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mproving adaptive subtraction in seismic multiple attenuation
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ABSTRACT

In seismic multiple attenuation, once the multiple models
have been built, the effectiveness of the processing depends
on the subtraction step. Usually the primary energy is partial-
ly attenuated during the adaptive subtraction if an L2-norm
matching filter is used to solve a least-squares problem. The
expanded multichannel matching �EMCM� filter generally is
effective, but conservative parameters adopted to preserve
the primary could lead to some remaining multiples. We have
managed to improve the multiple attenuation result through
an iterative application of the EMCM filter to accumulate the
effect of subtraction. A Butterworth-type masking filter
based on the multiple model can be used to preserve most of
the primary energy prior to subtraction, and then subtraction
can be performed on the remaining part to better suppress the
multiples without affecting the primaries. Meanwhile, sub-
traction can be performed according to the orders of the mul-
tiples, as a single subtraction window usually covers differ-
ent-order multiples with different amplitudes. Theoretical
analyses, and synthetic and real seismic data set demonstra-
tions, proved that a combination of these three strategies is ef-
fective in improving the adaptive subtraction during seismic
multiple attenuation.

INTRODUCTION

Awave-equation-based multiple attenuation method usually con-
ists of two steps, multiple prediction and adaptive subtraction �Wig-
ins, 1988; Verschuur et al., 1992; Berkhout and Verschuur, 1997;
erschuur and Berkhout, 1997; Weglein et al., 1997; Wang, 2004,
007; Lu, 2006; Kaplan and Innanen, 2008�, which are equally im-
ortant for producing a satisfactory multiple attenuation result.
ere, we focus on the adaptive subtraction. We attempt to improve

he effectiveness of subtraction through iterative application of the
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xpanded multichannel matching �EMCM� filter, masking the data
rior to subtraction and subtracting multiples according to their or-
ers.

First, an effective matching filter is the kernel of the adaptive sub-
raction. The expanded version of the commonly used multichannel

atching filter, the EMCM filter, not only can explore effectively the
ateral coherency of adjacent traces but also increase the resolution
n the time axis �Wang, 2003b�. Three essential parameters in the
MCM filter are the filter length, window size in time, and number
f channels in matching. We find in the application that the choice of
he best parameters is fundamental to an optimal multiple attenua-
ion result, and the iterative application of the filter can improve the
esult further. Moreover, this iteration is performed in the subtrac-
ion step, and it is numerically cheaper than a similar iteration imple-

entation adopted in the more expensive multiple modeling step to
mprove the dynamic properties of multiple models �Berkhout and
erschuur, 1997; Wang, 2004, 2007�.
Second, masking the data prior to multiple suppression also is an

ssential factor in the process. The basic idea �Zhou and Greenhalgh,
994, 1996; Landa et al., 1999; Kelamis et al., 2002; Wang, 2003a� is
o use predicted multiples as references to design a masking filter so
s to separate most of the primary energy. We apply it during adap-
ive subtraction in the t-x domain, before adaptively subtracting

odeled multiples from only the remaining part. This application
as been proved to be the most efficient way to preserve the primary
nergy.

Third, mixed-order multiples are obstacles to a successful multi-
le attenuation in some cases.All orders of surface-related multiples
an be modeled via spatial and temporal convolution �Verschuur et
l., 1992; Berkhout and Verschuur, 1997�, but multiples with differ-
nt orders usually possess different properties. The multiple model,
lthough considered to be kinematically accurate, hardly can obtain
orrect properties such as amplitude. Moreover, a single time win-
ow sometimes could cover different-order multiples during the
daptive subtraction. It is therefore difficult to eliminate all the mul-
iples simultaneously because of the limitation of multiple model-
ng.
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V60 Huo and Wang
A possible solution to this might be the adoption of a small time
indow, but it cannot tackle the problem completely. Hugonnet

2002� introduced a partial solution, which builds multiple models
y convolving a portion of primaries �the shallow part without con-
amination of multiples� with the whole data set. Baumstein and Ha-
idi �2006� also proposed using accurate primaries to build differ-
nt-order multiple models after the dip moveout �DMO� reconstruc-
ion of 3D marine data. Kaplan and Innanen �2008�, on the other
and, used independent component separation strategy to eliminate
he mixed-order multiples. Here, we introduce a refining procedure
f surface-related multiple elimination �SRME� by modeling and
ubtracting separate-order multiples with previous SRME results.
e demonstrate that it is much more effective to separately subtract
ixed-order multiples with different amplitude magnitudes accord-

ng to their orders.

ITERATIVE EMCM FILTERING

Given a raw data trace d�t� and a group of N multiple-model traces
j�t�, the EMCM filter can be expressed as �Wang, 2003b�

p�t��d�t�� �
j�1

N

�f1,j�t��mj�t�� f2,j�t�� ṁj�t�

� f3,j�t��mj
H�t�� f4,j�t�� ṁj

H�t��, �1�

here f i,j�t� are the shaping filters, * indicates convolution, and the
esidual p�t� is the multiple attenuation result. In equation 1, mj

H�t�
s the Hilbert transform of mj�t�; ṁj�t� and ṁj

H�t� are the derivatives
f mj�t� and mj

H�t�, respectively. Compared with the conventional
ultichannel matching filter, the EMCM approach expands not only

he number of traces but also new physical dimensions consisting of
hree adjoined traces mathematically derived from the multiple

odel trace mj�t�. Three parameters affect the above subtraction: fil-
er length, number of channels, and window size in the adaptive sub-
raction. It is essential to find appropriate parameters that not only
an remove multiple events, but also preserve the primaries at the
ame time.

A multichannel approach helps to suppress random noises and
reserve the primaries through use of the lateral coherence of neigh-
oring traces. However, the quality of the multiple attenuation result
oes not always improve with the increase in number of matching
hannels. In practice, the lateral coherence decreases when the in-
olving traces exceed a certain number �Spitz, 1999�, and the key
ies in the choice of the correct channel number for different data
ets.

The window length influences the quality of the autocorrelation
nd crosscorrelation that constitute the normal equation in the above
east-squares problem �Treitel, 1970�. A long time window behaves
ike the adjacent traces to serve as the vertical coherence and conse-
uently helps to preserve the primaries. Verschuur and Berkhout
1997� suggest the adoption of long global filters to take care of the
ource signature. However, using long windows for local filters can
ave a risk of covering different-order multiples within one window,
nd thus affect the result of the conventional adaptive subtraction.

Compared with the above two parameters, filter length is the most
mportant and effective parameter. The criterion of the matching fil-
er is the minimum energy of the residual. Long filter length matches
he data well and thus removes more data residual during the sub-
raction. Theoretically, the residual drops to zero when the filter
Downloaded 19 May 2009 to 155.198.94.200. Redistribution subject to
ength is increased to infinity. It is therefore difficult to preserve the
rimary energy contained in the residual if the filter length is too
ong. Furthermore, a long filter is more likely to match the multiple

odel to primaries when primary and multiple events are close to
ach other. Therefore we recommend the adoption of a filter length
hat is the same as or slightly longer than the source signature.

Although a short matching filter can reduce the risk of matching
ultiples to primaries, it cannot eliminate all the multiple energy in

ust one step. Most iterative methods, e.g., steepest descent and con-
ugate gradient approaches, gradually improve the solution. Inspired
y the steepest descent method, we applied the EMCM filter itera-
ively to optimize the demultiple result.

To explain the approach, we use the simple single-channel filter as
n example:

p�t��d�t�� f�t�� m̃�t�, �2�

here m̃�t� is the multiple model. The iterative approach can be de-
ned as

p�i��t��d�t�� f �i��t�� m̃�i��t�, �3�

here i is the iteration number. The multiple model is generated in
he multiple prediction phase, for i�1, m̃�i��t�� m̃�t�, and for i � 1,

m̃�i��t��d�t��p�i�1��t� . �4�

The iteration increases the actual filter length. Take a three-itera-
ion application, for example,

p�3��t��d�t�� f �3��t�� f �2��t�� f �1��t�� m̃�t�, �5�

here the actual matching filter after the third iteration is f �3��t�*f �2�

t�*f �1��t�. If we set the filter length in each iteration as � �samples�,
he final filter length will be 3��2, much longer than the original
etting. As longer matching filters eliminate more multiple energy,
he remaining multiple energy can be reduced further by the itera-
ions, so that we can select the best approximate result. This ap-
roach is numerically cheap as it implements the iteration in the sub-
raction step, whereas similar concepts, such as iterative SRME and

ultiple prediction through inversion �MPI�, perform iterations in
he more expensive multiple modeling step.

We have conducted many experiments on several data sets using
ingle-channel, normal multichannel, and EMCM methods to test
he effects of the parameters mentioned above. The EMCM general-
y is better than single-channel and normal multichannel matching

ethods. These experiments reveal that long window size and short
lter length tend to produce a better result within the EMCM, and the

terations could further improve the result.
In the Pluto synthetic data �Figure 1a�, several orders of multiples

xist, and the second-order water-bottom multiples are weak in am-
litude compared to the first-order multiples. The multiple model
Figure 1b� obtained by conventional spatial convolution has pre-
icted the position of the multiples precisely, compared with the
ultiple energy in the original input data, which proves its kinematic

orrectness. However, it also is quite obvious that the energy of the
econd- and high-order multiples is relatively higher than that of the
rst-order ones in the model.
We partially zoom in three demultiple results shown in Figure

c-e, and use white arrows to point out the differences between them
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Improvements on multiple adaptive subtraction V61
n Figure 2a-c, respectively. The zoom-in area is located in the white
rame in the middle of Figure 1a. Figures 1c and 2a show the multi-
le attenuation result through application of the EMCM subtraction
fter the first iteration, and Figures 1e and 2c show the results after
hree iterations. The filter parameters used in the EMCM method are:
hannels�3, window length�3500 ms, and filter length�32 ms.
igures 1d and 2b show a relatively long filter approach:

a)

b)

c)

igure 1. Application of iterative EMCM. �a� Stack section of the Plu
iple attenuation result by the EMCM method with short filter length
ong filter length �window�3500 ms, filter�96 ms�, �e� by using
enuated energy �i.e., the difference between �a and e�� by the iterativ
Downloaded 19 May 2009 to 155.198.94.200. Redistribution subject to
hannels�3, window length�3500 ms, and filter length�96 ms.
We can observe from the comparison that the long-filter and itera-

ive approaches contribute to better attenuation of the multiple ener-
y.As discussed before, the iteration increases the filter length effec-
ively. In this case, the iterative approach �Figure 2c� has an equiva-
ent filter length of 96 ms, the same as the long-filter approach �Fig-
re 2b�, but it obtains a better attenuation result as the long filter has

hetic data. �b� Predicted multiple model with all the orders. �c� Mul-
ow�3500 ms, filter�32 ms� after the first iteration, and �d� with
CM filter three times �window�3500 ms, filter�32 ms�. �f� At-

M method.
d)

e)

f)

to synt
�wind

the EM
e EMC
 SEG license or copyright; see Terms of Use at http://segdl.org/
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V62 Huo and Wang
ore chances to match the multiple model to primary events. Some
rtifacts �at about 1 km, 4.3 s; 12–15 km, 2.3 s� can be observed in
igures 1d and 2b for the above-mentioned reasons.
Figure 2 also shows the attenuated multiple energy. The multiples

ave been suppressed fully, but unfortunately some primary energy
etween 2.7 and 3 s is wrongly removed along with multiples. How-
ver, the iterative approach �Figure 2c� performs better than the
ong-filter approach �Figure 2b� as it attenuates less primary energy
nd produces fewer artifacts.

In the adaptive subtraction discussed above, the EMCM filter with
long window length �3500 ms� is applied and the two orders of wa-

er-bottom multiples are included in a single time window. Some ar-
ifacts, at about 18 km, 2.2 s �inside the elliptical circle�, are pro-
uced along with the first-order water-bottom multiples, and the sec-
nd-order ones are oversubtracted because of the low amplitude, es-
ecially between 18 and 20 km at 2.9 s. Similar problems also can
e observed between 26 and 28 km at 1.7 and 2.5 s �inside the ellip-
ical circle�. This leads to the following two schemes to improve fur-
her the effectiveness of multiple subtraction.

MULTIPLE SUBTRACTION
WITH A MASKING FILTER

One of the fundamental assumptions in the adaptive subtraction
equation 1� is that the multiple-free primaries have the minimum

a)

b)

c)

igure 2. Partial zoom-in of application of iterative EMCM: Attenua
ttenuated energy �right�. �a� Multiple attenuation result by the E
hort filter length �window�3500 ms, filter�32 ms� after the fir
ith long filter length �window�3500 ms, filter�96 ms�, �c� by u

er three times �window�3500 ms, filter�32 ms�.
Downloaded 19 May 2009 to 155.198.94.200. Redistribution subject to
nergy. Thus, what we do here is use a mask on the data to protect the
rimary energy in the best possible way, and then perform energy
inimization �i.e., multiple subtraction� on the remaining data.
The mask filter has been used in the f-k domain, Radon transform

omain, or the t-x domain for multiple attenuation to reduce the leak-
ge of primary energy �Zhou and Greenhalgh, 1994, 1996; Landa et
l., 1999; Kelamis et al., 2002; Wang, 2003a�. Guitton �2005� also
sed a masking operator in the pattern-based multiple attenuation
ethod, which defined the operator as a diagonal matrix filled with

eros and ones, to preserve the signal when there are no multiples.
We use the nonlinear masking filter � in an adaptive manner to

reserve the primary energy before subtraction. It is adaptive in the
ense that the filter is dependent on the original data and the multiple
odel, and is defined as a Butterworth-type function:

� �1�
1

�1�� B

�A
�2n

, �6�

here B is the amplitude of the multiple model, A is the amplitude of
he original input section, n is the parameter used to control the
moothness of the filter, and � is a weighting factor. The original data
an be divided into two parts with the constraint of the masking fil-
er: �1���d, the primary energy uncontaminated by multiples, and
d, the multiple energy with partly remaining primary energy. The
rst part of the data will not be involved in the subtraction step.

MULTIPLE ATTENUATION
ACCORDING TO ORDERS

It is common to cover different-order multiples
in one window in the case of shallow water or
long matching window, and this certainly ham-
pers the effect of multiple subtraction. The tradi-
tional alternative is to adjust the window length of
the subtraction so that it can cover only one order
of multiple at a time. However, this method has
two disadvantages. First, it forces us to select
short window lengths when a long one is pre-
ferred during the adaptive subtraction. Second, it
still cannot handle the mixed-order multiples lo-
cated below the water-bottom ones as these mul-
tiples cannot be distinguished by time differenc-
es. The multiple prediction through inversion
�MPI� method �Wang, 2004, 2007� can refine the
dynamic properties of the model of different-or-
der multiples and thus improve the subtraction
outcome. However, the result is not always satis-
factory as the method still subtracts all orders of
multiples in one step.

The upgoing waves sometimes are reflected
back from the surface more than once and pro-
duce high-order multiples. Multiples with the
same order normally have similar amplitude and
phases, and multiples with different orders might
differ in properties because of the absorption and
reflectivity. It is almost impossible to predict a
multiple model with correct property ratios be-

sult �left� and
method with
tion, and �b�
e EMCM fil-
tion re
MCM
st itera
sing th
 SEG license or copyright; see Terms of Use at http://segdl.org/
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Improvements on multiple adaptive subtraction V63
ween different-order multiple events, and the effect then is passed
n to the adaptive subtraction step. For example, a matched filter �i

an be calculated to shape the multiple model M̃i for an event of
th-order multiple Mi,

Mi��iM̃i, �7�

nd similarly, another matching filter � j exists for an event of
jth-order multiple M j,

M j�� jM̃ j, �8�

here matrices in equations 7 and 8 represent data and filters in the
requency domain.

The two matching filters �i and � j are distinct from each other as
he properties of Mi and M j are normally different. Consequently, at
east one of these two events cannot be well subtracted, as only one
ompromised filter is produced in one time window. To solve funda-
entally the mixed-order multiple problem theoretically, we test an

pproach that produces the multiple models for each single order and
hen subtracts them from the original data separately.

According to the principle of SRME, prediction of different-order
ultiple models can be formulated as

M̃1�PP, and M̃i�1�PM̃i, �9�

here M̃1 is the first-order multiple model, M̃i is the ith-order multi-
le model, and P is the input multiple-free data that can be obtained
y any multiple attenuation method. As the start of the whole proce-
ure, it does not need to be precise because the major obstacle of
ixed-order multiples during adaptive subtraction is the oversub-

raction of high-order multiples. As long as most multiples are sup-
ressed, the effect of remaining ones in P can be ignored during the
odeling.
Theoretically, the sequence will make no difference for the sub-

raction, but subtracting high-order multiples first might give a
lightly better result in practice. This is because high-order multiples
ocate at a deeper position, and subtracting them first will make less
mpact on low-order multiples.

Because the computation time increases linearly with the increase
f the number of models we build, we recommend its use only when
he conventional SRME fails. Furthermore, we simply can use M̃1

PP and M̃h�PM in the adaptive subtraction when only the first-
nd second-order multiples are obvious in a specific data set. The at-
enuated multiple we get at the beginning is M, and M̃h is the second
nd high-order multiple model. This simplification makes the meth-
d efficient and easy to use, and similar strategy can be used between
econd- and third-order multiples, and so on.

In this approach, subtraction might be expressed as

P�D���M̃1�M̃h�, �10�

here D is the original data set. The subtraction can be implemented
n sequence as

P*�D��1M̃h, and P�P*��2M̃1. �11�
Downloaded 19 May 2009 to 155.198.94.200. Redistribution subject to
e use the iterative EMCM method in equation 11 to optimize the
emultiple result by iterations.

APPLICATIONS

In the previous sections, we have discussed three strategies for
ultiple subtraction: iterative EMCM filtering, masking filters be-

ore subtraction, and subtraction according to orders. Altogether,
hey could improve the multiple attenuation result, as shown in Fig-
re 3.

A masking filter divides the original data �Figure 1a� into two
arts based on the multiple model �Figure 1b�. Figure 3a is the part of
he primary energy that must be preserved, and Figure 3b is the re-

aining energy, which includes all the multiples. Figure 3a is not in-
olved in the subtraction process at all, and Figure 3b is the input
ata set for various subtraction experiments.

Figure 3c is the multiple attenuation result, in which the second-
nd higher-order multiples are suppressed from Figure 3b. The mod-
l of second- and higher-order multiples is calculated in equation 9,
here matrices P and M1 represent shot gathers corresponding to

tack sections in Figure 1d and e, respectively.
The first-order multiple model can be generated with equation 9,

n which matrix P represents shot gathers corresponding to Figure
d. Figure 3d is the result after further attenuation of the first-order
ultiples. All orders of multiples are attenuated up through this

oint, and only the primary energy remains. Figure 3e is the final re-
ult, the sum of the preserved primary energy �Figure 3a� and demul-
iple result of Figure 3d. We can see that the multiple events are sup-
ressed thoroughly without introducing any artifacts, and the conti-
uity of primary events is maintained well �inside the elliptical cir-
les�.

Figure 3f shows the total attenuated energy, the difference be-
ween Figures 1a and 3e. The wrongly attenuated primary events ob-
erved in Figure 1e do not appear in this figure �inside the elliptical
ircles�, which indicates that these two schemes, together, can im-
rove the preservation of primaries in multiple subtraction.

Figure 3g indicates the result of the conventional short-window
pproach to handle the mixed-orders problem. We use the output of
he second iteration of SRME as the multiple model because it has
he similar costs, and change the window length to 800 ms to avoid
overing different-order multiples in one window. For a better com-
arison, we use the same masking filter as in the previous approach.
he subtraction, however, cannot preserve primaries well as the time
indow is not long enough to serve as a sufficient constraint. Figure
h shows the attenuated energy where strong primary events can be
bserved.

Figure 4 shows the zoom-in of Figure 3e-h, in which white arrows
oint to the events of interest for better comparison. The zoom-in ar-
as are indicated by the white frames in Figure 1a. The arrow at the
eft, bottom corner, points to the multiple event in Figure 4c and d,
nd all other arrows point to the primaries that will be preserved.
hese figures clearly show that the subtraction according to orders
oes have some advantages over the iterative SRME with short win-
ow.

Figure 5a is the stack profile of a real marine seismic data set, ac-
uired in an area with relatively deep water. It contains the free-sur-
ace multiples with three different orders covering the primaries.
igure 5b is the result of conventional adaptive subtraction with
asking filter. It might be observed that strong reflections between

.9 s and 1.0 s cause some artifacts below the layers during the
 SEG license or copyright; see Terms of Use at http://segdl.org/
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a) e)

b) f)

c) g)

d) h)

igure 3. Application of the masking filter and subtraction according to orders. �a� Preserved primary energy. �b� The remaining primaries and
ultiples after masking. �c� The result after the second- and higher-order multiple attenuation. �d� The further result after the first-order multiple

ttenuation. �e� The final demultiple result, the combination of �a and d�, and �f� the attenuated multiple energy. �g� The result of the conventional
hort-window �800 ms� adaptive subtraction, and �h� the attenuated multiple energy.
Downloaded 19 May 2009 to 155.198.94.200. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/
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a)

b)

c)

d)

igure 4. Partial zoom-in of Figure 3:Attenuation result �left� and attenuated energy �right�. �a�, �c� The result of the conventional short-window

800 ms� adaptive subtraction; �b�, �d� the result of adopting the masking filter and subtraction according to orders.

Downloaded 19 May 2009 to 155.198.94.200. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/
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V66 Huo and Wang
daptive subtraction. In addition, some primaries are partially atten-
ated around the area by mistake, and some high-order multiples �lo-
ated at 40–70 km, 1.6 s and 2.0 s� have been oversubtracted.

a)

b)

c)

igure 5. A multiple attenuation example of real marine seismic data
entional adaptive subtraction with masking filter, and �c� using subt
lter. �d� The difference between �a and b�, and �e� the difference betw
Downloaded 19 May 2009 to 155.198.94.200. Redistribution subject to
Figure 5c is the multiple attenuation result with the masking and
ubtracting in orders. The iterative EMCM filter is used in subtrac-
ion. Figure 5d and e shows the multiple energy attenuated from Fig-

)

ack profile of raw data. Multiple attenuation result by �b� using con-
according to orders and the iterative EMCM filtering with masking
and c�.
d

e)

. �a� St
raction
 SEG license or copyright; see Terms of Use at http://segdl.org/



u
T
l
m

l

1

2

3

p
a
c

B

B

G

H

K

K

L

L

S

T

V

V

W

—

—

—

W

W

Z

—

Improvements on multiple adaptive subtraction V67
re 5b �difference of Figure 5a and b� and Figure 5c, respectively.
he new method has removed the aliases below the unconformable

ayers and preserved the primary energy well while removing more
ultiples.

CONCLUSIONS

We successfully improved multiple attenuation through the fol-
owing three schemes.

� Iterative EMCM filtering: The EMCM filter enables a long
window with a short-length filter to give a satisfactory result for
most cases. Its iterative application could improve the multiple
attenuation result.

� Multiple subtraction with a masking filter: The masking filter
can preserve most of the primary energy from the raw data be-
fore subtraction. The multiple subtraction then is performed on
the remaining part of the data. As a result, multiples can be at-
tenuated fully and the primaries preserved better.

� Multiple attenuation according to orders: Different-order mul-
tiples have different properties because of the absorption rate
and reflectivity. We suggest subtracting them separately ac-
cording to their orders to obtain a more precise matching filter.
Consequently, the result of multiple attenuation could be
improved.
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