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Abstract— Autonomous vehicles are widely regarded as a
promising technology to improve the safety of transportation
systems. However, the efficiency of vehicles may be compro-
mised to ensure safety when there are large uncertainties
in perception and prediction of the behaviors of other road
participants due to limitations in sensors. To remedy this
problem, vehicle to vehicle (V2V) communication is applied to
improve efficiency of autonomous vehicles during interactions
with other vehicles. By requiring the vehicles to communicate
their intentions with one another, the efficiency of the vehicles
can be improved in terms of smaller variations in their speed
profiles and smaller delay as demonstrated in the simulations.

I. INTRODUCTION

Autonomous vehicles are widely regarded as a promising
technology to improve the safety of transportation systems as
they can avoid accidents caused by human drivers’ mistakes.
However, the behavior of an autonomous vehicle depends
on how it perceives and predicts the surrounding world,
which is constrained by its sensing capabilities. When there
are large uncertainties in perception and prediction, the
vehicle’s behavior tends to be conservative, especially during
interactions with other road participants.

Although the accuracy of perception and prediction can
be improved through extensive training and better driver
modeling [1], it may not outperform direct communication.
In particular, vehicle to vehicle (V2V) communication can
compensate the deficiency in perception as well as reduce
the uncertainties in predicting other vehicles’ behaviors. For
example, in Fig.1, the vehicle on the right lane intends to
turn right, but moves left a little in order to increase the
turning radius. However, from the view of the vehicle on the
left lane, the right vehicle seems likely to change lane to the
left as shown by the uncertainty tube. In order to be safe,
the left vehicle may slow down to yield the right vehicle in
case it changes lane. This unnecessary yield is inefficient,
and can be avoided if the vehicles can communicate their
intentions to others. With the development of DSRC [2],
vehicle to vehicle (V2V) and vehicle to infrastructure (V2I)
communication modules will become standard components
in new vehicle models. In this paper, we exploit the benefits
of communication to improve efficiency of autonomous
vehicles, especially during on-road driving.

In literature, the benefits of V2V communication are
widely exploited in corporative adaptive cruise control
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Fig. 1: Uncertainties in other vehicles’ behaviors.

(CACC) [3] to minimize inter-vehicle distance and increase
platoon density. However, as the information exchanged in
CACC is the vehicles’s current states or accelerations, these
strategies still may not reduce the uncertainties in predict-
ing others’ behaviors in complicated environments, such as
intersections. With the introduction of V2I communication,
vehicles can exchange future information such as the time
to cross the intersection with the infrastructure. Efficient
intersection management can be achieved as discussed in [4],
[5], [6] and [7]. However, these strategies require investment
on the infrastructure.

The authors proposed a distributed method in [8] for
intersection management by requiring vehicles to exchange
information of their intentions such as intended maneuvers
and time to occupy the intersection via V2V communication.
The method works in any traffic condition, not limited to a
two-vehicle case as discussed in [9]. It has been demonstrated
through macroscopic traffic simulation in [8] that this strat-
egy performs better than conventional traffic management
methods such as traffic light or all-way stop control as
well as existing distributed conflict resolution mechanisms
[10] in terms of smaller traffic delay time and larger traffic
throughput. In this paper, this method will be extended to
improve the efficiency of autonomous vehicles in diverse on-
road driving scenarios. Moreover, the microscopic benefits of
communication will be illustrated, e.g., how the efficiency of
individual vehicle may be improved by V2V communication.

The remainder of the paper is organized as follows. The
mathematical problem for autonomous driving is formulated
in Section II, and the inefficiency in a distributed multi-
vehicle system will be pointed out. The communication
protocol and strategy to improve efficiency are discussed in
Section III. Simulation studies are presented in Section IV.
Section V discusses potential difficulties in implementing the
proposed communication protocol and concludes the paper.



II. PROBLEM FORMULATION

In this section, the motion planning problem for individual
vehicle will be formulated first, followed by the discussion
of inefficiency in the multi-vehicle system. Every vehicle has
a unique index i.

A. The Vehicle Perspective

Consider vehicle i. Denote its state at time t as xi(t) and
its intention as Gi. The state xi includes the position, heading
and velocity of the vehicle. The intention Gi refers to its
target lane. If the target lane is the same as the current lane,
then the vehicle intends to follow its current lane. If the two
lanes are not identical, then the vehicle intends to change
lane. Before entering an intersection, Gi refers to vehicle i’s
target lane after passing the intersection.

Since individual vehicle has only local view and local
information, vehicle i only considers the road participants in
its neighborhood Ni when making driving decisions, where
Ni is a collection of indices of surrounding vehicles. At time
t0, given the initial state xi(t0), the trajectory xi(t) for t > t0
needs to be computed. Hence the motion planning problem
for vehicle i is formulated as,

min
xi

J(xi, Gi), (1a)

s.t. ẋi(t) ∈ Γ(xi(t)), (1b)

d(xi(t), x̂
i
j(t)) ≥ dmin,∀j ∈ Ni, x̂

i
j(t) = hi(Ĝ

i
j).

(1c)

Equation (1a) is the cost function, which evaluates the per-
formance of the trajectory, e.g., J =

∫ t0+T

t0
L(xi(t), Gi)dt+

S(xi(t0 + T ), Gi) where T > 0 is the planning horizon;
L(xi(t), Gi) is the run-time cost; and S(xi(t0 + T ), Gi) is
the terminal cost. Equation (1b) is the feasibility constraint
to ensure that the planned trajectory can be tracked by
a low level controller, e.g., Γ(xi) := {ẋi|∃ui, s.t.ẋi =
f(xi, ui)} where ẋi = ∂xi/∂t, ui is the vehicle control
input (wheel angle and throttle torque) and f describes the
vehicle dynamics. Equation (1c) is the safety constraint that
requires the minimum distance to any surrounding vehicle
to be greater than a threshold dmin > 0, where function d
measures the minimum distance between two vehicles. x̂i

j(t)
is the estimate of xj(t) made by vehicle i, which is a function
of the estimated intention Ĝi

j of vehicle j. The function hi

is the prediction model, which can be learned from data.
Note that the estimates x̂i

j(t) and Ĝi
j should be considered

as random variables which distribute over a bounded set. And
the constraint (1c) should be satisfied for all possible values
of the estimates. In Fig.1, from the view of the left vehicle,
the estimated intention of the right vehicle Ĝi

j can take two
values (left turn and right turn), hence x̂i

j(t) distributes in
the two tubes that corresponds to the two values of Ĝi

j .
Problem (1) needs to be solved in every time step when
new information is obtained. Methods to solve problem (1)
is discussed in [11].

B. The System Perspective

Suppose there are N road participants in the system,
indexed from 1 to N . The system state at time step t
is denoted as x(t) := [x1(t); . . . ;xN (t)]. All vehicles in
the system solve problem (1) for themselves. While all
vehicles would like to stay safe as specified in constraint
(1c), their intentions may conflict with one another. The
system objective is to ensure that the intentions of vehicles
are satisfied efficiently and safely. The optimization problem
from the system perspective is,

min
x

N∑
i=1

wiJ(xi, Gi), (2a)

s.t. ẋi(t) ∈ Γ(xi(t)),∀i, (2b)
d(xi(t), xj(t)) ≥ dmin,∀i, j, i 6= j, (2c)

where the objective function is a weighted sum of the
cost function for every road participant. The weights wi’s
represent priorities, e.g., wi is larger for vehicles on the main
street since the needs of these vehicles should be addressed
first. The feasibility constraint (2b) is inherited from (1b).
Equation (2c) is the safety constraint for the system. For
simplicity, define the safe set X as

X := {x|d(xi, xj) ≥ dmin,∀i, j, i 6= j}. (3)

The system objective provides a measure of efficiency of
the vehicles from the system level. When all vehicles solve
the optimization (1) at the same time, it is a simultaneous
game. It is ideal that the distributed solutions in (1) match the
system optima in (2). Since no vehicle has the incentive to
change its trajectory in the system optima, the system optima
is indeed a Nash Equilibrium in the distributed system.
However, due to uncertainties in the estimates x̂i

j and Ĝi
j

in (1c), it is hard to attain the Nash Equilibrium for the
distributed system, which may cause inefficiency as will be
discussed below.

C. Inefficiency in the Multi-Vehicle System

Suppose the vehicles are equipped with cooperative adap-
tive cruise control (CACC) modules for safe and efficient car
following. Let x∗i be the optimal trajectory that minimizes
J(xi, Gi) only considering the dynamic feasibility (1b) and
car following constraint d(xi(t), xFi(t)) ≥ dmin where Fi

denotes the front vehicle of vehicle i, but not the collision
avoidance constraint with other vehicles in (1c).

If the optimal trajectories do not intersect or overlap with
one another, we say that the vehicles do not have spacial
conflicts. Otherwise, there are spacial conflicts. In Fig.1,
there is a spacial conflict if the right vehicle changes lane to
the left, and there is no spacial conflict if the right vehicle
turns right. Among the scenarios with spacial conflicts,
we say that the vehicles do not have temporal conflicts
if [x∗1(t); . . . ;x∗N (t)] ∈ X for all t. Otherwise, there are
temporal conflicts. We call the locations that spacial conflicts
take place as conflict zones, which can either be fixed or
flexible in the 2D space. For example, in an intersection, the



(a) V1’s perspective (b) V2’s perspective (c) System perspective

Fig. 2: The generalized Chicken game.

location of a conflict zone is determined by the intersection
of two incoming lanes, hence fixed in the 2D space. However,
the conflict zone between a lane-change vehicle and the
vehicle in the target lane is not fixed in the 2D space, which
indeed depends on where the lane-change vehicle enters the
target lane. Since the vehicles are assumed to be equipped
with CACC, there is no temporal conflict among vehicles
that follow the same lane. Hence we only define the conflict
zones for vehicles from different lanes. A more detailed
classification of the conflict zones is discussed in [12].

In the ideal case, vehicles should execute the optimal
trajectory x∗i ’s if there is no spacial or temporal conflicts,
since individual optima align with system optima in those
cases. However, due to uncertainties in the predictions of
others as shown in Fig.1, vehicle i may not dare to execute
its optimal trajectory x∗i .

When there are temporal conflicts among vehicles, the sce-
nario runs into a generalized Chicken game1 [4]. Executing
the optimal trajectory x∗i can be considered as the choice of
“go”. Vehicles will collide with each other if none of them
“yields”, i.e., executing a trajectory different than x∗i . The
situation for N = 2 is illustrated in Fig.2. The cost functions
and the optimal trajectories x∗1 and x∗2 for vehicle 1 (V1) and
vehicle 2 (V2) are shown in Fig.2a and Fig.2b respectively.
The darker the color, the smaller the cost. The white square
is the infeasible set X c (the complement of X ), which can be
regarded as infinite cost. The pair (x∗1, x

∗
2) does not belong

to X . Fig.2c illustrates the system objective in (2a) with
w1 = w2. The system optima are marked as red dots. From
the system perspective, either of the vehicles needs to yield.
However, the system optima is hard to achieve. In current
design of autonomous vehicles, x̂i

j is estimated based on data
from local sensors. In order to account for uncertainties in
the estimation, the behavior of an autonomous vehicle tends
to be conservative. The system may be trapped in a situation
that all vehicles decide to slow down to yield, which is very
inefficient. A mechanism is needed to resolve the conflict
and break the symmetry.

1The game of chicken is a model of conflict for two vehicles in game
theory. Each vehicle has two choices: yield or go. If the other vehicle yields,
the ego vehicle receives higher payoff to go. If the other vehicle does not
yield, the ego vehicle receives higher payoff to yield. The desired case is
that one vehicle yields and the other goes. However, as this is a simultaneous
game, the vehicles do not know the other vehicle’s plan in advance. Hence
it is hard for the vehicles to decide whether to yield or to go.

III. IMPROVING EFFICIENCY VIA COMMUNICATION

In order to overcome the inefficiency discussed above,
vehicles need to be certain about whether there are spacial
or temporal conflicts with others. Moreover, a mechanism is
needed to resolve the conflicts.

A. Communication Protocol and Strategy

In order for vehicles to decide whether there are spacial
conflicts, the intentions Gi’s should be broadcasted. For
example, if two vehicles in different lanes intend to follow
their current lanes, then there is no spacial conflict. With
the broadcasted Gi, the scenario in Fig.1 can be avoided.
Among vehicles that have spacial conflicts, the conflict zone
Cl should be identified first. Then the time to occupy the
conflict zone should be broadcasted in order to determine
whether there are temporal conflicts.

If vehicle i does not have any temporal conflict with
others, it just executes the optimal trajectory x∗i . Otherwise,
its trajectory needs to be modified considering the collision
avoidance constraint (1c) according to the broadcasted infor-
mation.

A common strategy to resolve temporal conflicts is “first
enter first go”, i.e., whoever arrives first on a conflict zone
should go first. Consider the case in Fig.1. Suppose the right
vehicle intends to change lane to the left and will arrive at
the conflict zone (the intersection of the trajectories of the
two vehicles) first. Hence the right vehicle can execute its
optimal trajectory x∗, while the left vehicle will slow down
to yield the right vehicle. However, this strategy may create
deadlocks, i.e., all vehicles decide to yield the others, since
it is possible that vehicle A arrives earlier in some conflict
zone, while vehicle B arrives earlier in another conflict zone.
In [8], a tie breaking mechanism is introduced by assigning
a priority score to all vehicles. The priority score provides
a total ordering of the vehicles such that once a deadlock
is detected, the vehicle with the highest priority score will
not yield others even if it will arrive later than some vehicle
in some conflict zone. In this way, conflicts can be resolved
safely and efficiently.

However, the limitation of the method discussed in [8]
is that all vehicles are required to be connected and use
the same strategy, which is hard to achieve in real world
scenarios. In the following discussion, the method will be
generalized to account for diverse on-road driving scenarios.

B. Motion Planning Problem Considering Communication

For vehicle i, divide its surrounding vehicles intro three
groups:
• Si: vehicles that communicate with vehicle i and use

the same communication protocol and strategy;
• Di: vehicles that communicate with vehicle i but use

different communication protocols and strategies;
• Ni \ (Di ∪Si): vehicles in the neighborhood of vehicle

i but do not communicate with vehicle i.
From vehicle i’s perspective, if vehicle j in Si has spacial

conflicts with vehicle i in a conflict zone Cl, then the order
of passing should be determined by the “first enter first go”



Fig. 3: A four-way intersection.

(a) Graph of spacial conflict. (b) Graph of passing order.

Fig. 4: The topological graphs.

strategy with tie breaking. If vehicle i needs to yield vehicle
j, then it should enter Cl at a time Ti,l,j later than the
broadcasted exit time of vehicle j. There is no constraint
for vehicle i if it does not need to yield vehicle j. Then the
desired time for vehicle i to enter Cl is

Ti,l = max
j∈Si

Ti,l,j . (4)

For vehicle j in Ci, vehicle i can directly obtain its intention
Gj through communication, and predict its trajectory x̂i

j

under Gj using the prediction model hi. Regarding the three
groups of vehicles, the constraint (1c) in the motion planning
problem (1) can be modified as

xi(t) /∈ Cl,∀t ≤ Ti,l,∀l, (5a)

d(xi(t), x̂
i
j(t)) ≥ dmin,∀j ∈ Di, x̂

i
j(t) = hi(Gj), (5b)

d(xi(t), x̂
i
j(t)) ≥ dmin,∀j ∈ Ni \ (Di ∪ Si), x̂i

j(t) = hi(Ĝ
i
j),

(5c)

where (5a) is for vehicles in Si, (5b) for Di, and (5c) for
Ni \ (Di ∪ Si). Applying the new constraints, vehicle i
can avoid the inefficiency induced by misinterpretation with
respect to vehicles in Di. Moreover, since vehicle i can reach
a consensus with vehicles in Si, the inefficiency implied
by the Chicken game can also be avoided with respect to
vehicles in Si.

C. Example

In this part, the proposed method will be illustrated
through an example in a four-way intersection as shown in
Fig.3. There are two incoming lanes and two outgoing lanes
in every leg of the intersection. There are six vehicles in the

environment indexed 1 to 6, whose intentions and trajectories
are shown in the figure.

In the case when all vehicles are connected and using
the same strategy, a vehicle can determine a set of vehicles
that it has spacial conflicts with based on the broadcasted
information. The relationship of spacial conflicts forms an
indirected graph as shown in Fig.4a. The nodes in the graph
represent the vehicles. There is a link between two nodes if
there is a spacial conflict between the two vehicles. Node 6
is isolated in the graph since vehicle 6 does not have any
spacial conflict with others. Hence vehicle 6 can execute the
optimal trajectory x∗6. For other vehicles, we still need to
check whether there are temporal conflicts. The broadcasted
time slots are shown as the thick bars in Fig.5a, where the
horizontal axis represents time. There is a temporal conflict
between vehicle 1 and vehicle 2 at C1, as well as between
vehicle 4 and vehicle 5 at C5. There is no time conflict for
vehicle 3, hence the optimal trajectory x∗3 can be executed.
The trajectories of vehicles that involve in temporal conflicts
need to be modified according to (5a). Since vehicle 1 arrives
at C1 earlier than vehicle 2, vehicle 1 does not need to
change its trajectory. But vehicle 2 needs to yield vehicle 1
by passing C1 after vehicle 1 as shown in Fig.5b. Similarly,
vehicle 4 can execute its optimal trajectory x∗4, while vehicle
5 needs to yield vehicle 4 in C5 as shown in Fig.5b. Note
that the vehicles are not required to construct the whole
graph in Fig.4a and Fig.5. They just need local information
to make decisions. Once the local decisions are made, the
indirected conflict graph in Fig.4a can be transformed into a
directed graph in Fig.4b, which shows the passing order in
the corresponding conflict zones.

Consider the case that some vehicles are not connected.
For example, vehicle 1 is communicating with vehicle 2
and vehicle 3, but not with vehicles 4, 5 and 6. In vehicle
1’s motion planning problem, constraint (5c) applies for
vehicles 4 to 6 where their intentions and trajectories need
to be estimated. Some of the possible future trajectories of
vehicles 4 to 6 may intersect with vehicle 1’s trajectory,
which introduces more “conflict zones” as shown in Fig.6.
The uncertainties of the trajectories in the time domain
are shown in Fig.7a. Under those uncertainties, there are
temporal conflicts between vehicle 1 and vehicle 4, 5 or 6.
If vehicle 1 does not change its path, in order to satisfy
constraint (5c), it needs to slow down as shown in Fig.7b.
However, when there is communication, vehicle 1 does not
need to slow down as shown in Fig.5.

IV. SIMULATION RESULTS

The method is simulated in a four-way intersection in a
50m×50m square shown in Fig.8. There are six vehicles in
the environment, all of which intend to go straight. At time
0s, they are on the boarder of the environment as shown
in Fig.8. The desired longitudinal speed for each vehicle
is shown in Table I. There are eight conflict zones. The
sampling time is 0.1s in the system and all vehicles are
synchronized.



(a) With temporal conflicts. (b) Temporal conflicts resolved.

Fig. 5: The time to occupy conflict zones.

Fig. 6: Illustration of the uncertainty perceived by vehicle 1.

The trajectories of the vehicles when all of them use the
proposed strategy are shown in Fig.9. At time 0s, the time
slots to occupy the conflict zones are broadcasted as shown
in Fig.11a. There are temporal conflicts between vehicle 2
and vehicle 3 in C2, between vehicle 1 and vehicle 3 in C4

and between vehicle 4 and vehicle 5 in C5. Hence vehicle
3 and vehicle 4 slow down to yield the other vehicles. In
the next time step, the expected time slots are broadcasted
again as shown in Fig.11b. The temporal conflicts in C2,
C4 and C5 are resolved. However, new temporal conflicts
are created in C1 and C3 as a consequence. Then vehicle
1 and vehicle 2 slow down to yield vehicle 4 as shown
in the broadcasted time slots in Fig.11c. At time 0.3s in
Fig.11d, vehicle 3 further slows down to yield vehicle 1 and
vehicle 2 again. Then all temporal conflicts are resolved. The
executed speed profiles of the vehicles are shown in Fig.10.
The delay for every vehicle is computed as the difference
between the actual travel time and the traffic-free travel time
(50m/vr), which is shown in the row “Delay-C” in Table I.
Due to numerical truncations in simulation, the delay can be
negative as shown for vehicle 6.

When the vehicles are not communicating with each
other, the unmanaged intersection functions as a four-way-
stop intersection, i.e., all vehicles stop before entering the
intersection. The speed profiles of the vehicles in this case
are shown in Fig.12 which have larger variations than the
profiles in Fig.10. The delays also increase as shown in the
row “Delay-NC” in Table I. The smallest delay is 0.92s,
which is greater than the largest delay 0.79s when there is
communication. This is due to the fact that communication

(a) Uncertainties. (b) Corresponding maneuver.

Fig. 7: The uncertainty perceived by vehicle 1 in the time
domain.

Fig. 8: The simulation environment at time 0s.

enables vehicles to adjust their speed profiles in advance,
hence avoid unnecessary stops.

V. DISCUSSION AND CONCLUSION

In this paper, we discussed methods to improve efficiency
of autonomous vehicles through V2V communication. In the
proposed communication protocol, the future information of
a vehicle needed to be broadcasted in addition to current
information such as current state. If rough future information
(e.g., intention Gi) was communicated, it helped to determine
spacial conflicts and avoid unnecessary reactions to vehicles
that the ego vehicle did not have spacial conflict with. If de-
tailed future information (e.g., time to occupy conflict zones)
was communicated, it helped to form consensus among
vehicles regarding the passing order in the conflict zones. The
motion planning problem that evaluated information from
communications was discussed. In the simulation result, it
was verified that the efficiency of the autonomous vehicles
was improved in the sense of smaller variation in the speed
profile and smaller delay time.

Nonetheless, the proposed method is prune to network
delay and attacks. For example, a vehicle may lie about its

TABLE I: The statistics in the simulation.
Vehicle 1 2 3 4 5 6
vr (m/s) 12.54 13.83 10.40 13.28 12.91 13.04
Delay-C (s) 0.31 0.39 0.79 0.23 0.03 -0.03
Delay-NC (s) 3.85 0.92 4.94 2.27 9.97 8.20



Fig. 9: The configurations of the environment under commu-
nication at time 0s, 0.5s, . . . , 3s.

Fig. 10: The speed profiles for the vehicles under communi-
cation.

intention or estimated time slot to occupy the conflict zone
in order to make other vehicles yield. Another problem is
that if a vehicle does not receive updated information of
another vehicle, the two vehicles may operate on different
information set, hence hard to reach consensus.

In the future, more realistic scenarios which consider
network deficiencies will be considered. Moreover, the prop-
erties of the multi-vehicle systems with only partial connec-
tivity will be studied theoretically.
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