 48 zeros, a single “1” count, and a “2” 
count (in any order). 

The warning and reference data sets might look like Fig. 
1c, with many ties at the lowest rank (zero seek errors), 
and the maximum rank being one instance of 43 seek 
errors in this one-day time interval. (Fig. 1c is actually all 
drives.) 

The rank sum test for a given drive is computed 
numerically by a sorting operation on the combined 
warning and reference data sets for each attribute. The 
reference data never changes for a given drive, but its 
warning data does since it is the last 5 samples before the 
SMART warning test is to be made. 

Rank “1” is given to the smallest combined attribute 
value, rank “2” to the next, and so on. The rank sum 
statistic is just the sum of the ranks of the warning attribute 
values, among all the attribute values in the warning and 
reference data sets. If the drive is stable, the warning data 
ranks should intersperse randomly among the reference 
data ranks, since the two data sets have the same statistical 
distribution (which does not have to be known). If the rank 
sum is higher than a fixed limit (precalculated and stored 
in the drive), the test concludes that the two data sets have 
distinct statistical differences, within a specified false 
alarm rate (FAR). This implies that the drive attributes 

have statistically changed since manufacture, indicating 
potential failure. 

G. Numeric example of rank sum test 
Sect. V outlines the mathematics and derivation of the 

rank sum test. A numeric example may best demonstrate 
how it operates.  

Consider the made-up seek error data in Table II. Each 
reference datum in column 2 is a seek error count over a 
specified SMART frame interval, randomly taken from 
good drives. There are 8 occurrences of 1 seek error, 3 of 2 
errors, and 1 of 4 errors. This reference data never 
changes. 

The latest warning data error counts from one drive are 
in column 3. They show a pattern of higher counts, 
qualitatively suggesting that this drive is now making more 
seek errors and may fail. 

The total ranks of  column 2 and 3 data are shown in 
column 4. When ties occur at any error count all the tied 
data are given the average rank of the ties. (Sect. V-E 
discusses why data ties are given their average rank, and 
why zero error counts are ignored.) The rank for the 8+1=9 
error counts of one seek error is therefore the average rank 
of 1 and 9 for all 9 error counts. So the rank of the single 
seek error count of 1in the warning set is (1+9)/2=5. This 
is the first term in the warning set rank sum, shown in 
column 5. There are 3+2=5 error counts of 2, taking total 
ranks 10-14, 2 of which are in the warning data, so the 
rank sum gets two entries with the average rank of 12. 
There is only one warning error count of 3, so the warning 
rank sum gets its rank of 15. The next warning rank is at 5 
errors, and its total rank of  17 goes into the rank sum. 
There are  no 6-error counts, and the rank sum gets the 
next rank of 18 for its single 7-error count. The resultant 
rank sum is 79. Notice that no error count datum is ignored 
- the rank averaging of the ties keeps the total rank count 
equal to the total 12+6 = 18 error counts. 
 
TABLE II:  EXAMPLE RANK SUM SEEK ERROR DATA 
 
Seek 
Errors 

Referenc
edata 

Warning 
data 

Rank 
numbers 

Warning 
Ranks 

1 8 1 1-9 (1+9)/2=5 
2 3 2 10-14 12,12 
3 0 1 15 15 
4 1 0 16 - 
5 0 1 17 17 
6 0 0 - - 
7 0 1 18 18 
Sums 12 6  79 
 
If the 18 total rank numbers independently result from 

the same probability distribution, then the rank sum of the 
6 warning data should be the sum of six random integers 
from the set 1,2,…,18. Each datum has an equally random 
rank if all are independently drawn from any single 
distribution. The average rank sum should be about  6 
times the average integer, or 6*(1+18)/2 = 57. The rank 
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III. EXPERIMENTAL RESULTS sum variance should be 6 times the variance of a uniform 
probability distribution with range from 1 to  18, so 

(18 1) 6 /12 12.0σ = − =   
Experimental data sets were obtained from drive design 
testing of 3744 drives of two different Quantum 
Corporation drive models (Table III). Each set contains 2-3 
months of reliability design test data. There were 36 
verified drive failures (1.0%, or 4%-6% annual rate, see 
Sect. II-C). The attributes found most predictive in this 
data were grown defects (GDC), seek errors (SKE), and 
read soft errors (RSE). These three attributes are also 
physically reasonable for the actual drive failure causes. 
Examples of verified failure causes in model “A” drives 
and their SMART attribute warnings are: grown defects 
from disk mechanical misalignment (GDC warning); 
mobile thermal asperities (foreign particles on the disk) 
causing grown defects (GDC); unstable servo due to head 
problem (SKE); head arm flex cable electrically 
intermittent (RSE); head instability (RSE); head burst 
noise (RSE). These are normal design failure types with 
perhaps an unusually large number of head problems. 

The warning rank sum of 79 is (79-57)/12 = 1.8 sigmas 
above its mean, significantly higher than from random 
probability. (These rough statistics are from Sect. V-A) 

This rank sum procedure is repeated for each drive 
attribute. The results are combined into a single drive 
failure warning, if any rank sum exceeds a maximum 
threshold (as in present disk drive SMART), or a single 
overall rank sum can be computed (see Sect. II-I). 

H. Rank sum test advantages 
Several advantages ensue from rank hypothesis testing. 
First, the rank warning is based on a statistically significant 
test that a warning data set differs from the reference set 
instead of the single data point used in threshold SMART. 
This can lower the FAR by statistical “averaging.” Second, 
the rank sum test makes no mathematical assumptions nor 
needs any information about the statistical distribution 
function of the data. It only assumes that the data has some 
fixed distribution if the drive is remaining stable and that 
the attribute samples are independent. Third, rank sum is a 
“stochastic dominance” test based on “ordinal” statistics.  
This means that failure risk is increasing if the attribute 
values are statistically increasing, but no numerical 
proportionality is assumed. Fourth, the ranks are relatively 
immune to errors in the attribute data. Extreme value 
outliers merely get the maximum rank no matter how large 
they are. Fifth, summing the ranks exploits the known 
monotonicity of the attributes (attributes are defined so 
larger values mean increased failure risk, see Sect. II-D). 
Finally, rank sum mathematics is simple enough to 
implement in disk drive firmware, requiring only sorting 
and adding of attribute integer values. The Appendix 
presents the mathematics of the rank sum test. 

Figs. 2a and 2b show tradeoff curves of WA vs. FAR, for 
the two drive models “A” and “B”. In Figs. 2, the NPF 
drives are grouped with the won’t-fail drives. But since the 
NPF drives did apparently suffer some transient failure 
during the test, internal damage might have occurred even 
though failure analysis found them operational and they 
were returned to the testing. The dotted line shows the 
change in the multivariate rank sum test, if NPF drives are 
grouped with the will-fail drives. Calling the NPF drives 
failures lowers the rank sum accuracy from about 32% to 
20% at 0.2% FAR. 

Fig. 2a shows an OR’ed rank sum test correct warning 
probability of about 40%, at 0.002 (0.2%) FAR 
probability. The multivariate rank sum is similar. 
Conventional SMART OR’ed thresholds have warning 
accuracy 3-4 times lower, at 0.2% FAR.  
 
 
TABLE III: DRIVE TEST SUMMARY   
 I. Multivariate tests vs. OR’ing single attribute tests. 

Drive Model: “A” “B” 
Drives in test 1936 1808 

Fail drives 9 27 

NPF in fail analysis 6 11 

Attribute reads: 94071 63153 

Significant attributes: GDC, SKE, 
RSE GDC, SKE, RSE 

Like the threshold SMART algorithm, rank sum SMART 
as just described tests attributes individually, and issues the 
SMART warning if any attribute is significantly 
increasing. Combining single-attribute hypothesis tests by 
this ‘OR’ operation (also used in threshold SMART) could 
increase the false alarm rate. 

A warning algorithm based on the entire set of warning 
and reference attribute data could offer higher predictive 
accuracy at lower false alarm rate by exploiting statistical 
correlations between the attributes. We have developed a 
multivariate SMART decision rule for this purpose 
(Appendix, Sect. V-D). It is able to operate on variables 
defined so increasing values imply increasing failure risk. 
This covers all attributes in Table I, except for possibly 
using POH/CSS to capture infant mortality failures. (For 
that situation, the highest rank could be put on the smallest 
POH/CSS values, but this simple inversion would be 
unable to test for end-of-life failure risk.) 
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Fig. 2a: Drive model “A”: Warning accuracy vs. false alarm rate.  
Dotted curve: MV rank sum if NPF drives are called fails. 
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Fig. 2b: Drive model “B”: Warning accuracy vs. false alarm.   
Dotted curve: MV rank sum if NPF drives are called fails. 
 

Fig. 2b shows overall poorer results for drive model “B.” 
Multivariate rank sum is best at 12% with OR’ed rank sum 
and OR’ed threshold tests at 4%, both at 0.2% FAR. 
However, this data set was difficult to analyze. Fourteen of 
the 1808 non-fail “B” drives had corrupted data. These 
were eliminated. Of the 27 will-fail “B” drives, 18 had all-
zero attribute reads and their failure is unpredictable by 
any method. (If these 18 drives are ignored, the 12% WA 
increases to 36%.) Additionally, only 57 of the 1724 
won’t-fail drives had any nonzero attributes. This weakens 
the reliability of the FAR values obtained on “B.” 

If SMART warnings were used to signal drive 
replacement, the 0.2% FAR quoted above might be 
acceptable by drive manufacturers. It would put a 20% 
limit on the increase in apparently failing drives, compared 
to a nominal 1.0% annual drive failure rate. It is also 
roughly the false alarm rate with no SMART at all (20% 
NPF drives in 1% “perceived failure” drives per year). For 
a drive user, this FAR might be acceptable if the 40% WA 
in Fig. 2a was a useful accuracy. In a RAID array or 
enterprise network, higher FAR may be acceptable, if 
SMART is used to trigger data backup instead of drive 

replacement. The highest WA attainable in “A” drives was 
60%, at 0.5% FAR. 

These results indicate significant accuracy improvement 
potential over present SMART, tested on two independent 
drive models, using the same new SMART algorithms. 
However, results from drive design test data do not prove 
expected WA in production drives.  

Additionally, disk drives have a variety of possible 
failure modes; not all monitored by SMART attributes. So 
the WA cannot be 100%. Two of the nine model “A” drive 
fails were unpredictable because their attribute reads were 
all zeros. Figs. 2 may show the highest realistic WA. 

IV. APPENDIX 

A. Rank sum hypothesis test 
Consider an individual attribute x, a set of m warning 
measurements xk, and a reference data set of n 
measurements. For example, the warning set in any 
individual drive being the last m=5 read soft error counts 
per SMART read interval of (say) 8 or 24 hours, stored as 
few-byte integers. The reference data set might be n=50 
reads taken from nominal drives that passed design testing. 
All drives of one model made in one production 
configuration could have the same reference set data stored 
in them. 

The rank sum algorithm first puts all N=n+m attribute 
measurements in rank order, ignoring which data set they 
came from, with the highest rank on the numerically 
largest measurement. This is a simple integer sort. Then 
the numerical ranks of the m warning set measurements are 
added up. The resultant rank sum R is compared to a 
precomputed limit Rc (two-byte rank summing and a two-
byte critical limit constant stored in the drive firmware 
code is sufficient for N=250 data samples). Rc is computed 
under the null hypothesis that both data sets are from the 
same distribution, using its mean µ and variance σ2 [17], 
[18]: 

 
[ ] ( 1) / 2R m Nµ = +  (1) 
2[ ] ( 1) /12R n N mσ = +  (2) 

/ / 6 (n m Nσ µ 1)= +  (3) 
 Using µ and σ, the significance level (false alarm 
probability) of the rank sum test is used to calculate a 
critical rank sum value limit Rc, using the single-tail 
normal distribution Q(X)=Pr(x>X), with X= (Rc-µ)/σ: 
 

 [( - )/ ]µ σ=FAR Q Rc  (4) 
 

If a warning test rank sum R exceeds Rc, the two data sets 
are statistically dissimilar and failure should be predicted.  

This normal distribution approximation is widely used if 
n,m>20, but was found inadequate with this SMART data, 
and the FAR was set numerically (Sect. IV-F) 
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B. Simplified  rank-sum mathematical derivation 
Under the null hypothesis (drive is remaining stable), all 
N=n+m measurements are independent samples from the 
same statistical distribution. This distribution may be 
discontinuous or have any shape, mean, or variance. 

These minimal assumptions make it equally likely that 
any measurement has any rank from 1 to N. Whatever the 
unknown underlying distribution may be, the rank of the 
first measurement is a random selection from the integers 1 
to N. The probability of any one is 1/N. The second 
measurement has equal probability of having any of the 
remaining N-1 ranks. (This key observation that the ranks 
are uniformly distributed random integers underlies many 
of these distribution free statistical methods.) 

Consider a set of N balls, marked with the integers 1 
through N. The rank sum is a statistic obtained by drawing 
m of these balls, and adding up their marked values. 
Ignoring for the moment that we are drawing without 
replacement, each integer is a random number taken with 
equal probability 1/N from the uniform discrete probability 
distribution with range 1 to N. Each one has expected 
value 

   (5) 
1

/ ( 1) /
N

k
k N Nµ

=

= = +∑ 2

The sum of m independently sampled integers strongly 
converges to a normal distribution, and its mean is just m 
times the individual mean µ, so µ(R)= m(N+1)/2, which is 
(1). Proving (2) is more difficult, due to negative 
covariance between pairs of ranks caused by the non-
replacement [17]. 

Rank sum tests as used and described here should be 
distinguished from other rank sum tests used for tests of 
location (mean) shift between two data sets, and tests of 
paired data [18].  

C. Choosing the data sample sizes 
For the normal distribution approximation (4) to be valid, 
the sample sizes m and n have to be sufficiently large for 
the central limit theorem to be valid. The “warning” data 
set size m = 5 used here is too small for this purpose (and 
made worse by the many ties in this situation of counting 
discrete, rare errors: see Sect. V-E. Smaller m minimizes 
the failure warning time, after sudden attribute changes 
occur. Also, the experimental data sets included some 
drives with only five non-zero SMART samples.  It can be 
seen from (3), that the R test statistical variability µ/σ 
decreases to an asymptotic constant 1/ 6m as the 
reference data set size n is increased. Ample “Good” drive 
reference experimental data was available, and a somewhat 
arbitrary n = 50 was chosen. 

D. Multivariate rank Sum Test 
Let Ri be the rank sum of attribute i considered alone, 
1≤i≤p, p being the number of attributes. For simplicity 
assume that each of the attributes has the same warning 

and reference data set size, m and n. Then an overall rank 
sum for all p attributes can be defined as  

1

p

i
i

R R
=

= ∑  (6) 

Because the attributes are defined to be monotonic (larger 
values mean increased failure risk, Sect. II-D), this 
multivariate rank sum exploits any favorable correlations 
among the failure attributes, because they should be 
positive. Replacing the error counts by their ranks 
automatically solves problems of scale and normalization. 
The individual attribute ranks can be simply added. Under 
the null hypothesis, the individual attribute measurements 
are assumed statistically independent within each attribute 
(as in the single-variable rank sum), and the attribute 
measurements are assumed independent of each other. The 
mean and variance of R are then: 

1
[ ] ( 1) / 2

p

i
i

R pm Nµ µ
=

= = +∑  (7) 

 

2 2

1
[ ] [ ] ( 1) /12

p

i
i

R R pn N mσ σ
=

= = +∑  (8) 

 
These values can be used along with the multivariate rank 
sum  R, as the Q-function argument in (4).  

E. Data ties and zeros 
The rank sum test was originally developed for continuous 
data, with only accidental data ties, but ties are certainly 
prevalent in this case of discrete-valued SMART error 
attributes. For example, most SMART attribute reads in 
Figs. 1 are tied at zero. With the experimental data used 
here, best results were with zero attribute values ignored, 
not surprising since zero error counts give little 
information.  

The standard recipe [17 Sect. 5.1] for the rank sum test 
states that one imagines that tied variates be arbitrarily 
separated infinitesimally. Ranks are then assigned and the 
average rank of all infinitesimally close data is assigned to 
each of them. For example, if ten identical error counts of 
1 occur in the reference plus warning data sets, then each 
of them gets rank (1+10)/2 = 5.5 (since we ignore the zero 
error counts). This rule worked well with the discrete 
SMART data, and best preserves the rank sum virtue that 
drive failure trends producing simultaneous positive shifts 
in the attributes will produce large changes in the rank 
sum, towards the failure limit. 

F. Setting the rank sum failure limit parameter 
Equations (1)-(4) change and lose accuracy with ties, 
although the rank sum remains a robust statistical test [17]. 
Discrete valued rare-error attributes can produce enough 
ties that the normality approximation leading to (4) is 
inaccurate. As a rough rule, the number of untied values in 
the smaller data should exceed 20 [18]. For the 
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experimental data here the significance level had to be set 
numerically to get a desired FAR. 

A good method to do this is simply to find the rank sum 
limit producing the desired FAR in the “won’t-fail” drives. 
Average over all experimental drives and all warning sets 
of m sequential attribute reads of each drive (all possible 
SMART read times). This was tested on the new rank sum 
tests, their OR’ed SMART flag result, and the (single) 
multivariate rank sum test. 

 Section II-E discusses why this should be a conservative 
estimate of production drive FAR. 
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