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Abstract 

Optimum well placement can help reservoir management teams in developing a field 

development plan that could result in substantial increase in productivity and profitability 

of any new or existing field. The proposed location and configuration for new producers 

and injectors is usually nontrivial, due to the complexity of the fluid flow in highly 

heterogeneous reservoirs. 

 

The objective of this work was to understand the steps involved in the optimum well 

placement by GAs, and to introduce enhancements to the algorithm that could increase 

the possibility of obtaining promising solutions. Based on the success of binary GAs in 

optimum well placement problems and motivated by the advantages observed in 

application of continuous GAs in other fields, here we attempt to use continuous GAs in 

for field development. 

 

To meet our objectives, we have investigated the design of continuous GA that retain the 

important benefits characteristics of binary GAs, while solving some of the problems 

associated with binary GAs. The implementation of continuous GA was designed to 

avoid generating invalid wells during the reproduction process. Continuous GAs have 

shown considerable potential to achieve higher fitness values. The gradual progress of a 

continuous GA during the generations, compared to the stepwise evolution observed in a 

binary GA, has the possibility of achieving more desirable outcomes. However, the 

design of a powerful optimization tool with continuous GAs is harder because of the 

higher number of GA parameters involved. 

 

The study also implemented dynamic mutation to take advantage of the exploring 

capacity of mutation in each period of the evolution. Furthermore, it has been shown that 

the efficiency of the GA search can be increased by imposing a minimum Euclidian 

distance between the individuals within the population, utilizing our engineering 

knowledge by requiring a minimum physical distance between all the wells in a reservoir. 



 vi 

Finally, a model was introduced to include curved wells during the search. Through this 

model the possibility of capturing straight wells still exists, while providing the 

opportunity of exploring more promising configurations. 

 

Throughout this work we have demonstrated that various improvements introduced lead 

to finding higher objective values in shorter time. 
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Chapter 1 

1. Introduction 

1.1. General Background 

“The main task of a reservoir engineer is to develop a scheme to produce as much 

hydrocarbon as possible within economic and physical limits” (Bittencourt, 1997). 

Optimum well placement can help reservoir management teams in the preparation of a 

field development plan that could bring substantial increase in productivity and 

profitability of an existing or new field. 

Using conventional reservoir management methods, only about 10 percent of a reservoir's 

original oil in place is typically produced during primary recovery (i.e. through natural 

drive) and the average secondary recovery (i.e. injection of water or gas) reaches 20 to 40 

percent of the original oil in place (DOE, 2008). With the oil prices booming, 

development of any new method that could help the management team to increase the 

productivity and profitability of the reservoir is highly desirable.  

With advances in drilling technology, drilling of wells with arbitrary trajectories and 

multiple branches, knows as multi lateral wells (MLWs), is becoming routine. Although, 

drilling of a MLW is more expensive in the first place, it can be more cost effective after 

some production period. Since, petroleum reservoirs are complex heterogeneous 

environments with possible shale layers, faults, fractures, low permeable and even 

depleted regions; the branches of a MLW are capable of penetrating through the most 

productive part of the reservoir that could result in substantial increase in the field 

recovery factors. However, MLWs could only enhance the recovery if they have the right 

configuration and are located in the right place. 

The current practice in the industry is to design several well configurations by intuitive 

judgment of experienced reservoir engineers, and then perform reservoir simulation and 
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economic analysis studies on pre-selected scenarios to find out the most efficient one. 

However, due to the nonlinearity of the problem and complexity of interactions between 

branches and reservoirs, there is a very low chance for an intuitive well design to be the 

most efficient scenario. This promotes utilization of optimization methods for the well 

placement problem. 

An optimization problem defines, an “objective function” whose value should be 

optimized. The “input variables” for the objective function are selected to optimize its 

value. In the optimum well placement problem the objective function is usually the 

project’s net present value (NPV), or cumulative field production during some specific 

period. The input variables consist of the parameters describing possible locations, 

configurations, and control criteria for the new wells to be drilled in the development 

plan. Numerical reservoir simulation has to be performed for predicting the production 

profile of the field for use in evaluating the objective function. However, as each 

numerical simulation is computationally expensive, surrogates could be used for 

providing an approximate value of the objective function. 

1.2. Literature Review 

Previous research in optimization of well placement and field development could be 

categorized in the following three areas: 

 1- Construction of well optimization frameworks and algorithms; 

 2- Designing proxies to accelerate the optimization process; and 

 3- Assessing the uncertainty and incorporating it in the optimization routine. 

Some of the works have focused on one of the above categories, while others have 

attempted to come up with solutions to more than one of the above issues. Also, the 

parameters to be optimized in some earlier works were well rates or locations (assuming 

only vertical wells). However, in some more recent works well shapes and production 
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scenarios (with multiple producers and injectors) were optimized in addition to well 

locations. 

Beckner and Song (1995) devised an optimization framework with simulated annealing to 

propose the placement of a sequence of production wells maximizing the net present 

value for full field development. Their program searched for 12 horizontal wells in the 

mid layer of a 36×3×3 model. The wells penetrated through all 3 grids in the y direction. 

So, the well was only modeled by its grid node in the x-direction, and the year it would be 

placed. They framed the well scheduling and placement problem as a “traveling salesman 

problem”, and used numerical simulation to calculate the objective function. They 

concluded that uniform well spacing does not generally maximize NPV, particularly for 

phased development in heterogeneous reservoirs.  

Montes et al. (2001) used standard genetic algorithms (GAs) to optimize the placement of 

vertical wells penetrating through the whole vertical domain, having total filed oil 

production as the objective. They introduced a pointer to map the well positions from 2D 

to 1D to further simplify the problem. Also, they used short term simulations to estimate 

long term runs to speed up the optimization.  

Bittencourt and Horne (1997) developed a hybrid GA for optimizing placement of 

vertical or horizontal wells in a 2D reservoir. Each well was modeled by the three input 

parameters: well location, well direction (vertical or horizontal), and horizontal well 

orientation (N, NE, E …). They applied an indexing system for well locations that only 

included active cells. They combined GA with the Polytope method to benefit from the 

best features of each method and speed up the search. They also integrated economic 

analysis and some practical design consideration in their optimization algorithm. 

Yeten et al. (2002) designed a well placement optimization framework with GAs to 

search for optimum multilateral wells in a 3D reservoir. They introduced a 

parameterization technique that models multilateral wells for GA optimization. Their 

optimization framework also handles variable number of producers and injectors. Since 

the number of variables increases in optimization of multilateral wells, they also 
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examined use of an artificial neural network, a hill climber, and a near-well upscaling 

technique to accelerate the search. They also included the effect of geological uncertainty, 

by running the numerical simulation with several realizations for each set of wells and 

averaging the NPV. 

Rigot (2003) has introduced an iterative approach to improve the efficiency of multi well 

placement optimization by dividing the original problem into several single well 

optimizations. 

Pan and Horne (1998) used Least Squares and Kriging as proxies to reservoir simulation. 

They selected a number of sample well locations for numerical simulation using “uniform 

design”, which was developed by Fang (1980). Then Least Squares and Kriging were 

applied to generate NPV surface maps, which were used in estimating the objective 

function values at the new points. They observed that the objective functions estimated by 

Kriging are more accurate than those estimated by Least Squares interpolation. 

Guyaguler et al. (2000) used a hybrid optimization technique based on the GAs and 

Polytope algorithm, to find optimal locations and rates for vertical wells in a water 

flooding project in the Gulf of Mexico. They used Kriging and neural networks as 

proxies. They proposed adding local mutation which perturbs the best solution in each 

generation within a given range.  

Onwunalu (2006) applied a statistical proxy based on cluster analysis into the 

optimization process for nonconventional wells. He used the multilateral well model 

introduced by Yeten et al (2002). He also extended the proxy to perform optimization of 

multiple nonconventional wells opened at different times. 

Guyaguler and Horne (2001) designed a framework to quantify risk attitude through 

utility functions and transform the uncertain well placement problem to a deterministic 

problem. They used a hybrid GA as the optimization engine. 



 5 

Ozdogan and Horne (2006) suggested coupling well placement optimization with 

recursive history matching to address the value of time-dependent uncertainty. They 

showed that the utility of the optimized scenario could be improved by including time-

dependent uncertainty during well placement, through the use of a “pseudohistory” 

concept.  

1.3. Problem Statement  

As we have seen in the previous section, many studies have been performed on the well 

placement optimization problem with various optimization methods. Among those, 

utilizing GAs as the main search engine has been shown to be more promising than 

greedy optimization methods.  

Well designed GAs have shown the capability of handling highly multimodal functions 

that are hard to attack by other optimization methods. However, because of the high 

dimensionality of optimization space, caused by the number of parameters needed to 

describe each nonconventional well and the number of injector and producers, the well 

placement optimization problem is still challenging and computationally expensive. The 

GAs used in previous optimum well placement works were all binary.  

There have been many studies recommending the use of continuous (or real-valued) GAs, 

instead of binary GAs, for optimizing variables with inherently continuous domains (Deb 

and Agrawal 1995; Herrera et al. 1998; Lee et al. 1999; Chelouah and Siarry 2000; and 

Harikumar et al. 2004). Each work has proposed different operators for continuous GAs 

to achieve a robust tool for global optimization over complex multimodal function with 

continuous variables.  

Use of continuous GAs for solving problems with continuous search spaces, could 

overcome issues involved in the coding and decoding of binary GAs, such as “deception”, 

that results in premature convergence to a suboptimal solution (Michalewicz, 1994), and 

“Hamming cliffs”, that makes gradual search over continuous space difficult (Deb and 

Agrawal, 1995). The other benefit that arises from the use of continuous GAs as function 
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optimizers is in achieving high precision for representing candidate solutions without 

increasing the computation burden. In binary GAs the string length chosen for binary 

coding of each variable results in certain precision of the variable representing the 

solution. To gain higher precision, a higher string length is needed resulting in a long 

chromosome. Longer chromosomes require larger population size resulting in high 

computational complexity (Goldberg et al. 1992). 

As it can be observed in results of the previous works in well optimization such as those 

in Yeten (2003), the optimum well location and configuration proposed by well 

placement optimization programs could be somewhat nonintuitive. This provides 

motivation for the design of a general optimization framework that could be used to 

determine the optimal location and configuration for the new wells to be deployed. Based 

on the success of binary GAs in well placement optimization problems and motivated by 

the advantages observed in the implementation of continuous GAs in other fields, here we 

will attempt to use continuous GAs for field development. 

The objective is to design a continuous GA that would benefit from the positive 

characteristics of binary GAs, while solving some of the problems related to them. The 

implementation of continuous GA was designed to avoid generating invalid wells during 

reproduction. 

The outline of this report is as follows. In Chapter 2 we first discuss different 

optimization methods and their characteristics. Then we focus on GAs and compare 

binary and continuous GAs. In Chapter 3 we investigated all the steps in well 

optimization by GAs and look for possible improvement. In Chapter 4 we introduce a 

modified model for representing multilateral wells in well placement optimization by 

GAs. In Chapter 5 we present the improvements we have proposed for well placement 

optimization framework with GAs. Finally, in Chapter 6 we bring our conclusions and 

make some recommendations for future works. 
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Chapter 2 

2. Optimization Tools  

2.1. Optimization 

The objective of optimization is to come up with the most efficient solution to existing 

problems.  In mathematical terminology, it refers to systematic methods of finding the 

values of the variables, within the problem limits, that minimize or maximize the value of 

a user defined the objective function. The minimization problem can be represented in the 

following way: 

 
)x,...,(x       xR,:F                              

 xallFor          F(x), )F(xSuch that           ,  xFinding

n1

**

=⊂
∈≤∈

Ω
ΩΩ

 (2-1) 

Here, the vector * x minimizes the value of function F(x) for the constraint Ω∈ x . 

Optimization methods can be categorized in the following groups (Nocedal and Wright, 

1999): 

• Continuous or Discrete 

• Constrained or Unconstrained 

• Global or Local 

• Stochastic or Deterministic 

2.1.1. Continuous or Discrete  

The objective function that is subject to optimization could be inherently defined on a 

continuous or discrete domain. Continuous optimization methods search for the optimum 

input variable within a continuum of eligible variables. On the other hand, discrete 

optimization methods are designed to explore a limited domain of enumerable discrete 

variables. Naturally, continuous functions can also be discretized and approximated with 
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finite separate values, to be suitable for taking advantage of discrete optimization 

methods (Nocedal and Wright, 1999). 

2.1.2. Constrained or Unconstrained  

Optimization problems of the form (2-1) are categorized as unconstrained optimization 

problems when nR=Ω , and as constrained optimization problems when 

 Rbut  ,R nn ≠⊂ ΩΩ . Physical problems generally have constraints on their input 

variables. However, since unconstrained optimization problems are usually simpler to 

implement, there are some cases where unconstrained optimization methods are used on a 

problem with natural constraints. The first group, are problems where the constraints will 

not affect their optimum solution. In the second group, the constraints are implemented 

by adding penalty terms to the original objective function, for the inputs not honoring the 

constraints. 

2.1.3. Global or Local 

Local optimization techniques such as Steepest Descent, Quasi-Newton, and Conjugate 

Gradient, converge to a local minima or maxima in the function domain, depending on 

the starting point. These methods are fast in converging to local extrema as they take 

advantage of the solution space characteristics. However, their dependency on the 

solution space and the initial guess limits their application for non-smooth and 

multimodal objective functions (Abo-Hammour, 2002). A local minimum is a point for 

which the objective function is smaller than those of the neighboring points. The function 

F has a local minimum at *x  if there exist a neighborhood around x* that for all x in that 

neighborhood F(x))F(x* ≤ : 

 εε <∀≤>∃ ** x-x Whenx,For F(x),)F(xThat  0,  (2-2) 

For a differentiable function F the value of gradient at local optimum at *x is zero. In 

convex systems a local optimum would also be the global optimum of the system 

(Nocedal and Wright, 1999). However, most practical problems are multimodal. Hence, 

finding the global optimum is not easy. This is due to the large gap between the necessary 
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conditions for optimality and the known sufficient conditions for global optimality 

(Neumaier, 2004). Global optimization approaches include branching algorithms such as 

“branch and bound methods”, Monte-Carlo-based algorithms such as simulated 

annealing, and stochastic tunneling, and heuristic methods such as Genetic Algorithms, 

and particle swarm and ant colony optimization (Wikipedia, 2008). 

2.1.4. Stochastic or Deterministic 

Stochastic optimization methods are algorithms in which random choices are made in the 

search direction as the algorithm iterates toward the optimum. The randomness added to 

the search process can help with convergence of the optimization algorithm by allowing 

surprise moves to unexplored areas of the search domain that could possibly contain an 

unexpected good solution (Spall, 2004). Even with the same initial guess, stochastic 

optimization methods will introduce a new path toward the optimum each time the search 

is performed.  In contrast, in deterministic optimization methods all the steps are the same 

every time the algorithm is used with a similar starting point. Stochastic optimization 

algorithms have been growing rapidly over the past decade with a number of methods 

now becoming ''industry standard'' approaches for solving the challenging optimization 

problems (Spall, 2004). 

2.2. Genetic Algorithms 

Genetic algorithms (GAs), originally introduced by Holland (1975), are biologically 

motivated stochastic population-based search techniques, built on the principles of natural 

selection and genetic recombination. The appeal of GAs comes from their simplicity and 

robustness as well as their power to discover good solutions for complex high-

dimensional global optimization problems that are very difficult to handle by more 

conventional techniques (Forrest and Mitchell, 1993). 

2.2.1. Survival of the fittest 

One of the main characteristics of GAs that differentiate them from other search 

techniques is their ability of handling a population of potential solutions, rather than 
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modifying a single point. Through performing optimization simultaneously at different 

regions in the problem domain, a GA offers higher chance of discovering very good 

results. GAs obtain their ability to recognize trends toward optimal solutions by 

combining the principles of survival of the fittest with randomized information exchange 

(Baluja, 1994). 

The implementation of a genetic algorithm starts with generating a population of possible 

solutions. The proposed solutions are parameterized and the variables identifying each of 

them are put together to create a “chromosome,” representing that solution in the 

evolution process in the GA.  The next step is evaluating the “fitness” of each 

chromosome, and allocating selection probabilities in a way that chromosomes 

representing better solutions are given more chance to be selected, as “parents”, for 

reproduction. Then the selected chromosomes are paired for recombination. The 

“recombination” operator combines the information of each pair of selected parents and 

generates new “offspring” chromosomes, which create the next generation. The 

chromosomes evolve over a number of generations, guiding the GA search toward an 

optimal solution. 

2.2.2. Diversity 

Although the chromosomes representing better solutions have higher chance to be 

selected for reproduction, other chromosomes would also have the likelihood of 

appearing in the parents’ pool. Moreover, the offspring population generated by 

recombination would not necessarily have a higher fitness values than their parents, due 

to the stochastic nature of the selection and recombination operators.  

This creates a mechanism for the GA to keep the diversity of its proposed solutions 

during the evolution of generations; that is a key to its extensive global search power. 

Selecting merely good solutions in each generation and combining them to form the next 

generation, results in the population of solutions to rapidly become trapped in a confined 

region of the domain. This would prevent the algorithm from an extensive search and 

converging to a possibly suboptimal solution. The other mechanism for maintaining the 
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diversity of the candidate solutions over the generations is the introduction of limited 

random alteration of the chromosomes throughout the evolution. Adding this stochastic 

random alteration, called “mutation”, brings up the possibility of exploring new regions 

that could contain unpredicted exceptional solutions. It also helps the searching power of 

the GA by pushing the population away from to local optimuma. 

2.3. Binary GAs 

2.3.1. Representation 

An important characteristic of all optimization methods is the way they represent possible 

solutions to the problem. In the standard form of GAs, Canonical Genetic Algorithms, 

each candidate solution is represented by a binary string of length L which is referred to 

as a “chromosome”.  The chromosome is created by putting together the binary encoded 

form of all parameters characterizing the possible solution. Figure 2-1 demonstrates the 

way that a chromosome corresponding to the solution vector ),,,( 21 nxxx �=x  is created 

in binary GAs. 

      Binary encoding 
 

   10110 

  11001 

   00111 

.      

.              10110    11001   00111 .  .  .  .  .  .  .                 01010 

. 

   01010 

Figure 2-1: Creation of the chromosome in Binary GAs 

Due to the binary structure of the chromosomes the algorithm searches within a finite 

parameter space.  This attribute makes binary GAs ideal for optimizing functions whose 

parameters have limited number of states (Harikumar et al., 2004). However, most real 

world functions work with real value parameters in a continuous space. Therefore, before 

performing binary encoding each parameter has to be “quantized” to a limited number of 
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values. Three values are needed for each parameter. The first two, are the minimum and 

maximum allowed values of that parameter in the model. These values can represent the 

physical range in which the parameter can exist (actual limits) or the parameter range in 

which the objective function could have a good value (imposed limits). The third value is 

the desired length for the binary encoding of the parameter. Then each quantization level 

can be determined by: 

 
n

ii
i

xx
x

2
)( minmax −=∆  (2-3) 

where “n” represents the binary encoding length. Figure 2-2 illustrates quantization of 

sin(x) function for the case n=4: 
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Figure 2-2: sin(x) function and its quantization to 4 bits 

For having smaller quantization levels and thus more complete coverage of the parameter 

range, larger binary encoding lengths should be chosen. However, allotting larger binary 

strings to each parameter will result in longer chromosomes that will slow the 

convergence of binary GA search. So, in a binary GA after generating the initial 
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population and evaluating the fitness of the individuals, they need to be coded to binary 

chromosomes to be able to go through the binary GA reproduction process.  Furthermore, 

after the production of the next generation the binary chromosomes need to be decoded. 

This step is essential as the actual value of parameters that define the solution is required 

for calculating their fitness. Figure 2-3 gives the flowchart for a binary GA: 

 

Figure 2-3: Flowchart for the use of binary GA 

What is special about binary GAs is the simple and straightforward implementation of the 

bitwise mutation and crossover, as reproduction operators. In the next section we explain 

reproduction operators used in binary GAs. 



 14 

2.3.2. Reproduction Operators 

2.3.2.1. Crossover 

Crossover or mating is the GA operator that attempts to mix each pair of chromosomes 

selected as parents, to create the likelihood of keeping the good properties of each parent 

chromosome in the offspring chromosome. The crossover operator in binary GAs is 

implemented by cutting some part of each parent chromosome and replacing it into the 

other parent chromosome. This operator is implemented in several works in the literature. 

The simplest crossover implementation that is used in Canonical GAs is single point 

crossover. In this method one random point in the chromosome is selected and with some 

predetermined probability, called crossover probability, the rest of the chromosome string 

after that point is swapped between two parents (Figure 2-4).   

             Parents           Children 

 

Figure 2-4: Single point crossover in binary GAs 

Other crossover methods involve selecting two or more random crossover points within 

the chromosomes, and random swapping of the strings between those points. These 

methods are called two-point crossover or multi-point crossover considering the number 

of crossover point selected over the entire chromosome length. The idea for these 

crossover operators has been taken from the crossover in a standard GA. However, the 

chromosomes split up into more than two pieces in multi-point crossover. Uniform 

crossover is a special case of multi-point crossover in which the possible number of 

breaking points in the chromosomes is equal to n−1 (n being the length of the 

chromosome). Therefore, in uniform crossover each bit can swap between the parent 

chromosomes. Both methods are illustrated in Figure 2-5 (Initially the top parent 

chromosome was in blue and the bottom parent chromosome was in pink).
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                    Multi-point crossover                                   Uniform crossover 

 

Figure 2-5: Multi-point crossover and uniform crossover in binary GAs 

2.3.2.2. Mutation 

The role of mutation operator is to keep the diversity of the population during the 

evolution process. In a binary GA it is modeled by simply altering the value of some bits 

in the chromosome.  The value of any bit in the chromosome can be changed to its 

complement with probability of Pmut, assigned as the mutation probability of the GA. 

This probability is usually selected to be small (Pmut <<1). One way to implement this 

operator is by allocating a random variable to each bit of the chromosome. Each random 

variable determines if the value of that bit is going to be changed. Figure 2-6 shows the 

mutation in a binary GA:  

 

Figure 2-6: Mutation in binary GAs 

2.4. Continuous GAs 

2.4.1. Representation 

The chromosomes in binary GAs were generated using binary representation of variables 

describing the possible solutions. However, binary is not the only method for encoding 

problem solutions with a continuous domain. Various representations using different 

alphabets for encoding have been tested in the literature (Liepins & Vose, 1990). Many 

studies recommend the use of real numbers, instead of binary coded values to represent 
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the possible solution chromosomes for optimizing functions with a inherently continuous 

domain (Deb and Agrawal 1995; Herrera et al. 1998; Lee et al. 1999; Chelouah and Siarry 

2000; Harikumar et al. 2004). This family of GAs is called continuous GAs or real-valued 

GAs. In continuous GAs a chromosome representing a candidate solution is created by 

putting together the parameters defining the solution in their actual form. Evidently they 

are in fact being represented by the computer-based floating-point representation of real 

numbers. A comparison of binary and real-valued chromosomes representing a 

multilateral well for well the placement optimization problem is given by shown in 

Figure 2-7 (a chromosome in continuous GAs) and Figure 2-8 (a chromosome in binary 

GAs).  

 

Figure 2-7: A chromosome in continuous GAs for a multilateral well placement 

optimization 
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Figure 2-8: A chromosome in binary GAs for multilateral well placement optimization 

2.4.2. Reproduction Operators 

2.4.2.1. Crossover 

Crossover operator is believed to be the main operator that creates the search power of 

GAs in optimization problems (Goldberg, 1989). During the evolution, the crossover 

operator has two roles. At first, it searches the initial random strings containing problem 

variables to come up with a good solution. Then, in the later stages its role is to combine 

good portions of these strings to form even better solutions. Since the use of real-value 

representation was proposed for GAs, many crossover operators have been introduced. 

Crossover could be defined similar to its form in binary GAs, by only swapping some 

values between two parents, but they generally would not lead to satisfactory results. The 

reason is that using this type of crossover in continuous GAs will result in propagating 

values generated for each parameter in the initial population to next generations but only 

in different combinations. However, there would be no new value introduced through 

crossover for any parameter. This would decrease the search power of the GA. The 

rationale that makes this type of crossover work well for binary GAs is that by only 

swapping some parts of the strings in binary chromosomes there remains the possibility 

that the coded form of a parameter is broken and new values introduced (Figure 2-9). 
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Figure 2-9: Crossover with only swapping in continuous and binary GAs 

Blending methods are introduced to overcome this problem. They present a way to 

combine values of each variable in the parent chromosomes and to introduce new values 

for that variable in the next generations. Radcliff (1991) used the following blending 

method to generate a new offspring variable value, new
iP , from a combination of 

corresponding variable values in parent chromosomes.   

 FiMi
new

i PPP )1( ββ −+=  (2-4) 

where PMi  is ith variable of mother’s chromosome, PFi  is ith variable of father’s 

chromosome, and 0� � � 1 is a random variable. 

Using this blending method the offspring variables inherit that property from their 

parent’s variables, and their value always fall between the values in parent’s variables. As 

an example, consider the chromosome representing solution scenarios for well placement 

optimization problem in which the mainbore length of the second producer is 200ft in the 

mother chromosome and 180ft in the father chromosome. Through this blending method 

mainbore lengths of second producer for the offspring chromosomes could turn out to be 

185ft and 195ft. Michalewicz (1994) has showed this method to work well on several 

problems.  

However, it remains to be shown how to choose variables for blending. We have chosen 

to mix blending with uniform crossover. In this way each variable in the chromosome 

could be combined with its counterpart with some predefined probability, Pxo. The 

blending random variable, �, could be generated once for all blendings in each crossover 

operation, or different �’s for each variable blending within the crossover. We decided to 
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generate different random variables for all variable blending within a crossover to 

combine the information of the parents effectively.  

Since, applying these blending methods does not result in introducing values beyond the 

extreme values of that variable in the initial population, some extrapolating blendings 

have been suggested in the literature. However, these methods could generate value 

outside the acceptable range for a parameter. Then the offspring must be discarded and 

another � selected. Eshelman and Shaffer (1993), presented (BLX-�) method that limits 

how far each offspring variable could fall outside the range of its parent variables. The 

problem with extrapolating blending methods is that the second role of crossover, that is 

combing good properties of the parent chromosomes, is undermined. This problem could 

be solved by using extrapolating methods only in the early stages of evolution or using 

small �’s in the (BLX-�) method. Adewuya (1996) designed a crossover method 

performing quadratic fit to the fitness function over variable values from three parent 

chromosomes. In this work, we will use simple blending and gave the extrapolating role 

only to mutation. 

2.4.2.2. Mutation 

Mutation operator has two important roles during the evolution process in a GA. Its first 

role is to introduce unexplored genetic material to the population. Its second role is to 

maintain the diversity of the candidate solutions in a population over the generations, 

preventing premature convergence of the GA to suboptimal solutions.  

Mutation in binary GAs is rare compared to crossover, resulting in low mutation 

probability. Also, since the mutation probability for all the bits in a binary string is the 

same, it will lead to higher possibility of small changes and lower possibility of large 

changes in the variables value. For example one can consider a binary string of length 10 

representing value of a variable in the chromosome. For mutation probability of 0.1, there 

would be 50% likelihood of alteration in the lower half of the string which could result in 

a change of less than 1/32 (about 3%). However, there is only a 10% chance of alteration 

of the last bit resulting in chances greater than 50%. This can be observed in Figure 2-10. 
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One way to implement mutation in continuous GAs is to make it work similar to binary 

GAs. In this way if variable, Pi, in the chromosome has been chosen for mutation, a 

random number P is selected between 0 and 1. Then using a graph similar to the one in 

Figure 2-10, the parameter Fmut is selected and the variables new value would be, Pim:  

 )( minmax
iimut

new
iim PPFPP −+=  (2-5) 

 where new
iP  is ith variable of offspring chromosome chosen for mutation, Pi 

max
 is upper 

limit for variable Pi, Pi 
min is lower limit for variable Pi, and Fmut  is mutation coefficient 

selected from the graph using random variable 0 � P � 1. 

 

Figure 2-10: Building continuous mutation similar to binary mutation  

Another way of implementing mutation in continuous GAs, is to add a normally 

distributed random number to the variable selected for mutation (Haupt and Haupt, 2004), 

(see Figure 2-11). 
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 )1 ,0( NPP new
iim σ+=  (2-6) 

where � is the standard deviation of the normal distribution, and N (0, 1) is a standard 

normal distribution with mean of 0 and variance of 1. 

 

Figure 2-11: Implementing mutation in continuous GAs using normal distribution 

With this implementation of mutation, � is the parameter that is used to control the effect 

of mutation, beside the mutation probability. This parameter should be determined 

carefully for any specific problem. Larger �‘s will allow larger change in variable value 

due to mutation. 

2.4.2.3. Advantages of Continuous GAs 

Following a review of binary GAs and continuous GAs and their operators, we will now 

briefly mention some of the deficiencies of binary GAs that are eliminated using 

continuous GAs. Also we will discuss the benefits of the using of continuous GAs in well 

placement optimization problems. 

One of the advantages of the continuous GAs over the binary GAs is their high precision 

in representing possible solutions without requiring the use of extra long chromosomes, 

which increase computational complexity. For comparison we look at the representation 

of the property “angle”, �x, in well placement optimization problem, in binary and 

continuous GAs. As it can be seen in Figure 2-12, using binary GAs with 4 bits to 
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represent an angle, the values of �x in an optimal case could fall at specific locations. 

However, by using continuous GAs �x can fall anywhere within the valid range. While 

precision in binary GAs could be achieved by assigning higher string length representing 

each variable value this results in a long chromosome and hence a slower convergence. 

Moreover, continuous GAs do not suffer from under sampling in the search towards the 

optimum. In binary representation the optimum value of a parameter (that in not known 

initially) may lie between the pre-specified coded values. In this case, binary GAs would 

miss the optimum value due to their under sampling of the parameter space. 

 

Figure 2-12: Comparing the result of binary and continuous coding for �x   

There are also some difficulties that arise from the coding, when binary coding is used to 

represent values in continuous search space. One of these difficulties is “Hamming 

cliffs”. For variables with certain properties a transition between two neighboring values 

may require alteration of many bits. This would create an obstacle in the path of gradual 

search in the coded variable space (Deb and Agrawal, 1995). 

Another difficulty in using binary GAs is the arranging of coded variables within the 

chromosome. Unless related building-blocks are coded “tightly”, the crossover operator 

cannot combine the building-blocks efficiently (Goldberg et al. 1989; Deb and Agrawal, 

1995). In tight coding, the intension is to put the variables having closer relation in 

determining the value of the objective function, as close as possible in the chromosome. 

However, for complicated problems the relationship between different parameters is not 
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understood easily. The problem of tight or loose coding is known as “linkage” problem 

(Deb and Agrawal, 1995).  

Another advantage of continuous GAs as the search engine in well placement 

optimization problem is that invalid wells can be prevented during the reproduction stage. 

This can be done because in continuous GAs, reproduction operators deal with actual 

value of parameters instead of their coded form, empowering them to honor the ranges in 

which they are valid. 

Finally, in continuous GAs there is no more need to code solutions from decimals to 

binary for reproduction and decode the chromosomes from binary to decimal to evaluate 

the objective function. This also leads in increased efficiency of the code. 

2.5. GAs Convergence 

Since we are using GAs as the search engine for our problem, it is important to know 

something about their convergence. We would like to know if the algorithm will finally 

converge to the global optimum of the problem given infinite time, and the conditions 

required for convergence. This is important to know as many optimization algorithms 

will miss the optimum. Rudolph (1994) has modeled the behavior of Canonical GAs and 

showed that they do not guaranty convergence to the global optimum in their standard 

from. However, by adding “elitism” Canonical GAs will converge to the global optimum 

given infinite time. Agapie (2001) used random systems with complete connections 

instead of Markov chains, to account for a complete, rather than recent, history of the 

algorithm's evolution. He modeled binary and continuous GAs with adaptive mutation 

probability, and has come up with global convergence conditions for the problem he 

studied.  

However, for an optimization algorithm to be used in practical problems it should also 

have high convergence rate. From a practical point of view it means good enough 

solutions could be obtained within a reasonable time frame. The information on 
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convergence rates given by the mathematical models are still general, and could not be 

used for comparison. 

2.6. Continuous GAs Convergence Test  

Here, we have designed a simple optimization test to compare convergence rate of a 

continuous GA (with elitism) and exhaustive search, both of which, given infinite time, 

would finally converge to the global optimum. For this purpose we have designed an 

optimization problem with a known global optimum.  

The problem is to find a vertical well with highest production in a 2-D homogenous 

square reservoir with closed boundaries. The dimensions of the reservoir model used are 

100×100. The best solution is known to be in the center of the reservoir, which falls in 

grid block (51, 51). A continuous GA with parameters given in Table 2-1 was tested for 

comparison. Evolution path of the GA over generations could be observed in Figure 2-13. 

It shows all members of the GA population at each generation until convergence.  

Table 2-1: Continuous GA parameters used in the convergence test 

�����������	
��������� ������

Initial population 20 

Maximum generation 100 

Crossover probability 0.5 

Crossover factor 1 

Ranking scale 3 

Mutation probability 0.1 

Mutation factor 0.06 

Mutation power 1 

Kept fraction 0.3 

Rejected fraction 0.3 
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Figure 2-13: Evolution path of GA over generations 

To diminish the stochastic effects in measuring GA convergence rate, 100 different initial 

populations were used. Then, the continuous GA code was run 200 times for each initial 

population. Using the given parameters, all the 20000 cases converged to the known 

optimum before 100 generations. Using the continuous GA we converged after 103.5 

simulations on the average (see Table 2-2). However, on average exhaustive search 

converges after 5000 simulations.  

Table 2-2: Results of continuous GA convergence test 

� ������������� ������

Average number of generations 10.7 

Average number of simulations 103.5 

Median number of simulations 91.5 
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Chapter 3 

3. Steps in Well Placement Optimization with GAs 

In the early stages of this research the purpose was to understand issues involved in well 

placement optimization with GAs. This is an essential step towards introducing 

improvements to current models. The necessary understanding was achieved though the 

investigation of all the steps in well optimization by GAs. The idea was to look at things 

that could be done to make improvements in specific steps. The main steps in well 

optimization by GAs could be listed as:  

1. Modeling the wells and coding the solution scenarios for GAs 

2. Generating initial population of possible solutions 

3. Evaluating the fitness of individuals in each generation and ranking them 

4. Selecting the parents and paring them for reproduction 

5. Generating next generation and designing reproduction operators 

The well placement optimization results, provided in this section, are generated using a 

binary GA code written by Artus (2005) and updated by Onwunalu (2006). This code was 

used in the early stages of the work, since we had not developed our continuous GA code 

at that time. 

3.1. Modeling and coding 

Looking into the first step, we came up with the idea of implementing continuous GAs to 

take advantage of real-valued coding. Also, there were two types of improvements to well 

models to look at. The first is to model the well with parameters that have the greatest 

correlation to the objective function outcomes. This was expected to benefit the evolution 

process in a GA, which is trying to find and combine better building blocks, to generate 
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better solutions. The concept of better building blocks used by GAs in the evolution is 

valid when the building blocks used in the chromosome have high correlation to 

outcomes of the objective function. This aspect is covered in the Modeling Section. Some 

minor changes have been introduced in choosing the parameters to be used in the 

optimization process. The second type of well model enhancements, are those that make 

the well model more physical. To move in this direction, we introduce a well model that 

allows curved mainbores for the potential solutions of the optimization problem. 

Moreover, practical issues in drilling advanced wells and producing from them should be 

incorporated in the model to make the optimization code more useful. For example in 

multilateral wells mainbore is usually only perforated before the first junction to prevent 

crossflow. Also the laterals are not perforated from the junction, and their perforation 

usually start about 3 meter away from the junction. Furthermore, the risks associated with 

drilling different well designs are not similar. Therefore, it is important to have a way to 

incorporate this type of risk into our model. 

3.2. Initial Population  

Since GAs are stochastic search processes, even by using the same initial population the 

evolution path and the optimum solution may not be the same. We were interested in 

seeing the effect of different initial populations on search outcomes. A test was set up to 

study this issue. In this test we are searching for well with highest production in a 40 × 40 

× 7 channeled reservoir. The binary GA parameters used are given in Table 3-1. The 

optimization was performed with 4 different initial populations, and it was repeated 3 

times with each initial population. 
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Table 3-1: Binary GA parameters used in investigating the effect of initial population 

������	
��������� ������

Initial population 30 

Maximum generation 30 

Crossover probability 0.8 

Mutation probability 0.07 

Ranking scale 2 
 

Figure 3-1 shows the fitness of best solution of each case at all generations. 

Optimizations using the same initial population are plotted in the same color. In this 

figure, we observe strong effect of initial population on the best solution. This is due to 

the fact that in half of the cases for the same initial population the best solution has 

evolved exactly in the same way. We can also see that final optimum solutions depend on 

the initial population to some extent. The difference of about 10% is seen between fitness 

values of all final optimum solutions. To take advantage of the effect of different initial 

populations, we designed a parallelized GA search using multiple initial populations.  
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Figure 3-1: Effect of initial populations (4 different initial populations, 3 runs each) 

3.3. Fitness Evaluation 

Reproduction in GAs is a two stage process. First an intermediate population is 

constructed from current population. Chromosomes in this intermediate population are 

parents of the next generation. Next they are paired and then each pair goes through 

crossover and mutation operators to create members of the new generation. The selection 

process takes care of constructing the intermediate population. The way this process 

works in GAs is to select chromosomes randomly from current generation giving more 

weight to better solutions. Therefore, we need a measure of goodness to use in assigning 

weights for the selection process. This measure could come from calculating the objecting 

function value for all members of the current population, or by using various methods that 

estimate the objecting function value, called proxies. Different proxies have been used in 

the literature to estimate to fitness, such as Kriging, Artificial Neural Networks, and 
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Statistical proxies. However, in this work we put our emphasis on improving the 

optimization framework, rather than improving the estimating functions. We tried short 

time simulations as proxies to full simulation. But they did not work well because of the 

following reasons: 

• Cutting the simulation time to half or even one third will not lead to considerable 

decrease in the computational time of the numerical simulation. This is because 

usually time steps are much smaller in the earlier stages of the simulation and 

larger at later stages. Hence, a large portion of the computational time is used at 

earlier stages.  

 

• By cutting the simulation time to much smaller values there would be low 

correlation between the outcomes of short time simulations and full simulation. 

This happens because water breakthroughs and interference between depletion 

zones all happen at latter stages. 

3.4. Selecting Parents  

As it was discussed in the previous section the selection process requires a measure that 

compares goodness of individuals in a population. This measure of performance could be 

achieved by calculating the objective function value or estimating it using proxies. Then 

fitness function is used to transform that measure of performance into selection 

opportunities assigned to each individual for the selection process. In Canonical GAs 

fitness or selection probability is defined by (Whitley, 1994): 

 
� =

= N

i i

n
n

f

f
p

1

 (3-1) 

where �� nf  objective function value for nth chromosome, ����� is the population size. 

This would give a chromosome with larger objective value the higher probability to be 

selected for mating. To increase the probability of selecting fitter individuals as parents, 

scaled fitness function can be used: 
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In this equation � is the ranking scale. It means higher � would increase the chance of 

selection of fitter individuals. However, large �’s would be very selective and will result 

in making the whole population uniform, leading to premature convergence. Fitness can 

also be assigned based on the ranking of the individual, instead of its objective function 

value. In this way first individuals should be sorted by their objective function values. 

Then their fitness could be defined by: 
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Each of these fitness functions has its own advantages.  Objective based fitness has the 

benefit of making a distinction between successive individuals with low or high objective 

function values. However, in the later stages of evolution the objective function values 

could become very close to each other, giving more distinction power to ranking based 

fitness. 

Regardless of whether fitness is calculated using the objective function value or ranking, 

a cutoff value can been enforced by the selection process. This would mean that 

individuals with objective function value lower than a specific number, or individuals 

with a ranking more than ������� will receive zero probability of being selected as parents 

(see Figure 3-2).  The formula to calculate ranking based fitness would change to: 
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where ������� is the number of individuals selected as potential parents (size or 

intermediate population). 
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Figure 3-2: Fitness values with cutoff enforced 

Here, we performed a test to examine the effect of enforcing a cutoff value in the 

selection process. We used the reservoir and same binary GA parameters from the 

previous example. Also, the objective function is the cumulative oil production. In this 

test we ran the optimization code 3 times without enforcing a cutoff value, and 3 times 

with enforcing a cutoff value of rank 15 (individuals ranked higher than 15 are assigned 

zero selection probability). All the runs were performed with the same initial population, 

to remove the effect of initial population. The evolution of the best solution of each case 

over the generations is shown in Figure 3-3. As shown in the figure enforcing cutoff value 

of 15 resulted in slower evolution process. This could happen because the diversity of the 

population in the early generations (resulting in more thorough search of the whole 

domain) is decreased a lot by using cutoff value of 15 for a population of size 30. 
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Figure 3-3: Comparing enforcing and not enforcing a cutoff value in the selection process 

3.5. Reproduction 

During the reproduction stage, first members of the intermediate population are paired. 

Then each pair goes through crossover and mutation, to produce new members of the next 

generation. The crossover operator in binary GAs is controlled by the probability of 

crossover, �	
. Crossover probability, defines the chance of two parents to mate when 

they are paired. The extent of mutation is also controlled by mutation probability, ��, 

which is the likelihood of any bit in the recombined chromosome to be changed from its 

state. We have also seen that in the selection procedure, the selectiveness of the process 

could be controlled by ranking scale, �. 

Since the values chosen for binary GA parameters �	
�,��� , and �, have strong effects on 

the way the evolution takes place, we are interested in understanding their effect of on the 
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search. This may help us in enhancing the search process by using improved search 

parameter values. 

In this part we have designed a test that could help us to understand the effect of using 

various binary GA parameters on the search outcome and the evolution path that the 

population goes through during the search for the optimum. For performing this test we 

used the 40 × 40 × 7 channelized reservoir used in the Example B by Onwunalu (2006). 

The properties for this reservoir are provided in Table 3-2. There are 10 realizations 

representing this reservoir. The optimization process is performed to find the best 

placement for of a monobore production. The criteria used is to maximizes the NPV of 

the filed after 1000 day of production, with a risk neutral attitude.  

Table 3-2: Reservoir and fluid properties used in the “effect of each parameters test” 

������� ������

Grid dimensions 40 × 40 × 7 

Field dimension 6000 × 6000 × 210 ft3 

Porosity 0.20 

Average permeability of channels 90 mD 

Average permeability of matrix 1 mD 

Compressibility factor 3 × 10−5 psi-1 

Bo 1.3 

 

The GA optimization was performed using a high and a low value for crossover 

probability and ranking scale, as well as a high, a medium and a low value for mutation 

probability. The values used as binary GA parameters are provided in Table 3-3. All 

combinations of the given GA parameters were used to perform optimizations (a total of 

12 set of optimization parameters). All optimization cases were made using a similar 

initial population to diminish the effect of initial population. Also, each combination of 
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parameters was used four times, to reduce the effect of the stochastic nature of GA 

search. 

Table 3-3: GA parameters used to test the effect of each parameter  

������	
��������� ������

Initial population 30 

Maximum generation 30 

Crossover probability [ 0.5, 0.8 ] 

Mutation probability [ 0.001, 0.05, 0.2 ] 

Ranking scale [ 2, 3 ] 
 

The objective values for the optimum wells found in all optimization cases are presented 

in Table 3-4. It can be seen that higher crossover probability of 0.8 resulted in faster 

convergence in almost all cases. For mutation probability and ranking scale, none of the 

values was always the best choice. Lower ranking scale of 2 was a better choice when 

used with smaller mutation probabilities of 0.001 and 0.05 (that are more usual). But, 

higher ranking scale of 3 was a better choice when used with high mutation probability of 

0.2. Also, medium mutation probability of 0.05 performed generally better than the high 

and low values of 0.2 and 0.001. 

In Figure 3-4 we present the evolution map for all three �� values. The evolution map is 

created by sketching objective function values of all the individuals in the population over 

all generations. For each �� value, the map that is the most representative of all cases is 

presented. 
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Table 3-4: Results from the testing of the effect of binary GA parameters on search 

outcome 

� ��� ��� ���
����

��������

����

����� ��

����

�����!��

����

�����"��


������

����

1 0.2 0.8 2 1.01×108 1.01×108 8.98×107 1.00×108 9.81×107 

2 0.2 0.8 3 9.73×107 9.73×107 9.82×107 1.04×108 9.93×107 

3 0.2 0.5 2 9.67×107 9.79×107 9.74×107 9.67×107 9.72×107 

4 0.2 0.5 3 1.01×108 1.01×108 1.01×108 1.01×108 1.01×108 

5 0.05 0.8 2 1.04×108 1.04×108 1.04×108 1.04×108 1.04×108 

6 0.05 0.8 3 9.84×107 9.84×107 1.06×108 9.84×107 1.00×108 

7 0.05 0.5 2 1.06×108 1.06×108 1.06×108 1.06×108 1.06×108 

8 0.05 0.5 3 1.02×108 9.96×107 9.98×107 9.96×107 1.00×108 

9 0.001 0.8 2 1.02×108 9.75×107 1.00×108 9.75×107 9.93×107 

10 0.001 0.8 3 9.60×107 9.60×107 9.60×107 9.60×107 9.60×107 

11 0.001 0.5 2 1.02×108 1.02×108 1.02×108 1.02×108 1.02×108 

12 0.001 0.5 3 9.43×107 9.43×107 9.43×107 9.43×107 9.43×107 
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These results demonstrate that higher mutation probability values lead to faster evolution 

in earlier generations. However, lower mutation probability values help in continuing 

evolution in later generations. This can be observed by comparing the evolution maps 

provided in Figure 3-4. This behavior could be explained by the two roles of mutation 

discussed in Chapter 2. We could take advantage of this behavior by designing an 

optimum dynamic mutation trend that starts from a higher mutation probability values in 

earlier generations and decreases to a lower mutation probability values in later 

generations. This provides the motivation for introducing dynamic mutation to our 

continuous GA code. 

We also looked at the location and objective value (NPV) of the best solutions found in 

each of the 48 runs. The Maximum variation in optimal NPV was observed to be 10%. 

Also, the location of best wells found was observed to be considerably different between 

some cases. 
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Figure 3-4: Effect of mutation probability (from top Pmut = 0.001, 0.05, and 0.2) 
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Chapter 4 

4. Continuous GAs Implementation in Well 

Optimization Framework 

For a well placement optimization framework, we first need to have a good model for 

representing possible solutions. This model should provide the parameters to be 

optimized, in the form of a chromosome, to the GA engine. It is also used to characterize 

the wells for numerical simulators to calculate the objective value. The numerical 

simulators used as objective function evaluator during this study were Schlumberger 

GeoQuest’s ECLIPSE simulator (GeoQuest, 2006) and Stanford’s General Purpose 

Research Simulator (GPRS, 2006). For each simulator the code should be able to use the 

parameters provided by the model to generate the input files required by that reservoir 

simulator. In the first section of this chapter we will discuss multilateral well modeling 

for GA optimization. In the second section we discuss some practical implementation 

issues. Finally, in the third section we will present and discuss some results. 

4.1. Multilateral Well Modeling for GAs 

Modeling is using a simplified representation of a complicated physical system that could 

help us in understanding the behavior of the system. Here, we are interested in finding the 

optimal scenario for maximizing the NPV of a petroleum field. Multilateral wells are 

complicated systems and many parameters are needed for modeling them.  

To design a suitable model for GA search, two criteria should be considered. First, the 

number of parameters describing the model needs to be as small as possible. This 

requirement arises from the fact that the parameters that describe the model are the same 

variables that the GA optimizes. Higher number of variables means larger chromosomes 

and hence, harder optimization problems. The second criterion is that the parameters have 

to be selected in a way that their values have physical relations with the outcome of the 
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objective function. This comes from the nature of the evolution in GAs. During the 

evolution, genes associated with fitter solutions survive. The stronger the connection of 

the parameters with the outcome of the objective function, the more information is 

gathered by the GA, in the search to find their optimum values. This increases the pace by 

which the algorithm moves towards the optimum. 

In this work we use the NCW model introduced by Yeten (2003), with some 

modifications. The model characterizes a NCW as an independent straight line for the 

main bore and a number of lines initiating from that line as the laterals. A line segment in 

3D, could be represented by the coordinates of its end points (see Figure 4.1). We will 

call the point with the smallest z coordinate (top point), the Heel, and the point with 

larger z coordinate (bottom point), the Toe, as proposed by Yeten (2003).  The 

optimization parameters he used for modeling a line segment in 3D were: the coordinates 

of the Heel (h1, h2, and h3), vertical coordinate of the Toe (t3), horizontal length of the 

well (lxy) and the counterclockwise angle from the x-axis (�x). Then the horizontal 

coordinates of the Toe are calculated by: 
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Figure 4-1: Heel and Toe coordinates for a line segment in 3D 
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Therefore, a line segment was modeled by four coordinate values, one angle and one 

length property. 

We have chosen to use the coordinates of the midpoint (the point between Heel and Toe) 

instead of the coordinates of the Heel. It has been chosen since the midpoint of a well is 

more representative of the effect of the well location on production. We also use total 

well length (lm) instead of the horizontal well length (lxy), as total length has more 

correlation with production. Moreover, vertical well length (lz) was used instead of 

vertical coordinate of the Toe (t3), since the vertical coordinate value by itself does not 

give as much information about production as vertical length (see Figure 4.2). The reason 

that lz was chosen over other parameters such as �z, is that by putting bounds on the value 

of lz we can assure keeping the well within the valid vertical range (usually much 

narrower than the horizontal range). Using this representation coordinates of the Heel are 

given by: 
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Figure 4-2: Well trajectory optimization parameters 
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Therefore, an independent line segment is modeled with three coordinate values 

(representing location), one angle and two length properties (representing trajectory).  

However, for a lateral the location is not an independent property, as its heel always lies 

on the mainbore. Therefore, the lateral location can be represented by a junction point, jp, 

as a fraction of mainbore length. A multilateral well chromosome could be generated by 

putting together the variables defining mainbore and laterals. Also, a chromosome for 

multi-well production scenario can be generated by putting together the variables defining 

multilateral wells. To implement dynamic number of wells and laterals we need to add an 

activation parameter, a, for each well and lateral. 

 

4.2. Practical Implementation Issues 

4.2.1. Input File 

Since, optimization parameters and input data required for the optimization are subject to 

change with time, it is helpful to define all of them in an input file. This diminishes the 

necessity of going to the code for changing the values, each time a change is required 

Here the file is called input.par. This file includes: file names to be created or used, the 

objective function used, continuous GA parameters, economic variables, number of wells 

and laterals, the high and low limits of the variables describing the wells and the grid 

data. Then a function called read_input.m reads all the parameters needed to run the 

continuous GA optimization program from the input.par file and saves them in a struct 

called params. 

 

4.2.2. Writing the Input File for Simulation 

 The simulation input file also contain well data and beside reservoir properties needed 

for numerical reservoir simulation. Since, the well data are the only part that changes for 

different individuals, it is more convenient to put the well data in an include file called 

simewell.inc. The program converting individual chromosomes to include files that could 

be read by simulators is called ECL_well.m for ECLIPSE, and GPRS_well.m for GPRS. 

This program uses a function called crossCells that takes Heel and Toe positions of well 
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or lateral and calculates the cells that are crossed by its trajectory and their crossing 

points. Then the connection factor for each cell that has been crossed is calculated using 

projection well index (Shu, 2005). 

 

4.2.3. Performing Simulations and Reading the Results  

Simulations for each individual field development scenario in the current population are 

performed and the simulation results for each individual are saved. This is done by 

run_sim.m.  The point to be considered is the presence of multipliers such as *10**3 

below the variable names in the .RSM file. So, the file should be searched for all such 

multipliers before reading the simulation results, otherwise we would be working with the 

wrong values. Cumulative oil and water productions and cumulative water injection after 

each year are saved for each individual. These values are then used in calculating the 

objective value of each individual by rank_pop.m. Then the individuals in the population 

are sorted in a descending order with respect to their evaluated fitness. 

 

4.2.4. Reproduction with continuous GA operators 

The role of reproduce.m function is to reproduces the next generation from the current 

generation. Since, a chromosome defined here consists of actual well properties (real 

values) and activation parameters (binary value), they are separated initially and each 

goes through separate reproduction operators. Dynamic mutation is implemented by 

reducing the size of the mutation factor as generations evolve. The function checkV is 

used to validate each new offspring before considering as new generation. We have used 

this function to impose minimum distance between individual chromosomes and 

minimum well distance.  

4.3. Example 

In this section we present an example to compare the performance of binary and 

continuous GAs. For this example the optimization engine uses GPRS as the reservoir 

simulator. The reservoir used for this example is a 40 × 40 × 7 channeled reservoir shown 

in Figure 4.3. 
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Figure 4-3: The reservoir used for comparing performance of binary and continuous GAs 

 

The objective of the search is to find the best location and configuration for two 

producers and one injector, each with two laterals. The continuous GA parameters values 

used in this example are provided in Table 4-1. The chromosome for this example has 51 

variables. 

Table 4-1: Parameters used for comparing performance of binary and continuous GA 

Continuous GA Parameter Value 

Mutation probability 0.12 

Mutation factor 0.25 

Mutation power 2 

Crossover probability 0.4 

Crossover factor 0.2 

Ranking scale 2 

 

The objective function used here is the NPV of the field over four years, using 10% 

discount rate. Two type of continuous GAs were compared with binary GAs. In the first 

type (continuous GA1) only the best individual in the population was directly kept for the 

next generation (This one is always kept as we are using a GA with Elitism). In the 

second type (continuous GA2) 30% of the population was kept for the next generation. 

Figure 4-4 compares the evolution of best individuals using binary and continuous GAs. 

It can be observed that by keeping some portion of the population in continuous GAs 

higher results are achieved. However, keeping some portion of the population in binary 
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GAs would have caused premature convergence due to lower space dimensions. The 

other advantage of keeping some portion of the population is that it leads to faster 

generation of and evaluation of new populations. This happens because part of it has 

already been evaluated.  

By comparing the evolution path of optimizations with binary and continuous GAs, we 

observe more gradual evolution for continuous GAs, as opposed to typical jumps and flat 

periods observed in evolution with binary GAs. Also, a more steady evolution is observed 

for continuous GAs. This increases the chance of achieving fitter outcomes faster with 

continuous GAs. However, the higher dimensionality of continuous search space and 

absence of the jumps observed during the evolution of a binary GA, have resulted in 

slower convergence rates in some cases. 

  

 

Figure 4-4: Evolution of best individuals with binary and continuous GAs 
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Chapter 5 

5. Improvements and Results 

In this chapter we will discuss the improvements that we have proposed for well 

placement optimization framework with GAs. In each section, we first explain the 

necessity or benefits of implementing that improvement. Then we describe some of the 

details involved in its implementation. Finally, we present some results from 

implementing each technique.   

The improvement techniques presented in this chapter are a result of rethinking about 

each step of the well placement optimization by GAs that was discussed in Chapter 3. In 

the first section we consider use of engineering knowledge as input for the optimization 

process. In the second section we study control of the Euclidean distance between the 

individuals in the population. In the third section we suggested using multiple initial 

populations to decrease the effect of initial population on the optimum solution. In the 

forth section we introduced a well model that enable us to also consider curved mainbore 

configurations in the search for the optimum. 

5.1. Utilizing Engineering Knowledge    

5.1.1. Motives 

In this section we discuss the importance of utilizing engineering knowledge as input for 

the optimization process. Although our goal is to make the whole well placement process 

automatic, this could not be easily achieved unless we provide the optimization program 

some prior engineering information. This information helps the optimization program to 

avoid running computationally expensive simulations for cases which could be easily 

recognized to be non-optimum through our engineering knowledge. This process could 

also be viewed as a proxy. 
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One example of the engineering knowledge that could be incorporated in the optimization 

framework is minimum plausible distance between same and different types of wells in a 

reservoir. For example we know if a producer is too close to an injector, early water 

breakthrough will occur, resulting to poor sweep of reservoir, higher water production 

and hence higher water treatment cost. Also, if two producers are at a short distance of 

each other, the early interference between their depletion regions will result in lower 

bottomhole pressure, hence lower production rates. Although, it is the role of the 

optimizer to reject all scenarios with bad characteristics, we would be much better off 

computationally to filter all undesirable candidate solutions.  

However, we would need a well chosen value for the minimum distance between two 

wells to be enforced. Given the reservoir properties, the production and injection rates, 

and the simulation timeframe of interest, we could come up with reasonable values for 

minimum distance between a producer injector pair and between two producers. For the 

case of producer injector pair, the minimum distance that we are interested in is the 

distance that would cause early water breakthrough if two well are that distance.  

5.1.2. Implementation 

Since, we are using a multilateral well model in our optimization framework, we first 

need a method to calculate the distance between any two multilateral wells. To calculate 

the minimum distance between two multilaterals, we need to calculate and compare the 

distance between all segments of the two wells (see Figure 5-1). 
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Figure 5-1: Minimum distance between two multilateral wells 

To calculate the distance between two line segments, we first calculate the distance 

between their extended lines. In Figure 2 we can see the two lines � and . These lines 

can be represented by two line direction vectors, u
�

and v
�

, and two coordinate points �� 

and 0:  

 )(               )( 0 RsusPsP ∈+= �  (5-1) 

 )(               )( 0 RtvtQtQ ∈+= �  (5-2) 

Also, the distance between any two points on these two lines can be represented by: 

 )()(),( tQsPstw −=�  (5-3) 
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Figure 5-2: Calculating minimum distance between two lines 

If the closets points on the two lines are ����� and ����, the vector connecting them, cw
�

, 

will be perpendicular to the line direction vectors,  u
�

 and v
�

: 

 0. =uwc
��

 (5-4) 

 0. =vwc
��

 (5-5) 

By substituting vtusQPQPw ccccc −+−=−= 00 , in equations (5-4) and (5-5), we can 

solve for �� and �� : 
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Now we can find the distance between two segments by checking if ����� and ���� lie on 

each of the segments or on their left and right side. The code implementing this can be 

found in segDistance.m. 

5.1.3. Results 

In this section we present an example to see the effect of implementing minimum well 

distance enforcement on the optimization process and outcomes. For this example we use 

the upscaled version of the tenth SPE comparative solution project model 2 (Christie and 

Blunt, 2001) from Coats Engineering (2008). The properties for this reservoir are 
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provided in Table 5-1. The optimization process is performed to find the optimum 

placement for two producers and one injector. The optimization criteria is maximizing of 

the NPV after four years of production. Two optimization runs were made, one without 

enforcing minimum distance between wells, and the other one with enforcing minimum 

distance of 400 ft between producer-producer pairs, and 600 ft between producer-injector 

pairs. The optimum well placement scenario found is shown in Figure 5-3. 

 

Table 5-1: Reservoir and fluid properties used in “minimum well distance” test 

Property Value 

Grid dimensions 10 × 20 × 10 

Field dimension 120 × 110 × 68 ft3 

Average porosity 0.17 

Average vertical permeability 9.2 mD 

Average horizontal permeability  206 mD 

Compressibility factor 3 × 10−5 psi-1 

Bo 1.05 
 

The comparison between the evolution of best individuals, in the two cases with and 

without the enforcing of minimum well distance is presented in Figure 5-4. As can be 

seen from Figure 5-4, the fitness of the optimum value with minimum well distance 

enforcement always stays on top of the optimum value from the other case. It can be 

observed that by not accepting the weak solutions in the population, and generating new 

solutions instead, the population space is used more efficiently resulting in considerable 

improvement in the final optimum fitness value. 
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Figure 5-3: Optimum well placement scenario with minimum well distance 

 

 

Figure 5-4: Comparing the evolution of the best individuals with and without minimum 
well distance enforcement 
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5.2. Controlling Population Diversity  

5.2.1. Motives 

Since, GAs are population based methods their search power arises from searching the 

problem space by efficient hyperplane sampling. This requires a diverse population at all 

stages. The initial population is desired to cover the whole solution space homogeneously 

to have maximum diversity (Chelouah and Siarry, 2000). Also, in the later generations as 

the population is intensified in more promising areas, we are interested in keeping it 

diverse enough so that it converges to the optimum located between many sub-optimal 

solutions. 

5.2.2. Implementation 

To calculate the population diversity and the distance between individual chromosomes, 

first the property vectors should be normalized. Then the Euclidian distance between the 

normalized property vectors of each pair of individual is calculated. When a new 

individual is generated, either in the initial population or during reproduction, we 

calculate its distance with all previously generated individuals in the population. If the 

calculated distance is more than the preselected minimum distance between individuals 

the new individual is accepted, otherwise it is rejected. If an individual is rejected, 

another individual is generated. This process continues until the desired population sized 

is reached.  

However, minimum distance should be selected carefully. It should be large enough to 

maximize the diversity, but not too large to push the new individuals to specific locations. 

A minimum distance that results in rejecting half of the generated individuals on average 

was selected. Also, the minimum distance selected for each generation should be smaller 

than its value in previous generations. In our implementation we chose the minimum 

distance at each generation, �, by:  

 ( )412.0min
g

Dist +=  (5-8) 

The implementation of this idea can be found in the file reproduce.m. 
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5.2.3. Results 

In this section we provide a simple example to illustrate the effectiveness and importance 

of calculating and enforcing minimum distance between individuals. We generate two 

initial populations of size 30. In the first case we impose a minimum distance with a 

rejection factor of ½ (half of the generated individuals are rejected). In the second case we 

do not impose a minimum distance. Here we have chosen individuals with only two 

parameters, for better visualization. The distribution of initial population over the 

solution space in both cases is shown in Figure 5-5. 

 

 

Figure 5-5: Distribution of initial population over the solution space with or without 

enforcing minimum distance between individuals 

As can be seen in the first case (Figure 5-5, left picture) new points are not allowed to fall 

in the neighborhood of previous points, shown by circles around them. This has resulted 

in a more uniform, but still random coverage. However, in the second case (Figure 5-5, 

right picture) there are some individuals very close to each other. Existence of these cases 

results in redundant numerical simulation runs. 
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5.3. Multiple Initial Populations 

5.3.1. Motives 

In Chapter 3 we observed a strong effect of initial populations on the outcomes of the GA 

optimization. Not only that different initial populations resulted in different optimum 

fitness values (about 10% variation), but also in some cases it resulted in final optimum 

solutions at different locations. Here we are interested in designing a parallelized GA 

search framework using multiple initial populations, to take advantage of the effect of 

different initial populations. 

5.3.2. Implementation 

The framework designed here starts with four initial populations. Each of the initial 

populations is subjected to a separate GA optimization process. During the evolution of 

each population we save all the generated individuals. After all populations has gone 

through a certain number of generations, we select the best individuals generated in each 

of them that also have a minimum distance with each other (they are not very similar). 

Then we put all these selected individuals together in a pool of fittest generated 

individuals. Again, we choose the best individuals in the pool with a minimum distance 

constraint. This creates our new initial population that goes through another GA 

optimization process (see Figure 5-6). The role of the minimum distance constraint is to 

prevent similar individuals in the new initial population. 
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Figure 5-6: Suggested framework for optimization with multiple initial populations 

5.3.3. Results 

To test this framework we used the same reservoir properties and same optimization 

parameters as in the example of Section 5.1. The evolution of best individuals for all 

populations is shown in Figure 5-7. The dashed lines represent different initial 

populations, and the red line is the selected initial population. It can be observed that with 

this new initial population we can reach higher fitness value. Comparing this result with 

running each initial population has shown that using multiple initial populations is better 

than just running an optimization with one initial population much longer. 
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Figure 5-7: The evolution of best individuals for all populations for multiple initial 

populations 

 

5.4. Curved Well Implementation  

5.4.1. Motives 

In Chapter 3 we discussed the importance of employing well models that could represent 

actual advanced wells in an improved way. This would improve our optimization 

framework, as the calculated objective values could become closer to actual field values. 

Since many advanced multilateral wells have curved mainbores one possible 

enhancement could be modifying the well model, in a way that would also consider 

curved mainbores in the potential solutions of the optimization problem. 
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5.4.2. Implementation 

A simple proposal for a model handling wells with curved mainbores could be to use 

connected multi-segments for constructing a curved mainbore (see Figure 5-8a). 

However, this model has not been implemented in the previous works because of 

apparent inefficiencies it would trail. The first problem for representing a curved well 

with this model is the high length of the chromosome required to model the well. This 

would create the need for using larger populations and will result in very low 

convergence rates. The other problem with this model is the high chance of creating 

invalid (impractical) wells during GA reproduction stage (see Figure 5-8b).      

 

 

Figure 5-8: Using multi-segment representation for implementing curved mainbores 

 

Our goal was to come up with a curved well model that does not result in a big change in 

the chromosome length, and guarantees the generation of practical wells during GA 

reproduction.  

In our model we keep all the parameters that we have used for representing a 3D line 

segment in our multilateral well model (m1, m2, m3, lm, lz, �xy). These parameters would 

specify the heel and toe points for the mainbore. We assume the well to be on the vertical 
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plane passing through heel and toe points (this assumption could be changed by adding 

another parameter, �p, representing the angle the well plane makes with the vertical 

plane). Then all valid curved wells on that vertical plain could be represented by 

introducing only one additional parameter, called curvature, using the following 

normalized exponential formula:  
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where x=[0: 0.001: 1], curvature = parameter describing the curvature of the well 

]2,4[−∈  

x and y will give the normalize horizontal and vertical coordinates of the curved well over 

the vertical plane passing through its heel and toe points. Then the normalized values of x 

and y should be mapped back to that vertical plane to provide the actual coordinated of all 

the points on the curved well. Figure 5-9 shows some curved well configurations using 

different curvature parameter with same heel and toe coordinates. 
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Figure 5-9: Curved well configurations with different curvature parameters 

This model captures both curved and straight wells. The curvature value of -4 generates 

wells that look bent (very high curvature) at the curving point. However, the curvature 

values between 0 and 2 generate wells that are close to being straight. Hence, when the 

curvature value for a new well falls within this range it is considered to be a straight well 

in the numerical simulation. 

5.4.3. Results 

To test our curved well implementation we use the same reservoir model that was used in 

the example in Section 5.1. The goal of the optimization process is to find the optimum 

placement one monobore producer, maximizing the NPV of the field. The candidate 

solutions could be either straight or curved wells (depending on their curvature values). 

However, they all have the same high and low bounds for well length and vertical 

penetration. Figure 5-10 compares the evolution of the best individuals with straight and 

curved well models. It can be observed that using the curved well model the final 

objective value achieved is higher. However, in the first 30 generations the best fitness 
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using the curved well model is lower due to additional complexity added to the model. 

Finding higher final fitness value with curved well implementation could be interpreted to 

be due to the higher number of possible well configurations explored during the search 

for the best well. 

 

Figure 5-10: Comparing the evolution of the best individuals with straight and curved 

well models 
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Chapter 6 

6. Conclusions and Future Work 

6.1. Conclusions 

The purpose of this study was to possible enhancements for well placement optimization 

with GAs. The main contributions of this work are: 

• We modified the multilateral well model to be more efficient for GA 

optimization. In our model the total well length replaces the horizontal well 

length, the vertical well length replaces the vertical coordinate of the Toe, and 

the coordinate of midpoint replaces the coordinates of Heel. This change results 

in increasing the connection between the model parameter values and the 

objective function value (which could be cumulative oil production or NPV). 

• A well placement optimization framework was been generated using continuous 

GAs as the search engine. The continuous GA implementation was designed to 

avoid generating invalid wells during the reproduction. The evolution process in 

continuous GAs was observed to be more gradual compared to stepwise 

evolution in binary GAs. However, it also showed to be steadier than in binary 

GAs. This would enable continuous GAs to achieve higher fitness at later stages 

of evolution. 

• Dynamic mutation was also implemented to take better advantage of the 

exploring capacity of mutation in each stage of the evolution. 

• We have imposed a minimum normalized Euclidean distance between the 

individuals in the population, controlling their distribution at each generation. 

• As an example of incorporating our engineering knowledge into the optimization 

framework, we imposed minimum distance between multilateral wells in each 

individual. This resulted in improvements in both the final fitness achieved and 

the time required to reach good outcomes. 
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• A curved mainbore model was designed by adding only one extra parameter and 

using a normalized exponential formula. This introduced model can also capture 

straight wells. Higher final fitness value was achieved with the curved well 

implementation. This could be because of the higher number of possible well 

configurations explored during the search for the best well using curved well 

implementation. 

6.2. Future Work 

We propose the implementation of the following items to achieve a more powerful 

optimization framework: 

• The curved well model can be represented by a circular formula. We have 

received suggestion in a meeting of industrial sponsors that drilling engineers may 

prefer circular representation. 

• Dynamic mutation can be implemented in an adaptive manner to help the 

algorithm avoid premature convergence to a suboptimal solution. This could be 

done by calculating the divergence of the offspring population at each generation 

and increasing the mutation if it falls below a certain value. 

• Dynamic population size can be used to provide as many individuals as is most 

efficient for evolution at each generation. 

• Derivative information from Adjoint method could be incorporated into the GA 

optimization framework to make it more intelligent.   
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Nomenclature 

 

a activation parameter 

Bo  oil formation volume factor, volume/volume 

nf   objective function value for nth chromosome�

Fmut mutation factor 

hi ith coordinate of the Heel 

g generation 

lm  total well length 

lxy  horizontal well length 

lz  vertical well length 

mi ith coordinates of the midpoint 

n binary encoding length 

� GA population size 

������� number of individuals selected as parents 

PFi ith variable of father’s chromosome 

new
iP  new value of the ith variable of offspring chromosome after crossover 

Pim mutated value of the ith variable of offspring chromosome chosen for mutation  

PMi ith variable of mother’s chromosome�

Pmut mutation probability 

Pxo crossover probability 

� ranking scale 

ti ith coordinate of the Toe 

x     vector of normalize horizontal coordinates of the curved well 

max
ix  maximum allowed values of the ith parameter in the chromosome 

min
ix  minimum allowed values of the ith parameter in the chromosome 

x*     optimum value of a function  

y     vector of normalize vertical coordinates of the curved well 

� blending random variable 
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�xi quantization level for the ith parameter in the chromosome 

� a very small value 

� function domain 

� standard deviation of the normal distribution 

�x horizontal counterclockwise angle from the x-axis  

�z inclination angle 
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Appendix I 

 

Contents of this Appendix are provided on a CD that is part of this report. Here we  

describe the files and folders inside the CD. We have also provided a sample input file for 

the well placement optimization program at the end of this Appendix. The CD contains 

two folders: CGA and Inputs.  

The CGA folder includes following Matlab files used in this work:  

1. main.m: This is the main program for performing continuous GA search for 

optimal multi-lateral wells in the reservoir. 

2. read_input.m: This function reads all the required input parameters from the input 

file. 

3. init_pop.m: This function generates an initial population for the GA search. 

4. ECL_well.m: This function reads each chromosome and creates the input file 

ECLIPSE. 

5. run_sim.m: This function performs ECLIPSE simulations for each individual 

chromosome in the population and reads the simulation results. 

6. rank_pop.m: This function evaluates the objective values for each individual  in 

the current population and rank them in descending order. 

7. reproduce.m: This function reproduces the next generation from the current 

generation. 

8. Vector2Indiv.m: This function converts a population represented in a vector format 

to a struct format. 

9. uniqueRand.m: This function produces an array of unique random numbers. This 

is required for implementing reproduction. 

10. showWell.m: This function visualizes all the wells in a given individual 

11. creatObjReport.m: This function outputs a file containing parameterized vectors 

of each new individual generated and its objective. 
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12. creatObjMatrix: This function generates a sorted matrix of all new individuals 

and their objective. This file is used multiple initial population implementation. 

13. segDistance.m: This function calculates the closest distance between two line 

segments. 

14. Well_distance.m: This function calculates the closest distance between two multi-

lateral wells. 

15. hcurve.m: This function calculates the coordinated for a curved well. 

16. ECL_CurvedWell.m: This function creates the input file ECLIPSE when curved 

well description is used. 

17. mainParallel.m: This is the main program for performing continuous GA search 

for optimal multi-lateral wells using multiple initial population. 

18. GPRS_well.m: This function calculates the well connection factors for curved 

wells and writes the well file for GPRS. 

 

The Inputs folder includes: 

1. input.par: This is a sample input file for our well placement optimization 

program. 

2. ECL Input: This folder contains inputs for ELCIPSE simulation on upscaled 

SPE10 model. 

3. GPRS Input: This folder contains inputs for GPRS simulation on 40 × 40 × 7 

channeled reservoir. 
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input.par: 

 

 EclGArun       % Filename to store progress (.mat will be appended) 

Spe10_2000     % eclipse data file name 

 

-- Continuous Genetic algorithm parameters 

0.06   0.2   2    % mutation (probability/factor/power) 

0.2     0.2         % crossover (probability/factor) 

2                      % ranking scale 

0.3     0.8         % fraction of population selected as potential parents 

30                    % initial population size  

200                  % Max number of Generations 

 

-- Objective funtion 

 

2                     % Objective function: 1-FOPT; 2-NPV; 3-UTILITY 

1  0  1  0         % Number realizations / risk10 / risk50 / risk90 

 

-- Economics 

 

10                    % APR  

60 -2.5 1 -3.5   % oil, water, gas selling prices, water injection cost ($/bbl) 

2000000 3        % CAPEX($), OPEX($/bbl) 

3000000           % cost of junction milling 

1000000           % cost of prod and injector 

3000                % cost per foot, drilling, completion etc 
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-- Wells 

2                   % # producers  

1                   % # injectors  

0                   % # junction points on main trunk  

 

100   1000       % main bore length on xy plane (Min and Max)      

0       500        % main bore length on z plane  (Min and Max) 

100   300        % laterals length on xy plane  (Min and Max)  

0       50          % laterals length on z plane   (Min and Max) 

0.2    1            % lateral position on the well  (Min and Max) 

 

-- Simulation 

ECL             % Simulator  

 

10  20  10     % NX NY NZ 

120 110 68   % dX dY dZ 

 

0               % Dynamic # of wells     (yes/no = 1/0) 

0               % Dynamic # of Junctions (yes/no = 1/0) 

0               % Dynamic Injection rate (yes/no = 1/0) 

 

2000        % PROD BHP  

0  % BHP controled injection  (yes/no = 1/0) 

20000 12000 % INJE Rate target / BHP constraint 

4           % Duration of simulation (YEARS) 

-- END 


