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ABSTRACT 

 

 

Improved Permeability Prediction Using Multivariate Analysis Methods. 

(December 2008) 

Jiang Xie, B.S., University of Science and Technology of China 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

 

Predicting rock permeability from well logs in uncored wells is an important task in 

reservoir characterization. Due to the high costs of coring and laboratory analysis, 

typically cores are acquired in only a few wells. Since most wells are logged, the 

common practice is to estimate permeability from logs using correlation equations 

developed from limited core data. Most commonly, permeability is estimated from 

various well logs using statistical regression. 

For sandstones, often the logs of permeability can be correlated with porosity, but 

in carbonates the porosity permeability relationship tends to be much more complex 

and erratic. For this reason permeability prediction is a critical aspect of reservoir 

characterization in complex reservoirs such as carbonate reservoirs. In order to 

improve the permeability estimation in these reservoirs, several statistical regression 

techniques have already been tested in previous work to correlate permeability with 

different well logs. It has been shown that statistical regression for data correlation is 

quite promising in predicting complex reservoirs. But using all the possible well logs 

to predict permeability is not appropriate because the possibility of spurious correlation 

increases if you use more well logs. In statistics, variable selection is used to remove 
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unnecessary independent variables and give a better prediction. So we apply variable 

selection to the permeability prediction procedures in order to further improve 

permeability estimation. 

We present three approaches to further improve reservoir permeability prediction 

based on well logs via data correlation and variable selection in this research. The first 

is a combination of stepwise algorithm with ACE technique. The second approach is 

the application of tree regression and cross-validation. The third is multivariate 

adaptive regression splines. 

Three methods are tested and compared at two complex carbonate reservoirs in 

west Texas: Salt Creek Field Unit (SCFU) and North Robertson Unit (NRU). The 

result of SCFU shows that permeability prediction is improved by applying variable 

selection to non-parametric regression ACE while tree regression is unable to predict 

permeability because it can not preserve the continuity of permeability. In NRU, none 

of these three methods can predict permeability accurately. This is due to the high 

complexity of NRU reservoir and measurement accuracy. In this reservoir, high 

permeability is discrete from low permeability, which makes prediction even more 

difficult.  

Permeability predictions based on well logs in complex carbonate reservoirs can 

be further improved by selecting appropriate well logs for data correlation. In 

comparing the relative predictive performance of the three regression methods, the 

stepwise with ACE method appears to outperform the other two methods. 
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NOMENCLATURE 

 

ACE = alternating conditional expectations 

 AIC  = Akaike information criterion 

 BIC  = Bayes information criterion 

DPHI = density log derived porosity 

 DT  = acoustic transit time 

 EF  = electrofacies 

 GR  = gamma ray log 

 LLD = lateral log deep 

 LLS = lateral log shallow  

 ΜΑΕ = mean absolute error 

ΜΑRS = multivariate adaptive regression splines 

ΜSE = mean squared error 

 MSFL = microspherically focused log  

 NPHI = neutron log derived porosity 

 NRU = North Robertson Unit 

 RHOB = bulk density 

 RSS = residual sum of squares 

 SCFU = Salt Creek Field Unit 

 SP  = spontaneous potential 

 α  = cost complexity factor 

 ρ  = correlation coefficient 
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 CHAPTER I 

INTRODUCTION 

 

1.1 Literature Review 

Predicting rock permeability from well logs in uncored wells is an important task in 

reservoir characterization. Due to the high costs of coring and laboratory analysis, 

permeability in most uncored wells is estimated using correlation equations developed 

from limited core data. Most commonly, permeability is estimated from various well 

logs using either an empirical relationship1, 2 or some form of statistical regression: 

parametric or non-parametric.1, 3-8 The empirical models may not be applicable in 

regions having different depositional environments without making adjustments to 

constants or exponents in the model. Also, significant uncertainty exists in the 

determination of irreducible water saturation and cementation factor in these models. 

Statistical regression has been proposed as a more versatile solution to the problem of 

permeability estimation. Conventional statistical regression is generally performed 

parametrically using multiple linear or nonlinear models that require a priori 

assumptions regarding functional forms.3, 4 

Three important aspects in predicting permeability using statistical regression are: 

1. Data correlation 

2. Data partitioning 

3. Variable selection 

 

                                                   
This thesis follows the style of SPE Journal. 
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1.1.1 Data Correlation 

In recent years, non-parametric regression techniques such as Generalized Additive 

Model (GAM)9, Alternating Conditional Expectation (ACE)4-6, 10-12 and Neural 

Networks (NNET)3 have been introduced to overcome the limitations of conventional 

multiple regression methods.1, 5-8 Applications to complex carbonate reservoirs have 

shown great promise in handling many forms of heterogeneity in rock properties. 

However, significant difficulties remain in the identification of sharp local variations in 

reservoir properties caused by abrupt changes in the depositional environment. 

Another distinctive feature in carbonate reservoirs is the porosity-permeability 

mismatch, that is, low permeability in regions exhibiting high porosity and vice-versa. 

These features are extremely important from the point of view of fluid flow predictions, 

particularly for early breakthrough response along high permeability streaks. 

Lee’s work10 improves permeability predictions in heterogeneous carbonate 

reservoirs through a combination of electrofacies characterization and non-parametric 

regression techniques. Three non-parametric approaches are considered: ACE, GAM, 

and NNET. In this study, tree regression13, 14 and multivariate adaptive regression 

splines (MARS)15-17 are considered and compared to Lee’s results for a field case (Salt 

Creek Field Unit) 

 

1.1.2 Data Partitioning 

Another important aspect in data correlation for permeability predictions is data 

partitioning. A variety of approaches have been proposed to partition well log 

responses into distinct classes in order to improve permeability predictions. The 

simplest approach utilizes flow zones or reservoir layering.6 Other approaches like 

lithofacies18, Hydrologic Flow Unit (HFU)7, 19-21 and electrofacies10, 11, 22 are explored 

and widely used. Previous work by Lee10 shows that electrofacies characterization with 
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the ACE algorithm, when compared against other data partitioning methods based on 

reservoir layering, lithofacies information and hydraulic flow units, gives a good 

permeability prediction. We will use electrofacies characterization as our data 

partitioning method and focus on other two aspects – data correlation and variable 

selection. 

 

1.1.3 Variable Selection 

A spurious correlation is defined as a sample correlation that is large in absolute value 

purely by chance.23 Consider a well log as a possible predictor and the probability of 

observing the spurious correlation of this predictor is psc, we can calculate the 

probability of at least one spurious correlation when considering a set of k independent 

predictors, which is simply 

( ) ( )( )∑
=

−−=−−
k

i

i
scsc

k
sc ppp

1

1111  

We can see that the penalty for increasing the number of predictors considered 

from k-1 to k is 

( )( )11 −− k
scsc pp  

As we use an increasing number of well logs, the chance of observing at least one 

spurious correlation increases. This is one of the reasons why we need to select 

appropriate variables for data correlation. Other possible problems with more well logs 

are: 

1. Unnecessary predictor information will add noise to the estimation of other 

quantities that we are interested in. 

2. Degrees of freedom will be wasted. Assume that n is sample size and k is 

number of independent variables, the degrees of freedom equals 1−−= knd . 
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Degrees of freedom decreases as the number of independent variables 

increases. 

Variable Selection is intended to select the “best” subset of predictors. Variable 

selection methods fall into two categories: best subset selection methods and stepwise 

regression methods. Best subset selection methods evaluate all the possible subsets of 

variables from a full model and identify the best reduced regression models based on 

some criterion. Evaluating all possible models is the most reasonable way to proceed in 

variable selection but it is computationally demanding, especially when one has a very 

large number of predictors. Stepwise algorithm is to evaluate the variables one at a 

time and look at a sequence of models.24 

While stepwise algorithm is widely accepted for variable selection, pruning a 

regression tree may also be considered as a variable selection method. The difficulties 

of the stepwise algorithm and tree regression are the same: stopping criterion and 

optimal model selection. In the stepwise algorithm, a variety of criteria are available – 

AIC, BIC, adjusted R2, Predicted Residual Sum of Squares (PRESS) and Mallow’s Cp 

Statistic. We choose the AIC-criterion because the number of independent variables 

from AIC-criterion is a balance between model size and model regression error. In tree 

regression, cross-validation and AIC-criterion are two ways to select optimal tree 

size.13, 14 We choose cross-validation for tree regression because AIC-criterion tends to 

give a larger optimal tree size and over-fit in prediction. 
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1.2 Objectives 

The objective of this study is to further improve permeability prediction using well logs 

by variable selection and data correlation. First, stepwise regression is tested as a 

variable selection method. Then a method combining the stepwise algorithm and 

non-parametric regression is proposed and applied to a highly heterogeneous carbonate 

reservoir in the Permian Basin, west Texas: Salt Creek Field Unit (SCFU). Tree 

regression and multivariate adaptive regression splines (MARS) are performed for data 

correlation. Results are compared with non-parametric regression (ACE). 

In statistics, stepwise regression is widely used for variable selection and model 

reduction. We start with stepwise regression as the linear regression model and apply it 

to North Robertson Unit (NRU) as a synthetic case in order to prove that stepwise 

algorithm can be used to improve permeability prediction. After that, a method 

combining the stepwise algorithm with non-parametric regression (ACE) is proposed 

and applied to Salt Creek Field Unit (SCFU). The result is compared with the ACE 

algorithm without variable selection. 

In regression tree analysis, pruning might be considered as a method of variable 

selection14. Following this idea, we try to predict permeability using a regression tree 

and improve permeability estimation with a pruning tree. The key behind pruning trees 

is to select the optimal tree size. Cross-validation is a practical way to choose the 

optimal tree size. An AIC-criterion for pruning could also be used. Pruning with tree 

regression is applied to SCFU and NRU. 

Another statistical regression method, multivariate adaptive regression splines 

(MARS), will be tested and applied to two field cases: SCFU and NRU. Results are 

compared with those from ACE algorithm. 
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1.3 Two Field Cases: SCFU and NRU 

In this study, we are focusing on data correlation and variable selection aspects of 

permeability estimations. We use electrofacies characterization for data partitioning. 
 

1.3.1 Salt Creek Field Unit (SCFU) 

The Salt Creek field, located in Kent County, Texas, is a highly heterogeneous, shallow 

reef carbonate reservoir in the Basin shown in Figure 1.1. The reservoir lies on Strawn 

limestone and is overlain by the Cisco shale. The field consists of two major carbonate 

buildups: the South Main Body and the Northwest Extension. The buildup consists of 

grainstone shoals, bars and spits associated with a shelf environment. The average 

depth and thickness are 6300 ft and 170 ft respectively. The oil-water contact is located 

at -4425 ft subsea. Stratigraphically, the field can be subdivided into several vertical 

zones (labeled C5, C4, C3, C2b, C2a, C1b, and C1a) on the basis of paleontological 

picks and wireline correlations. Ten lithofacies have been identified from detailed core 

and thin-section studies: shale, siltstone, skeletal wackestone, algal wackestone, algal 

packstone, intraclastic packstone, skeletal/peloid packstone, peloid/skeletal mud lean 

packstone, peloid/sketetal grainstone, and ooid grainstone.4, 25 
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Figure 1.1 Location of Salt Creek Field Unit, Kent County, TX 

 

 

In this study, we are focusing on the Northwest Extension area, which has 89 wells 

arranged in a 20-acre, five-spot pattern. The data presented in this analysis were 

collected from seven wells. We omitted two cored wells (G517 and G520) to verify our 

correlations with blind tests. 904 sample points from five wells are assigned as training 

data while 174 sample points from G517 and 183 sample points from G520 are 

assigned as prediction data. We have 10 well logs: caliper, spontaneous potential (SP), 

gamma ray (GR), three different resistivity (lateral log deep (LLD), lateral log shallow 

(LLS), and micro-spherically focused log(MSFL), acoustic transit-time (DT), neutron 

(NPHI), density (RHOB), and photoelectric logs (PEF). Seven well logs (GR, LLD, 

MSFL, DT, NPHI, RHOB and PEF) are selected out of ten well logs for data 

correlation and variable selection because of the similarity of the LLS and LLD 

responses, and also to account for the poor vertical resolution of SP and caliper logs. 
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Figure 1.2 Screenplot, A Barplot of the Variances of the Principal Components 

labeled by  ∑
=

Σ
j

i
i trace

1
)(/λ

 
 

Principal Component Analysis is applied to obtain the principal components PCj 

(j=1,…,7) from the well log data after normalization. Figure 1.2 shows the screen plot, 

a bar plot of the variance of the principal components labeled by  

which often provides a convenient visual method of identifying the important 

components. Only 4 principal components explain around 90% variation of the whole 

data set. First principal component (PC1) appears to indicate porosity of the formation 

while second principal component (PC2) shows a stronger correlation with gamma ray 

readings.  The eigenvectors of the covariance matrix provides coefficients of the 

principal components transformation. For example, PC1 and PC2 are given by 

∑
=

j

i
i trace

1

)(/ Σλ
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Model-based Cluster Analysis is used to define 8 distinct groups based on the 

unique characteristics of the well log measurements. In Figure 1.3, each cluster can be 

treated as an electrofacies that reflects the hydrologic, lithologic, and diagenetic 

characteristics. Qualitatively speaking, the first electrofacies group (EF1) indicates 

tight media with low gamma ray reading and the eighth electrofacies group (EF8) 

represents porous media with high gamma ray reading.  
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Figure 1.3 The Distribution of Electrofacies Data Plotted on the First Two Principal 
Components of Well Logs 
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1.3.2 North Robertson Unit (NRU) 

North Robertson Unit is a heterogeneous shallow shelf carbonate reservoir in Gaines 

County, west Texas. The NRU is located in the northern part of the Central Basin 

Platform of the Basin shown in Figure 1.4. There are two main producing horizons, the 

Glorieta and Clearfork Formations, often referred to as the Upper and Lower Clearfork, 

between the correlative depths of approximately 5874 – 7440 feet. The reservoir 

interval is thick (gross interval = 1400 ft). More than 90% of the interval has uniform 

lithology (dolostone), but is characterized by a complex pore structure that results in 

extensive vertical layering.7 

 Reservoir sediments accumulated in the Clearfork area of the Central Basin 

Platform were deposited in shallow, agitated waters providing a favorable environment 

for carbonate generation. Early winnowing in this high-energy environment provided 

primary intergranular porosity in some carbonates. However, fluctuations in relative 

sea level resulted in cyclic deposition typical of many Permian stratigraphic units in 

west Texas. Also, leaching and dissolution of skeletal grains, as well as selective 

dolomitization, modified porosity distribution significantly. In addition, local fractures 

and other late diagenetic processes affected the reservoir quality of the deposits, and 

the end result is a very heterogeneous and complex carbonate.7, 11 
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Figure 1.4 General Location of the North Robertson Unit 
 

 

 
Figure 1.5 Location of Cored Wells in the North Robinson Unit 

 

 

The data presented in this analysis were gathered from 6 cored wells and two wells 

(1509 and 3533) shown in Figure 1.5 are left out to verify our correlations using blind 

tests. 2630 sample points from six wells are assigned as training data while 712 sample 

points from W1509 and 851 sample points from W3533 are assigned as prediction data. 
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In this field, we have 9 well logs in different wells: caliper, spontaneous potential (SP), 

gamma ray (GR), two different resistivity logs (LLD and MSFL), acoustic transit-time 

or sonic (DT), neutron (NPHI), density (RHOB), and photoelectric (PEF). Only 6 well 

logs (GR, LLD, MSFL, DT, NPHI, and RHOB) are chosen because of their field-wide 

availability. 

Electrofacies Characterization: Principal component analysis is used to summarize 

the data effectively and to reduce the dimensionality without any significant loss of 

information. This analysis is applied to obtain the principal components PCj (j=1,…,6) 

from the well log data after normalization. 

 

 

 

Figure 1.6 A Barplot Representing the Variances Described by the PC’s 
 

 

 

Figure 1.6 shows the screen plot, a barplot of the variance of the principal 
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components labeled by  

( )∑
=

∑
l

i
i trace

1
/λ ,  

which often provides a convenient visual method of identifying the important principal 

components. 

Only 3 principal components explain approximately 90% variation of the whole 

data set. First principal component (PC1) appears to indicate porosity of the formation 

while second principal component (PC2) shows a stronger correlation with gamma ray 

readings. The eigenvectors of the covariance matrix provides coefficients of the 

principal components transformation. For example, PC1 and PC2 are given by the 

following relationships 

( ) ( )

( ) (
NPHI.

)
RHOB - . DT .-          

LLS.  LLD. GR .  PC

NPHI.RHOB - . DT .-          

LLS. LLD. GR . - PC

160060210

log200log1309302

420410460

log460log4601601

+

++=

+

++=

 

Next we apply model-based cluster analysis to define distinct groups based on the 

unique characteristics of the well log measurements. Each cluster can be treated as an 

electrofacies that reflects the hydrologic, lithologic, and diagenetic characteristics. The 

clustering algorithm indicates 9 distinct groups based on the well log measurements 

(Figure 1.7). 
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Figure 1.7 Electrofacies Characterization via Cluster Analysis 
 

 

A qualitative interpretation of the clusters is aided by the relationship. For example, 

we can say that the first electrofacies group (EF1) represents porous media with high 

gamma ray reading and the ninth electrofacies group (EF9) represents tight media with 

low gamma ray reading. 

 

1.4 Error Measurement 

In statistics, the mean squared error (MSE) and the mean absolute error (MAE) are two 

quantities used to measure the difference between prediction and true value. As the 

names suggest, the mean absolute error is an average of the absolute errors and the mean 

squared error is the second moment of the error: 
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iy  is defined as true value,  as the prediction or estimator, and is number of data. iŷ N

After permeability prediction with statistics regression, MSE and MAE are 

calculated to measure the prediction errors and compare different regression methods. 

Another measurement of data correlation for our approach is the correlation coefficient 

between measured permeability and predicted permeability. 

    ( )
( ) ( )yy

yy
ˆvarvar

ˆ,cov
=ρ  

The correlation coefficient indicates the degree of linear dependence between the 

variables. The closer the coefficient is to ±1, the stronger the correlation between the 

variables, which reflects our prediction accuracy. 

 

1.5 Thesis Outline 

In Chapter II, we discuss stepwise algorithm as a variable selection method to improve 

non-parametric regression. Stepwise regression with a linear model is applied to 

illustrate the availability of the stepwise algorithm. A method combining the stepwise 

algorithm and ACE is proposed and applied to SCFU and NRU.  

    In Chapter III, we apply tree regression to permeability prediction and utilize 

cross-validation to select the optimal tree for variable selection. The results of SCFU and 

NRU from tree regression are compared with results from ACE. 

    In Chapter IV, the multivariate adaptive regression splines (MARS) method is 

compared with ACE. We utilize MARS software from Salford systems to perform 

multivariate adaptive regression splines.  
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 CHAPTER II 

STEPWISE ALGORITHM 

 

2.1 Introduction 

In previous papers, electrofacies characterization and non-parametric regression ACE 

technique are proven to be successful in predicting permeability in highly 

heterogeneous carbonate reservoirs10, 11. In this chapter, we utilize the stepwise 

algorithm with AIC-criteria as a variable selection method to further improve 

permeability estimates. Stepwise regression is a kind of stepwise algorithm used in 

linear regression. We first demonstrate the availability of the stepwise algorithm by 

applying stepwise regression to North Robertson Unit (NRU). A method combining the 

stepwise algorithm and ACE is proposed and applied to field case Salt Creek Field 

Unit (SCFU). Results are compared with those from regression without variable 

selection. 

 

2.2 Methodology 

In this section, we discuss the non-parametric regression technique, stepwise procedure 

and stepwise algorithm. A new method combining the stepwise procedure with ACE is 

proposed for permeability estimation. 

 

2.2.1 Response Transformation Models: ACE Algorithm14, 26 

The response transformation models generalize the additive model by allowing for a 

transformation of the response variable y.  The models have the following general 

form: 
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The main motivation behind response transformation is that often a simple additive 

model may not be appropriate for E(y | x1, x2,…, xp), but may be quite appropriate for 

E{θ(y) | x1, x2,…, xp}.  An example of such models is the Alternating Conditional 

Expectation (ACE) algorithm. 

The ACE algorithm, originally proposed by Breiman and Friedman26, is used here to 

derive the optimal transformations of the data to maximize the correlation between 

permeability and well logs. Let us say that we have a dependent random variable (for 

example, permeability) and independent random variables (for example, 

well logs). We first define arbitrary mean-zero transformations

Y

pxxx .....,, 21

( ) ( ) ( )pxxy 211 ,...,, φφθ . 

Suppose that a regression of the transformed dependent variable on the sum of 

transformed independent variables (under the constraint, ( )[ ] 12 =yE θ ) results in the 

following error: 

2

1
1

2 ]})()({[),...,,( ∑
=

−=
p

l
llp xyEe φθφφθ                 

Then, transformations ( ) ( ) ( )pxxy *
21

*
1

* ,...,, φφθ  are said to be optimal for 

regression if they satisfy the following 

),...,,(min),...,,( 1
2

,...,,

**
1

*2*

1
pp ee

p

φφθφφθ
φφθ

=   

More details on the procedure to derive the optimal transforms can be found.6, 26 

Briefly, our approach proceeds as follows: 

Develop optimal non-parametric transforms for permeability and well log 

variables based on cored wells: ( ) ( ) ( )pxxy 211 ,...,, φφθ ; 

For an uncored well, given a set of well log response { }pili xx ,...,  first estimate the 
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corresponding transforms ( ) ( ){ }pili xx *
1

*
1 ,...,φφ  from step 1; 

1. Estimate the optimal transform for permeability using the following 

relationship 

( ) ( )∑
=

=
p

l
lili xy

1

** φθ ; 

2. Finally, predict permeability through back transformation 

( )⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

−
p

l
lil

pre
i xy

1

** 1

φθ . 

Thus, our calculation involves p forward transformations of { }pili xx ,...,  

to ( ) ( ){ }pili xx *
1

*
1 ,...,φφ , and a backward transformation. By restricting the transformation 

of the response variable to be monotone, we can ensure that is invertible. 

Non-parametric implies that no functional form is assumed between the dependent and 

independent variables and the transformations are derived solely based on the data set.  

The optimal correlation is given by plotting the transformed dependent variable against 

the sum of the transformed independent variables. 

*θ

Permeability is correlated with well logs within each electrofacies group using a 

non-parametric regression method. As mentioned before, the non-parametric regression 

allows us to correlate permeability with well logs without a priori assumptions 

regarding the functional form of the correlation. Specifically, a user-friendly software, 

GRACE (GRaphical ACE) is used for this purpose. 
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2.2.2 Stepwise Algorithm24 

Stepwise Procedures include backward elimination and forward selection. Backward 

Elimination is the simplest of all variable selection procedures and can be easily 

implemented without special software. The algorithm is as follows: 

Start with all the variables in the model; 

Remove the variable with highest p-value greater than critical; 

Refit the model and go to 2; 

Stop when all p-values are less than critical. 

The critical is sometimes called the “p-to-remove” and does not have to be 5%. If 

prediction performance is the goal, then a 15-20% cut-off may work best. 

Forward selection just reverses the backward method: 

Start with no variables in the model; 

For all predictors not in the model, check their p-value if they are added to the 

model. Choose the one with lowest p-value less than critical; 

Continue until no new variable can be added. 

Stepwise regression is a combination of the stepwise procedure and linear 

regression. In stepwise regression, Akaike Information Criterion (AIC) and Bayes 

Information Criterion (BIC) are two commonly used criteria. In general, 

 pAIC 2likelihoodlog2 +−−=  

while, npBIC loglikelihoodlog2 +−−=  

p is number of variables and n is number of data. 

For a linear regression model, the -2log-likelihood is known as the deviance, 

. In our study, we choose to minimize AIC in order to find the optimal 

model. Larger models will fit better and so have smaller RSS but use more parameters. 

Thus the best choice of model will balance fit with model size. 

)/log( nRSSn
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2.2.3 Combining ACE with Stepwise Procedure 

A new method combining the non-parametric regression technique (ACE) with the 

stepwise procedure is proposed. The general idea is to replace linear regression in 

stepwise regression with the ACE algorithm. We still utilize AIC criteria for model 

selection and use both backward elimination and forward addition in our stepwise 

procedure. The procedure is the following: 

Fit the training data with the full model (all well logs) using ACE; 

Calculate AIC criteria; 

Single term deletions and additions, 

Non-parametric regression (ACE) with all new models, 

Calculate AIC criteria of new models; 

If there is a smaller AIC value, select that model with least AIC value and repeat 

step2. If no model has smaller AIC than the initial model, stop the stepwise procedure 

and select initial model as the optimal model. 

When we combine the stepwise algorithm with ACE technique, the basic procedure 

follows the stepwise procedure while the ACE technique is only used for model fitting. 

In stepwise regression, the basic procedure is the same but linear regression is used to fit 

the model. 



 21

2.3 Field Example: North Robertson Unit 

Stepwise regression is used for a field case to demonstrate how the stepwise procedure 

is performed. We will show that stepwise regression on North Robertson Unit 

improves the initial linear regression result. 

Here, electrofacies VII is used as an example to show how stepwise regression 

works. Starting with the full model, which means that all six well logs (GR, DT, 

log10(LLD), log10(MSFL), NPHI and RHOB) are used, we follow stepwise procedure 

of backward elimination and forward addition. As each well log is added or eliminated, 

a linear regression is run and the AIC-criterion is calculated to compare with the 

optimal model from the last step until no more well logs can be added or eliminated. 

The following shows the stepwise procedure and stepwise regression result of 

electrofacies VII from an S-plus report. 

 
 

Table 2.1 Stepwise Regression Procedures and S-plus Report of Electrofacies VII, 
NRU 

Explanation S-plus Report 

Starting full model with six 

well logs 

*** Stepwise Regression *** 

 

 *** Stepwise Model Comparisons *** 

Start:  AIC= 273.0431  

 lnkcore ~ GR + NPHI + RHOB + DT + log.LLD. + 

log.MSFL. 

Step 1 

Backward elimination: (no 

forward addition because no 

well logs could be added) 

Single term deletions 

Model: 

lnkcore ~ GR + NPHI + RHOB + DT + log.LLD. + log.MSFL.

 

scale:  3.033812  
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Table 2.1 Continued 

Explanation S-plus Report 

Calculate regression models 

with only one well log 

eliminated. 

Choose the best model with 

least AIC value. 

Here, well log GR is 

eliminated. 

          Df Sum of Sq      RSS       Cp  

   <none>              230.5697 273.0431 

       GR  1   1.43069 232.0004 268.4061 

     NPHI  1  11.51604 242.0857 278.4915 

     RHOB  1   2.78198 233.3517 269.7574 

       DT  1   1.96724 232.5369 268.9427 

 log.LLD.  1   8.73986 239.3096 275.7153 

log.MSFL.  1   6.83604 237.4057 273.8115 

 

Step:  AIC= 268.4061  

 lnkcore ~ NPHI + RHOB + DT + log.LLD. + 

log.MSFL. 

Step 2 

Backward elimination & 

forward addition: 

Calculate regression models 

with only one well log 

eliminated or added. 

Choose the best model. 

Here, well log RHOB is 

eliminated. 

Single term deletions 

Model: 

lnkcore ~ NPHI + RHOB + DT + log.LLD. + log.MSFL. 

scale:  3.033812  

 

          Df Sum of Sq      RSS       Cp  

   <none>              232.0004 268.4061 

     NPHI  1  10.09090 242.0913 272.4294 

     RHOB  1   2.62001 234.6204 264.9585 

       DT  1   2.90834 234.9087 265.2468 

 log.LLD.  1   7.31938 239.3198 269.6579 

log.MSFL.  1   8.01270 240.0131 270.3512 

 

Single term additions 

Model: 

lnkcore ~ NPHI + RHOB + DT + log.LLD. + log.MSFL. 

scale:  3.033812  

       Df Sum of Sq      RSS       Cp  

<none>              232.0004 268.4061 

    GR  1  1.430695 230.5697 273.0431 

 

Step:  AIC= 264.9585  

 lnkcore ~ NPHI + DT + log.LLD. + log.MSFL.  



 23

Table 2.1 Continued 

Explanation S-plus Report 

Step 3 

Backward elimination & 

forward addition 

Well log DT is eliminated 

Single term deletions 

Model: 

lnkcore ~ NPHI + DT + log.LLD. + log.MSFL. 

scale:  3.033812  

          Df Sum of Sq      RSS       Cp  

   <none>              234.6204 264.9585 

     NPHI  1  10.41612 245.0365 269.3070 

       DT  1   1.03523 235.6556 259.9261 

 log.LLD.  1   9.57489 244.1953 268.4658 

log.MSFL.  1  12.19701 246.8174 271.0879 

 

Single term additions 

Model: 

lnkcore ~ NPHI + DT + log.LLD. + log.MSFL. 

scale:  3.033812  

 

       Df Sum of Sq      RSS       Cp  

<none>              234.6204 264.9585 

    GR  1  1.268725 233.3517 269.7574 

  RHOB  1  2.620006 232.0004 268.4061 

 

Step:  AIC= 259.9261  

 lnkcore ~ NPHI + log.LLD. + log.MSFL.  

Step 4 

Backward elimination & 

forward addition. 

With single term deletion 

and addition, no other 

regression model is better 

than initial model in term of 

AIC criteria. 

Single term deletions 

Model: 

lnkcore ~ NPHI + log.LLD. + log.MSFL. 

scale:  3.033812  

 

          Df Sum of Sq      RSS       Cp  

   <none>              235.6556 259.9261 

     NPHI  1   15.3416 250.9972 269.2001 

 log.LLD.  1   46.7732 282.4288 300.6317 

log.MSFL.  1   13.6257 249.2813 267.4842 

 

Single term additions 
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Table 2.1 Continued 

Explanation S-plus Report 

Stepwise regression is 

stopped. Variables (NPHI, 

log10_LLD, log10_MSFL) 

are selected. 

Model: 

lnkcore ~ NPHI + log.LLD. + log.MSFL. 

scale:  3.033812  

 

       Df Sum of Sq      RSS       Cp  

<none>              235.6556 259.9261 

    GR  1  1.857994 233.7976 264.1357 

  RHOB  1  0.746895 234.9087 265.2468 

    DT  1  1.035225 234.6204 264.9585 

Linear regression of optimal 

model is performed.  

 *** Linear Model *** 

 

Call: lm(formula = lnkcore ~ NPHI + log.LLD. + 

log.MSFL., data = NRU.EF7, na.action 

  = na.exclude) 

Residuals: 

    Min     1Q  Median     3Q   Max  

 -3.496 -1.119 -0.1982 0.6347 4.576 

 

Coefficients: 

               Value Std. Error  t value Pr(>|t|)  

(Intercept)  -6.0195   1.0103    -5.9583   0.0000 

       NPHI  12.4082   5.4714     2.2678   0.0261 

   log.LLD.   1.6695   0.4216     3.9598   0.0002 

  log.MSFL.  -0.7314   0.3422    -2.1372   0.0357 

 

Residual standard error: 1.727 on 79 degrees of freedom

Multiple R-Squared: 0.1834  

F-statistic: 5.915 on 3 and 79 degrees of freedom, the 

p-value is 0.001078  

 

After stepwise regression, an optimal model is selected, called the stepwise model. 

We perform regression and prediction with both the stepwise model and full model (all 

six well logs are used). Regression error and prediction errors of electrofacies VII are 
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shown in Table 2.2. From MSE and MAE of electrofacies VII, we can see that the 

stepwise procedure selects a generalized model and gives better predictions of well 

1509 and 3533 compared to the full model. Thus, we can consider the stepwise 

algorithm as a variable selection and model reduction procedure. 

 
Table 2.2 Regression and Prediction Errors of Full Linear model and Stepwise Linear 

Model of Electrofacies VII, NRU 

 Error Full model Stepwise model 

MSE 2.7780 2.8392 
Regression 

MAE 1.2667 1.3022 

MSE 0.8885 0.6058 Prediction 

W1509 MAE 0.7355 0.6342 

MSE 1.4308 1.0176 Prediction 

W3353 MAE 0.9763 0.8078 

 
Table 2.3 Variables Selected of All Electrofacies, NRU 

Electrofacies Variables selected 

I No variables 

II RHOB, log10_LLD, log10_MSFL 

III NPHI, RHOB, log10_LLD 

IV NPHI, DT, log10_LLD 

V GR, RHOB 

VI NPHI 

VII NPHI, log10_LLD, log10_MSFL 

VIII NPHI, RHOB, DT, log10_MSFL 

IX GR, RHOB 



 26

Table 2.3 shows the selected variables of each electrofacies. Different electrofacies 

represent different geologic zones or regions and can be characterized by specific 

variables. In electrofacies I, no variable is selected, which means that constant fitting is 

better than all other linear fits. This is the limitation of the linear regression model.  

 
Table 2.4 Regression and Prediction Errors of All Electrofacies, NRU 

 Error Full model Stepwise model 

MSE 2.7724 2.8776 
Regression 

MAE 1.2864 1.3225 

MSE 1.3535 1.3376 Prediction 

W1509 MAE 0.8068 0.7661 

MSE 2.8961 2.5827 Prediction 

W3353 MAE 1.0985 1.0712 

 

The mean squared errors and mean absolute errors are compared in Table 2.4. 

Errors show us the improvement of the stepwise model in predicting permeability. The 

stepwise model gives larger regression error in training data because the stepwise 

model is a more general model for all data sets and the full model is more specific for 

this training data set. Table 2.4 shows that the stepwise procedure can be used as a 

variable selection method to improve permeability estimate. 
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Figure 2.1 Measured Permeability vs. Predicted, W1509 NRU, Stepwise Regression 

 
 
 

From the comparison of measured permeability and predicted permeability in 

Figure 2.1 and Figure 2.2, we can not see a good permeability prediction. Figure 2.2 

indicates that stepwise regression is unable to predict the general variation of W1509 

and correlation coefficient 1950.0=ρ shows low linear dependency. This may be a 

result of the limitation of the stepwise regression method or the permeability data from 
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North Robertson Unit (NRU). 
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Figure 2.2 Measured and Predicted Permeability vs. Depth, W1509 NRU, Stepwise 

Regression 
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2.4 Field Application: Salt Creek Field Unit 

The new method combining the stepwise algorithm with ACE technique is tested with 

data from Salt Creek Field Unit (SCFU). After electrofacies characterization, training 

data are grouped into eight electrofacies and data from G517 and G520 are used for a 

blind test and prediction. 

We first apply the new method to electrofacies VII as a simple example: Table 2.5 

summarizes the procedure of this method. In step1, the initial model is the full model 

with all seven well logs. After single term deletions and ACE regression, RSS (residual 

sum of squares), AIC and BIC criteria are calculated. The model with well log DT 

deleted is selected as the initial model for the next step. 

In step2, we have the same single term deletions and additions and non-parametric 

regression. After calculation of the AIC citeron, we found that no other regression 

model is better than the initial model, thus the stepwise procedure is stopped and the 

optimal model is selected with six well logs (GR, log10_LLD, log10_MSFL, NPHI, 

PEF and RHOB). The optimal model will be applied to ACE. The following figures 

show the result of software GRACE. 
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Table 2.5 Stepwise Procedure of Electroafacies VII, SCFU 

Step 1 RSS AIC BIC  

7 logs 3961.819 308.6657 155.3264  

- DT 3842.11 305.5331 152.2643 -DT 

- GR 4152.886 308.4043 155.1355  

- log10(LLD) 5018.874 315.3962 162.1274  

- log10(MSFL) 4276.268 309.4852 156.2164  

- NPHI 4244.215 309.2075 155.9387  

- PEF 4175.475 308.6047 155.3359  

- RHOB 4335.877 309.9962 156.7274  

Step 2 RSS AIC BIC  

6 logs 3842.11 305.5331 152.2643 Stop 

- GR 4058.689 305.5575 152.3593  

- log10(LLD) 5972.486 319.8179 166.6197  

- log10(MSFL) 5274.891 315.2328 162.0346  

- NPHI 4102.583 305.9546 152.7564  

- PEF 4279.182 307.5103 154.3122  

- RHOB 4238.882 307.161 153.9629  
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Figure 2.3 Optimal Transform of GR in Electrofacies VII, SCFU, ACE Algorithm 
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Figure 2.4 Optimal Transform of LLD in Electrofacies VII, SCFU, ACE Algorithm 
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Optimal Transform
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Figure 2.5 Optimal Transform of MSFL in Electrofacies VII, SCFU, ACE Algorithm 
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Figure 2.6 Optimal Transform of NPHI in Electrofacies VII, SCFU, ACE Algorithm 
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Figure 2.7 Optimal Transform of PEF in Electrofacies VII, SCFU, ACE Algorithm 
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Figure 2.8 Optimal Transform of RHOB in Electrofacies VII, SCFU, ACE Algorithm 



 34

The general idea of non-parametric regression ACE algorithm is to transform 

independent and dependent variables into optimal space with maximized linear 

correlation. We utilized the GRACE software developed by Peter Valko and Akhil 

Datta-Gupta to perform the non-parametric regression ACE technique. Figure 2.8, 

Figure 2.4, Figure 2.5, Figure 2.6, Figure 2.7 and Figure 2.8 give the relations between 

independent variables and their transformed values. We fit those curves with 

polynomials in order to get simple correlations. In optimal space, we build a linear 

correlation between ln(Kg)_Tr and Sum_Tr (sum of all variables_Tr) in Figure 2.9. 

The correlation coefficient is 0.7089 for this case.  

 

Optimal Regression, Correl:0.7089
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Figure 2.9 Optimal Regression ln(Kg)_Tr vs. Sum_Tr_Indep of Electrofacies VII, 

SCFU, ACE Algorithm 
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Figure 2.10 Optimal Inverse Transform of Dependent Variable of Electrofacies VII, 

SCFU, ACE Algorithm 
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Fitted   Stdev = 1.1785
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ln(Kg)= 2.2505E-01 SumTr2 + 1.7926E+00 SumTr + 3.4391E-01

 
Figure 2.11 Cross plot of Fitted vs. Measured Permeability in Electrofacies VII 

 
 

Figure 2.10 is an inverse transform of ln(Kg) from transformed space. Figure 2.11 

is the final fitting vs. measured log-permeability. With polynomial equations from 

Figure 2.11, we are able to predict the new data set (G517 and G520) and calculate 

errors (MSE and MAE).  

Table 2.6 shows the improved permeability estimate in terms of reduced errors. 

Compared to the full model, the optimal stepwise is a generalized model with better 

permeability prediction ability.  
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Table 2.6 Regression and Prediction Errors of Electrofacies VII, SCFU 

 Error Full model Stepwise model 

MSE 1.2202 1.3895 
Regression 

MAE 0.8697 0.9234 

MSE 2.4793 1.0917 Prediction 

G517 MAE 1.1647 0.8439 

MSE 1.7861 1.5227 Prediction 

G520 MAE 1.3361 0.7525 

 

 

In order to apply the new method to all the other electrofacies, we select variables 

and obtain the optimal model for each electrofacies in Table 2.7 and then calculate the 

mean squared error and the mean absolute error in Table 2.8.  
 

 
Table 2.7 Variables Selected of All Electrofacies, SCFU 

Electrofacies Variables Selected 

I DT, GR, log10_MSFL, PEF 

II GR, log10_LLD, log10_MSFL 

III DT, GR, log10_LLD, PEF, RHOB 

IV DT, GR, log10_LLD, log10_MSFL, RHOB 

V DT, GR, log10_MSFL, NPHI, RHOB 

VI DT, GR, log10_LLD 

VII GR, log10_LLD, log10_MSFL, NPHI, PEF, RHOB 

VIII DT, GR, log10_LLD, log10_MSFL, NPHI, PEF, RHOB 

 

 



 38

Table 2.8 Regression and Prediction Errors of All Electrofacies, SCFU 

 Error Full model Stepwise model 

MSE 1.58 1.6850 
Regression 

MAE 0.97 1.1033 

MSE 2.25 1.9728 Prediction 

G517 MAE 1.15 1.0682 

MSE 1.74 1.8127 Prediction 

G520 MAE 1.04 1.0592 

 

 

Finally, we plot measured permeability vs. predicted in Figure 2.12 and plot 

measured and predicted permeability vs. depth in Figure 2.13. Figure 2.12 indicates 

good linearity between measured permeability and predicted permeability with 

correlation coefficient = 0.6967. From Figure 2.13, we see that in general prediction is 

able to define the main feature of measured permeability vs. depth, but less successful 

in reproducing detailed extreme permeability. Permeability prediction is good 

considering that this is a highly heterogeneous carbonate reservoir. 
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Figure 2.12 Measured Permeability vs. Predicted Permeability, G517 SCFU, Stepwise 

ACE Algorithm 
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Figure 2.13 Measured and Predicted Permeability vs. Depth, G517 SCFU, Stepwise 

ACE Algorithm 
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2.5 Summary 

In this chapter, we discussed the stepwise algorithm, stepwise regression and proposed 

a new method combining the stepwise procedure with ACE algorithm to predict 

permeability. Our results show that the proposed method can improve permeability 

prediction under highly heterogeneous reservoir environments. Statistical software 

S-Plus is used for stepwise regression. Computer program GRACE (data correlation 

with ACE model developed by Peter Valko and Akhil Datta-Gupta) and manual 

stepwise procedure is performed with our new proposed method. 

The following specific conclusions can be drawn based on this chapter: 

1. The stepwise algorithm in conjunction with non-parametric regression (ACE) 

technique shows potential for permeability predictions in complex carbonate 

reservoirs. 

2. An examination of the errors for uncored wells indicates that the stepwise 

algorithm potentially improves permeability estimation with both linear model 

and non-parametric regression model.  

3. Variable selection and model reduction can be used further in permeability 

prediction.  

4. Non-parametric regression techniques provide a practical tool for estimating 

permeability in heterogeneous carbonate reservoirs. 
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 CHAPTER III 

TREE REGRESSION 

 

3.1 Introduction 

In this chapter, we discus regression tree and cross validation and their applications in 

data correlation and variable selection. The regression tree method is used to generate 

an initial tree model and cross-validation is used to find the optimal tree size. Cross 

validation and pruning tree together can be considered as a way of variable selection. 

After pruning, the optimal tree model is used to fit training data and predict the blind 

test data. Tree regression method is applied to both SCFU and NRU. Results are 

compared to non-parametric regression ACE. 

 

3.2 Methodology 

3.2.1 Regression Tree13, 14 

A regression tree is built through a process known as binary recursive partitioning. This 

is an iterative process of splitting the data into partitions, and then splitting them further 

on each of the branches. Initially all of the records in a training set (the pre-classified 

records that are used to determine the structure of the tree) are lumped in one big box. 

The algorithm then tries breaking up the data, using every possible binary split on every 

field. The algorithm chooses the split that partitions the data into two parts such that the 

sum of the squared deviations from the mean in the separate parts is minimized.  This 

splitting or partitioning is then applied to each of the new branches.  The process 

continues until each node reaches a user-specified minimum node size and becomes a 
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terminal node.  (If the sum of squared deviations from the mean in a node is zero, then 

that node is considered a terminal node even if it has not reached the minimum size.)  

 

3.2.2 Cross-validation and Pruning 

Since the tree is grown from the training data set, when it has reached full structure it 

usually suffers from over-fitting (i.e. it is "explaining" random elements of the training 

data that are not likely to be features of the larger population of data). This results in 

poor performance on real life data. Therefore, it has to be pruned using the validation 

data set. Cross-validation13 is a very practical way to choose optimal tree size. It requires 

splitting data into k subsets, with a default choice of k=10. Each of the k subsets of the 

data is left out in turn, the model is fitted to the remaining data, and the results used to 

predict the outcome for the subset left out are compared with the initial tree regression 

results. In a regression model, prediction error is usually taken as the sum of differences 

between observed and predicted, that is, the criterion is the same as that used for the 

splitting rule.  

Pruning can also be considered as a method of variable selection. AIC penalizes 

minus twice log-likelihood by twice the number of parameters. For regression tree, we 

can take . One way to select  would be from the fit of the full tree model. 

But AIC-criterion tend to over-fit and choose larger constants14 because we usually 

underestimate  from the full tree model. 

2ˆ2σα = 2σ̂

2σ̂

 

3.3 Tree Regression Procedures 

This section lists tree regression and cross-validation procedures and S-plus commands 

as an illustrative workflow. S-plus is an interface-based statistical software package; 

however, the command line can also be used to run the program. In the following 
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procedure, we find the optimal tree and make a prediction for each electrofacies. After 

predictions, mean squared error (MSE) and mean absolute error (MAE) are calculated.  

 Procedure: 

1. Generate full tree model with mincut = 2, minsize = 4, mindev = 10-6 and plot 

full tree, 

tree.full <- tree(predictor ~ ., data = electrofacies, mindev = 10-6, mincut = 2, 

minsize = 4); 

plot.tree(full.tree, “uniform”); text.tree(full.tree); 

2. Cross-validation to find optimal tree size, 

tree.cv <- cv.tree(tree.full, , prune.tree); 

for (i in 2:5) tree.cv$dev <- tree.cv$dev + cv.tree(tree.full, , prune.tree)$dev; 

tree.cv$dev <- tree.cv$dev/5; 

plot(tree.cv); 

3. Prune full tree model to optimal tree size and plot optimal tree, 

tree.prune <- prune.tree(tree.full, best = optimal size);  

4. Predict new data set with optimal tree model, 

tree.predict <- predict.tree(tree.prune, newdata = list(), type=”vector”); 
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3.4 Field Application: Salt Creek Field Unit 

After electrofacies characterization, the training data set is divided into eight 

electrofacies. In each of electrofacies, tree regression is performed according to the 

workflow. Now we take electrofacies I as an example to demonstrate this regression 

tree method. 

Figure 3.1 shows a regression tree for data correlation between the logarithm of 

permeability and well logs in electrofacies I. The numbers in each terminal node 

represent the final fitted logarithm of permeability for this regression tree model. This 

initial tree model has 47 terminal nodes and a residual mean deviance of 0.562. These 

attributes represent the complexity of the tree and its accuracy. The initial regression 

tree model is used to fit the training data itself and predict logarithm permeability in 

electrofacies I of the blind wells G517 and G520. 

 

 
Figure 3.1 Initial Regression Tree Model for Electrofacies I at SCFU 
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Using a cross-validation chart, we select the optimal tree size and prune the initial 

tree to this size. Figure 3.2 shows the cross-validation chart of electrofacies one and 

Figure 3.3 shows the optimal regression tree after pruning with an optimal tree size of 

5. The number of terminal nodes is reduced from 47 to 5 with an increase in residual 

mean deviance of 0.562 to 1.799. However, the accuracy of the prediction should be 

improved by cross-validation and pruning.  
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Figure 3.2 Cross-validation of Electrofacies I at SCFU 
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Figure 3.3 Optimal Regression Tree Model for Electrofacies I at SCFU 

 

 

Next, we use the optimal regression tree model to fit training data and predict 

blind well G517 and G520. Table 3.1 is a comparison of regression error and 

prediction error of the initial tree model and optimal tree model for electrofacies I. The 

MSE and MAE result proves that a simpler tree structure leads to a better predictive 

ability because unseen samples are less sensitive to the statistical irregularities and 

idiosyncrasies of the training data.  
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Table 3.1 Comparison of Regression and Prediction Errors of Initial Tree and Optimal 
Tree Model of Electrofacies I, SCFU 

 Error Initial model Optimal model 

MSE 0.3241 1.718 
Regression error

MAE 0.4071 1.076 

MSEPrediction error

G517 MAE
No data in EF1 

MSE 5.6609 4.2986 Prediction error

G520 MAE 1.8817 1.7656 

 

 

The advantage of pruning and cross-validation is clear from Table 3.1. Moreover, 

pruning tree and cross-validation can be considered as a variable selection method to 

improve permeability prediction. In electrofacies I, only GR, RHOB and LLD are 

selected for data correlation out of seven well logs. 

This above-stated workflow is repeated for the other seven electrofacies and the 

data from all electrofacies are combined. Table 3.2 shows the optimal tree size and, 

variables selected for all electrofacies and Table 3.3 shows regression error and 

prediction error of the initial and optimal models for all electrofacies. As expected, 

prediction errors of blind well G517 and G520 are all reduced and regression errors 

increase after pruning.  
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Table 3.2 Optimal Tree Size and Variables Selected for All Electrofacies, SCFU 

Electrofacies Optimal tree size Variables selected 

I 5 GR, RHOB, LLD 

II 6 RHOB, DT, PEF, MSFL, NPHI 

III 3 RHOB 

IV 4 GR, RHOB, LLD 

V 2 LLD 

VI 12 GR, RHOB, DT, PEF, MSFL, LLD, NPHI 

VII 2 DT 

VIII 3 GR, DT 

 

 
Table 3.3 Comparison of Regression and Prediction Errors of Initial and Optimal Tree 

Model for All Electrofacies, SCFU 

 Error Initial model Optimal model 

MSE 0.1995 1.4362 
Regression error

MAE 0.3031 0.9454 

MSE 3.2761 2.2546 Prediction error

G517 MAE 1.4278 1.1798 

MSE 4.1523 3.0595 Prediction error

G520 MAE 1.6867 1.4078 
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Figure 3.4 Measured Permeability vs. Predicted Permeability, G517 SCFU, Tree 

Regression 
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Figure 3.5 Measured and Predicted Permeability vs. Depth, G517 SCFU, Tree 

Regression 
 

 

Figure 3.4 shows a cross plot of predicted permeability vs. measured permeability 

of blind well G517. Figure 3.5 gives the plot of measured and predicted permeability 

vs. depth for well G517. From these two figures we observe that tree regression 

captures the general feature of measured permeability, but the limitation of tree 

regression is also obvious in that the same value tends to be assigned to different 

measured permeability because the average permeability prediction is given in each 

node and variation inside node is ignored. However, from the correlation coefficient 
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point of view, a correlation with 6757.0=ρ is acceptable for permeability prediction. 

Comparing the mean squared error and the mean absolute error of tree regression 

model to the ACE model in Table 3.4, we can say that tree regression with pruning 

gives competitive prediction errors to ACE. Moreover, tree regression tends to 

underestimate extreme permeability while the ACE algorithm sometimes leads to the 

wrong direction.  

 

 
Table 3.4 Comparison of Regression and Prediction Errors of Tree Regression and 

ACE for All Electrofacies, SCFU 

 Error 
Tree regression 

with pruning 
ACE25 

MSE 1.4362 1.58 
Regression error 

MAE 0.9454 0.97 

MSE 2.2546 2.25 Prediction error 

G517 MAE 1.1798 1.15 

MSE 3.0595 1.74 Prediction error 

G520 MAE 1.4078 1.04 
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3.5 Field Application: North Robertson Unit 

Following the same workflow, we calculate prediction and regression of all 

electrofacies. Table 3.5 summarizes regression error and prediction error of the initial 

tree model and optimal models. The optimal model greatly reduces prediction errors 

and also increases regression errors, which indicates the improved permeability 

prediction by cross-validation and pruning tree. 

 
 

Table 3.5 Comparison of Regression and Prediction Errors of Initial and Optimal Tree 
Model for All Electrofacies, NRU 

 Error Initial model Optimal model 

MSE 0.4971 2.5210 
Regression error

MAE 0.4348 1.2288 

MSE 3.3367 1.5286 Prediction error

W1509 MAE 1.4431 0.8500 

MSE 4.9582 2.8074 Prediction error

W3533 MAE 1.7247 1.1510 
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Table 3.6 Comparison of Regression and Prediction Errors of Tree Regression and 
ACE for All Electrofacies, NRU 

 Error 
Tree regression 

with pruning 
Stepwise 

MSE 2.5210 2.8776 
Regression error 

MAE 1.2288 1.3225 

MSE 1.5286 1.3376 Prediction error 

W1509 MAE 0.8500 0.7661 

MSE 2.8074 2.5827 Prediction error 

W3533 MAE 1.1510 1.0712 

 

 

Comparing errors from the tree regression and stepwise regression method in 

Table 3.6, we can see that tree regression is unable to predict permeability well. 

However, we believe that this is not because of the limitation of the tree regression 

method. 
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Figure 3.6 Measured Permeability vs. Predicted Permeability, W1509 NRU, Tree 

Regression 
 

 

Figure 3.6 and Figure 3.7 compare the measured permeability and predicted 

permeability in two different ways. Obviously, we can see the lack of linear 

dependence in Figure 3.6 and bad fitting in Figure 3.7. The correlation 

coefficient 1339.0=ρ  also shows the same result.  
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Figure 3.7 Measured and Predicted Permeability vs. Depth, W1509 NRU, Tree 

Regression 
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3.6 Summary 

In this chapter, we applied tree regression method to our data correlation and used 

cross-validation and pruning to generalize a tree model for further improvement of 

permeability estimation. We apply this method to two field cases: Salt Creek Field Unit 

(SCFU) and North Robertson Unit (NRU). Result from SCFU shows that tree 

regression with pruning failed to predict permeability in carbonate reservoirs because it 

is unable to preserve the continuity of permeability. The reason is that in tree 

regression limited terminal nodes give limited predicted permeability and variation 

inside each node is ignored. 

Some conclusions are drawn: 

1. Tree regression fails to predict permeability in carbonate reservoirs because it 

fails to capture the continuity of permeability. 

2. Cross-validation is a more efficient method of the variable selection process. 

Combined with a pruning tree, cross-validation greatly reduces prediction 

errors and gives an improved permeability estimate. 
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 CHAPTER IV 

MULTIVARIATE ADAPTIVE REGRESSION SPLINES 

 

4.1 Introduction 

Compared to the regression tree method, the multivariate adaptive regression splines 

(MARS) method is considered as a generalization of recursive partitioning regression. 

In this chapter, we apply MARS to permeability estimation and compare it with the 

ACE algorithm and regression tree. The MARS software from Salford Systems is used 

to build the regression model and predict permeability. 

 

4.2 Methodology 

The multivariate adaptive regression splines method15-17 is a generalization of 

recursive partitioning regression. The MARS model is in the form of 

  ∑
=

=
k

i
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The model is a weighted sum of basis functions. Each ci is a constant coefficient. 

The Mth basis function is like this: 
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MARS builds a model in two phases: the forward and the backward pass. This two 

stage approach is the same as that used by recursive partitioning trees. Forward 
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stepwise knot placement is used to generate all possible models within limitation, then 

backward stepwise elimination with generalized cross validation is performed to select 

the best model. 

The MARS software from Salford systems is capable of automatic variable search, 

automatic variable transformation and automatic limited interaction search. It outputs 

variable importance, basis functions and the final model. We used this software to 

generate the best MARS model and predict blind test data.  

 

4.3 Procedure 

MARS software is used here for permeability prediction. The procedure is as follows: 

Import data into MARS and setup variables and factors such as interactions, range of 

variables, max basis functions, maximum interactions etc. 

Run the program. Variables are automatically searched and all possible models are 

calculated. The best model is selected by generalized cross validation (GCV) criteria.  

Select the best model. Variable importance, basis functions and final model are output. 

Predict the new blind test data set by applying best model to data. MSE and MAE are 

calculated manually. 
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4.4 Field Application: Salt Creek Field Unit 

After data partitioning using electrofacies characterization, we apply the multivariate 

adaptive regression method to correlate log-permeability to well logs. We take 

electrofacies I as an example to illustrate MARS. 

Table 4.1 indicates the relative variable importance and Table 4.2 shows the basis 

functions of electrofacies I. According to Table 4.1 and Table 4.2, we can see that four 

well logs (RHOB, GR, log10_MSFL, log10_LLD) are selected out of seven logs for 

data correlation. Log-permeability prediction is a combination of several basis 

functions and each basis function in this case is a piecewise linear function. Here, we 

can see that the multivariate adaptive regression splines method is a generalization of 

piecewise linear regression. 

 

 
Table 4.1 Relative Variable Importance of Electrofacies I, SCFU 

Relative Variable Importance 

5 RHOB 100.000 2.881 

1 GR 44.963 2.430 

3 LOG10_MSFL 35.831 2.389 

2 LOG10_LLD 30.431 2.368 

4 DT 0.000 2.316 

6 NPHI 0.000 2.316 

7 PEF 0.000 2.316 
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Table 4.2 Basis Functions of Electrofacies I, SCFU 

Basis Functions 

  BF2 = max(0, 2.680 - RHOB ); 

  BF3 = max(0, GR - 4.100); 

  BF4 = max(0, LOG10_LLD - 1.828); 

  BF6 = max(0, LOG10_MSFL - 2.033); 

  BF7 = max(0, 2.033 - LOG10_MSFL ); 

Y = -2.249 + 24.571 * BF2 - 0.051 * BF3 + 1.533 *B4 + 1.074 * BF6 + 

3.423 * BF7; 

 

Repeating the same procedure for all electrofacies; we have the variables selected 

by MARS out of all electrofacies as shown in Table 4.3. The order of variables gives 

the relative importance of variables from high to low. Different variable combinations 

show the dissimilarity of electrofacies. At the same time, we can determine the basis 

functions of all electrofacies. 

 
Table 4.3 Variable Selection of All Electrofacies, SCFU 

Electrofacies Variables selected (relative importance order) 

I RHOB, GR, log10_MSFL, log10_LLD 

II RHOB, GR, log10_MSFL, log10_LLD 

III RHOB, DT 

IV RHOB, GR, log10_LLD 

V Log10_LLD, NPHI, RHOB 

VI RHOB, GR 

VII Log10_MSFL, log10_LLD, RHOB 

VIII RHOB, log10_LLD, DT, GR, log10_MSFL 
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Table 4.4 Regression and Prediction Errors of All Electrofacies 

 Well MSE MAE 

Regression error Training 1.5458 0.9585 

G517 2.1267 1.1200 
Prediction error 

G520 2.3468 1.1343 

 

 

Given the basis functions of each electrofacies, we can predict permeability and 

calculate regression error and prediction error of wells G517 and G520 in Table 4.4. 

Table 4.5 compares regression and prediction errors of the MARS, ACE and tree 

methods. As it is shown, MARS yields very good prediction errors compared to the 

ACE and tree regression methods.  

 

 
Table 4.5 Comparison of MARS, ACE and Tree Regression 

 Error MARS ACE Tree 

MSE 1.5458 1.58 1.4362 Regression 

error MAE 0.9585 0.97 0.9454 

MSE 2.1267 2.25 2.2546 Prediction error 
G517 MAE 1.1200 1.15 1.1798 

MSE 2.3468 1.74 3.0595 Prediction error 
G520 MAE 1.1343 1.04 1.4078 

 

 

Figure 4.1 and Figure 4.2 show the predicted permeability compared to measured 

permeability in two different formats. The correlation coefficient of Figure 4.1 equals 
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to 0.6951, which indicates a nice prediction by the MARS method.  
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Figure 4.1 Measured Permeability vs. Predicted Permeability, G517 SCFU, MARS 
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Figure 4.2 Measured and Predicted Permeability vs. Depth, G517 SCFU, MARS 
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4.5 Field Application: North Robertson Unit 

Here we apply the MARS method to field case NRU. In each electrofacies, variables 

are selected and basis functions are calculated after generalized cross-validation. 

Variable importance of all electrofacies is shown in Table 4.6. Table 4.7 summarizes 

regression error and prediction error of all electrofacies. 

 
 

Table 4.6 Variables Selected of All Electrofacies, NRU 

Electrofacies Variables selected (relative importance order) 

EF1 None 

EF2 Log10_LLD, log10_MSFL, GR 

EF3 Log10_LLD, NPHI, log10_MSFL  

EF4 None 

EF5 NPHI, log10_LLD, log10_MSFL, RHOB 

EF6 NPHI, DT, log10_LLD 

EF7 Log10_LLD, log10_MSFL 

EF8 RHOB 

EF9 DT, GR 

 

 
Table 4.7 Regression and Prediction Errors of All Eletrofacies, NRU 

 Well MSE MAE 

Regression error  2.6581 1.2702 

W1509 1.4441 0.8401 
Prediction error 

W3533 2.8917 1.1732 
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Figure 4.3 and Figure 4.4 compare the measured permeability and predicted 

permeability. Just as for stepwise regression and tree regression, MARS is unable to 

give a good permeability prediction. The correlation coefficient from MARS is 0.1871, 

compared to stepwise regression (0.1950) and tree regression (0.1339). The poor linear 

dependence between measured and predicted permeability is shown in Figure 4.3. 
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Figure 4.3 Measured Permeability vs. Predicted Permeability, W1509 NRU, MARS 
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Figure 4.4 Measured and Predicted Permeability vs. Depth, W1509 NRU, MARS 
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Table 4.8 Comparison of MARS, ACE and Tree Regression, NRU 

 Error MARS Stepwise Tree 

MSE 2.6581 2.8776 2.5210 Regression 

error MAE 1.2702 1.3225 1.2288 

MSE 1.4441 1.3376 1.5286 Prediction error 
W1509 MAE 0.8401 0.7661 0.8500 

MSE 2.8917 2.8961 2.8074 Prediction error 
W3533 MAE 1.1732 1.0985 1.1510 

 

Finally, we compare regression and prediction errors of all three methods: MARS, 

stepwise regression and tree regression, in Table 4.8. Unexpectedly, stepwise 

regression outperforms the other two methods in the North Robertson Unit (NRU) case. 

The reason is that the NRU core permeability data with low accuracy and wide range 

lead to deviated data partitioning. 

 

4.6 Summary 

In this chapter, we discussed the multivariate adaptive regression splines method and 

apply it to two field cases: Salt Creek Field Unit (SCFU) and North Robertson Unit 

(NRU). We used the MARS software from Salford Systems to perform this method. 

The software has built-in functions for the stepwise procedure and generalized 

cross-validation for knot placement and model reduction. Results from SCFU are 

summarized in Table 4.5, Figure 4.1 and Figure 4.2. They show better prediction 

outcomes relative to the ACE algorithm and tree regression. 
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 CHAPTER V 

DISCUSSION AND CONCLUSIONS 

 

5.1 Discussion 

In this study, we improved permeability estimation based on well logs by focusing on 

data correlation and variable selection of the permeability prediction process. Variable 

selection is used to selected appropriate well logs and then data correlation is built 

between permeability and selected well logs. The following three methods are tested 

and applied to two highly heterogeneous carbonate reservoirs: Salt Creek Field Unit 

and North Robertson Unit. 

1. Non-parametric regression (ACE) with stepwise procedure and AIC-criterion 

2.  Tree regression with K-fold cross-validation and pruning 

3. The multivariate adaptive regression splines (MARS)  

Result from Salt Creek Field Unit shows that permeability estimates is improved 

by applying variable selection to the permeability prediction process. The correlation 

coefficients between measured permeability and predicted permeability are close to 0.7, 

which is an acceptable linear dependency. The mean squared error and the mean 

absolute error are also showing good permeability estimations. But tree regression is   

unable to preserve the continuity of permeability and leads to discrete permeability 

predictions. 

In North Robertson Unit, all three methods are unable to capture high permeability. 

In my opinion, the reason we fail to predict high permeability is not because the 

multivariate regression methods but the following: 

Data partitioning problem; 
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Low permeability with limited accuracy is hard to predict; 

Abnormally high permeability is shown in some low permeability zones. Possible 

explanation is micro-fractures. 

So far, the following conclusions can be drawn based on this work: 

1. Variable selection in conjunction with regression methods shows significant 

potential for permeability predictions in complex carbonate reservoirs.  

2. An examination of the error rates for uncored wells in Salt Creek Field Unit 

indicates that the stepwise with ACE and MARS methods are successful in 

predicting permeability and tree regression is less successful because it is 

unable to preserve continuity of permeability. 

3. For permeability predictions using a combination of data correlation and 

variable selection, the success of the method strongly depends on the 

discriminatory power of the data classification technique. Result of North 

Robertson Unit shows that the difficulty in indentifying electrofacies in 

uncored wells can result in the application of incorrect correlation and, 

consequently, poor permeability predictions. 

4. In comparing the relative predictive performance of the three regression 

methods, the stepwise with ACE method appears to outperform the other two 

methods. 
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5.2 Future Work 

The idea of variable selection in data correlation is very successful in improving 

permeability estimation. In statistics, variable selection can also be used in cluster 

analysis, which is part of our data partitioning. Based on the successful of variable 

selection in data correlation, I think we can try the variable selection for electrofacies 

characterization.  

Another idea is from MARS software: The software has built-in generalized 

cross-validation and model selection process. We can try to apply cross-validation to 

non-parametric regression (ACE). If result is promising, we can implement GRACE 

with cross-validation for variable selection and model reduction. 
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