
Improving Hadoop Service Provisioning in A Geographically Distributed Cloud

Aameek Singh, Gabriel Alatorre, Nagapramod Mandagere, Sandeep Gopisetty

 +IBM Research – Almaden
{qzhang90, ling.liu}@cc.gatech.edu {aameek.singh, pramod, sandeep.gopisetty, galatorr}@us.ibm.com

Abstract—With more data generated and collected in a
geographically distributed manner, combined by the increased
computational requirements for large scale data-intensive analysis,
we have witnessed the growing demand for geographically
distributed Cloud datacenters and hybrid Cloud service
provisioning, enabling organizations to support instantaneous
demand of additional computational resources and to expand in-
house resources to maintain peak service demands by utilizing
cloud resources. A key challenge for running applications in such
a geographically distributed computing environment is how to
efficiently schedule and perform analysis over data that is
geographically distributed across multiple datacenters. In this
paper, we first compare multi-datacenter Hadoop deployment with
single-datacenter Hadoop deployment to identify the performance
issues inherent in a geographically distributed cloud. A
generalization of the problem characterization in the context of
geographically distributed cloud datacenters is also provided with
discussions on general optimization strategies. Then we describe
the design and implementation of a suite of system-level
optimizations for improving performance of Hadoop service
provisioning in a geo-distributed cloud, including prediction-based
job localization, configurable HDFS data placement, and data pre-
fetching. Our experimental evaluation shows that our prediction
based localization has very low error ratio, smaller than 5%, and
our optimization can improve the execution time of Reduce phase
by 48.6%.

Keywords: Geographically distributed cloud, Hybrid cloud,
Cross-cloud Hadoop deployment, Performance optimizaiton

I. INTRODUCTION

A fundamental innovation of cloud computing is the
transformation of the arrangement of computing resources
from static, long term and high upfront ownership
investment based systems to dynamic provisioning systems.
By providing cloud infrastructure and platform as services
dynamic resource sharing across organizational and
geographical boundaries can be enabled seamlessly to
respond to changing demands and requirements. As a result,
we witness the growing attentions of hybrid cloud and multi-
datacenter cloud deployment from both industry and
academic research communities. These cloud technologies
offer solutions to deal with high velocity and high volume of
big data generated from geographically dispersed sources
while providing real-time experience to a broader range of
cloud consumers. More companies, such as IBM, Google,
and Facebook, are managing multiple cloud-based
datacenters, which are usually geographically dispersed, to
deal with the increasing computational requirements on
large-scale data intensive analysis while providing

guaranteed low latency to their customers. Furthermore,
recent study on efficient energy management for datacenters
[1] shows that compared with putting all the infrastructures
into a single datacenter, it is more energy efficient to divide a
single high-density datacenter into multiple smaller
datacenters, and keep low energy costs for each of them..

We argue that there are two categories of technical
challenges for developing a geographically distributed cloud
with high performance and high availability guarantee. The
first category of challenges is centered on adapting and
extending existing cloud computing software platform.
Example key questions include (i) what additional
capabilities should be provided on top of existing cluster
computing infrastructure that is typically configured,
allocated, managed and optimized in a single cloud
datacenter; (ii) how should existing cluster computing
facilities be extended to provide efficient execution runtime
environment for applications running in a geographically
distributed cloud. The second category of challenges is
centered on new technologies for enabling fast
interconnection between cloud datacenters. The example
efforts include Facebook Prism [12], Google Megastore [2]
and Spanner [6], HP FlexFabric Interconnect [14], Cisco
VPLS [13], enabling virtualization of heterogeneous
compute, storage, network resources through a common
orchestration interface using technology, such as storage
virtualization, network virtualization and software defined
networking.

In this paper we focus on addressing the two research
questions mentioned in the first category. Concretely, the
cloud computing resource management today is tightly
coupled with the autonomous administration of each physical
datacenter. It discourages resources sharing and limits the
utilization efficiency of datacenter resources. For example,
when one of the datacenters is overloaded and unavailable,
the inability of automated off-loading of some workloads to
other datacenters can significantly hurt the competitiveness
of both cloud service providers and cloud consumers. In
addition, although it is feasible to deploy a multi-datacenter
Hadoop cluster at the application layer and run Hadoop
workloads across geographically distributed datacenters, the
current Hadoop solutions fail to provide resource-aware job
scheduling and task scheduling for multi-datacenter Hadoop
cluster instances that are running in a geographically
distributed cloud, comprising of multiple autonomous and
possibly heterogeneous data centers. This limitation prevents
seamless resource utilization across datacenters, and can lead
to unpredictably poor performance for Hadoop MapReduce
jobs. For example, current Hadoop MapReduce solutions do
not differentiate cluster nodes at a local datacenter from

 Qi Zhang, Ling Liu, Kisung Lee, Yang Zhou
College of Computing, Georgia Tech

{qzhang90, ling.liu, kslee, yzhou86}@cc.gatech.edu

Aameek Singh, Nagapramod Mandagere, Sandeep Gopisetty,
Gabriel Alatorre

IBM Research – Almaden
{aameek.singh, pramod, sandeep.gopisetty, galatorr }@us.ibm.com

cluster nodes at a remote datacenter in its job scheduler and
its task scheduler, which leads to copying the same piece of
data into multiple datacenters [2, 3, 4]. This can make the
cost of maintaining data consistency prohibitively high [5].
At the same time, transferring large amount of data across
datacenters can be unmanageably time consuming.

Bearing these problems in mind, in this paper we first
conduct analytical and experimental study to identify the
performance issues inherent in a geographically distributed
cloud by comparing multi-datacenter Hadoop deployment
with single-datacenter Hadoop deployment. We provide a
generalization of the problem characterization in the context
of geographically distributed cloud datacenters and discuss
the general optimization strategies. Then we describe the
design and implementation of a suite of system-level
optimizations designed specifically for improving the
performance of Hadoop service provisioning in a multi-
datacenter cloud: (i) prediction-based MapReduce job
localization, (ii) configurable HDFS data placement, and (iii)
Map input pre-fetching. To the best of our knowledge, there
is no comprehensive study of multi-datacenter Hadoop
deployments from job and task scheduling perspective. The
experimental evaluation shows that our prediction based
localization has very low error ratio, less than 5%, and our
optimization can improve the execution time of Reduce
phase by 48.6%.

The rest of this paper is organized as follows. Section 2
reviews the basic concepts and notations and identifies the
main performance bottlenecks through experimental analysis.
Second 3 presents our solution approach for improving
Hadoop service provisioning in a geographically distributed
cloud. We evaluate the effectiveness of our solution
approach in Section 4, outline the related work in Section 5
and conclude the paper in Section 6.

II. DESIGN OVERVIEW

A. Problem Definition
We define a geographically distributed cloud as a virtual

cloud datacenter that manages multiple geographically
dispersed datacenters. Advantages of such a geo-distributed
cloud include the capability of coordinated provisioning of
computing resources from multiple autonomous datacenters
to provide cloud consumers the configurable ability to
processing and analyzing large scale datasets by moving
computation to data. Furthermore, the system facility to
configure and compute across datacenters seamlessly can
further enhance the capability for hybrid cloud service
provisioning. One of the challenges in developing such
system facility is the fact that most of the jobs running across
geographically dispersed datacenters may not always deliver
the same level of performance guarantee as those running
within a single datacenter for at least two reasons. First, the
network I/O bandwidth between geographically disparate
datacenters is typically less predictable and significantly
slower than intra-datacenter bisection network bandwidth.
Second, the larger and the more frequent the data transfer is
between datacenters, the larger performance degradation the
cross-datacenter job execution will have. Thus, our goal is to

develop system-level facilities that enable efficient and
seamless cross-datacenter big data processing in a geo-
distributed cluster. In this paper, a geo-distributed cluster
refers to a large cluster that is established by including
multiple sub-clusters, each sub-cluster is from a different
datacenter and has its own namespace. We use sub-cluster to
refer to a cluster setup within a given datacenter. This
architecture brings several advantages. First, more flexible
services can be provided when sub-clusters are configured
into a geo-distributed cluster, because resources can be
shared among these sub-clusters to handle cloud burst [15]
and load balancing. Second, it enables across-datacenter
computing for content and data sharing and increased failure
resilience. Our solution approach should meet the following
three system properties. First, this geo-distributed cluster
should be transparent to existing applications in terms of
both usability and functionality. Second, failures in one sub-
cluster should not affect the routine execution of the other
clusters no matter they are located in the same datacenter as
the failed cluster or not. Third, sub-clusters in each single
datacenter should be able to provide the same functionality
and performance as an independent cluster in the presence of
geo-distributed cluster instances.

B. HDFS and Hadoop MapReduce
HDFS (Hadoop Distributed File System) is an open

source distributed file system designed to run on a cluster of
commodity hardware. HDFS stores each file as a sequence
of blocks with the same size and each block is replicated for
fault tolerance. HDFS supports distributed computing by a
master-slave based coordination architecture, where the
master node, called NameNode, stores the metadata and
synchronize the slaves to perform distributed computation.
And all the raw data are stored and processed on the slave
nodes, called DataNode.

Hadoop MapReduce is an open-sourced software and
distributed multi-phase programming framework that allows
processing big data in parallel on large HDFS clusters. Each
Hadoop MapReduce job runs in two stages: Map and
Reduce. The Reduce stage consists of three phases: shuffle,
sort, and reduce. There is a JobTacker runing on the master
node, which is responsible for job scheduling and task
scheduling. And a TaskTracker runs on each of the allocated
slave nodes for launching and executing the Map tasks and
Reduce tasks assigned by the JobTracker. We identify the
following three components as the critical sections for
improving the performance of a MapReduce job running in
a geo-distributed cluster: input splits of Map tasks, output
records of Reduce tasks, and execution of shuffle phase.

There are three categories of Map tasks according to
where the input split of a Map task locates: The first
category is the node-local Map task, which reads the input
split stored locally at the same physical node as the Map
task is running. This is the most efficient type of Map tasks,
since their input can be retrieved from local disk. The
second category is the datacenter-local Map task, which
reads the input split not from the same compute node as the

task is running on, but from the node that is located in the
same datacenter. Therefore, this input split has to be
transferred within the datacenter before the Map task starts.
The third category is datacenter-remote Map task, which
reads the input split located in a different datacenter.
MapReduce framework schedules the node-local Map task
as the highest priority, but the other two categories of Map
tasks also exist when a node without any local input split is
still asking for Map tasks.

The output records of each Reduce task will be written
through HDFS to the stable storage, and each block needs to
be replicated to three or more nodes within the HDFS
cluster. We use the term target nodes to refer to the nodes
that HDFS chooses to store the replicas of a certain block.
Since a Reduce task returns successfully only when all of its
output replicas are written correctly to the stable storage, the
selection of target nodes can affect the performance of
Reduce tasks in a geo-distributed cluster. For example, if
one of the target nodes is located in a different datacenter,
this Reduce task is expected to execute for a relatively
longer time since one of its output records will be written
across datacenters. Thus, we call the Reduce task that writes
its output to a remote datacenter as datacenter-remote
Reduce task, and the Reduce task that writes its output only
to the local datacenter as datacenter-local Reduce tasks.

The shuffle phase in the Hadoop MapReduce framework
is an area where refinements and improvements are
continually being made. During the shuffle phase, every
Reduce task fetches its portion of intermediate data from
each Map task’s output file. Therefore, the shuffle phase
generates large network I/O traffic and is the bottleneck of a
MapReduce job. Shuffling data across datacenters can be
more demanding on network I/O bandwidth and thus leads
to even lower efficiency.

Figure 1 shows the execution of a MapReduce job
WordCount in a sub-cluster. We make several interesting
observations. First, Map tasks and Reduce tasks are
executed in groups (Map task group and Reduce task group),
the number of tasks in each group depends on the number of
nodes in the cluster allocated for Map or Reduce tasks and
the number of available slots on each node. The total
number of Map tasks equals to the total number of input
splits (80 in this example), while the total number of Reduce
tasks is pre-configured (also 80 in this example). Second, by
configuring early shuffle to start upon reaching 5% or more
Map tasks completed, we observe that the shuffle phase of
the first Reduce task group started upon the first Map task
group finished. By taking a closer look, we see that although
early shuffle enables the first Reduce task group to finish
earlier, it does incur some delay in the execution of the other
Map tasks that are concurrently running. In this example,
the execution time of the following Map tasks is on average
23.9 seconds, longer than that in the first Map task group
(20.9 seconds). Third, the average execution time of sort
phase takes about 1 second. This is because the local
combine operation at Map phase in WordCount decreases

the size of intermediate data, which makes the sort phase in
Reduce finishes very quickly. Fourth, when we zoom into
each task group as shown in Figure 1, we find that the tasks
in each single group do not start exactly at the same time
because each task is encapsulated in a JVM, the time spent
on initialization is not exactly the same for each JVM when
they are competing for resources on the same physical
machine. In the rest of the paper, the execution time of task
groups is given by the average value.

C. Geo-Distributed Cluster: Design Consideration
In order to gain a better understanding of performance

bottlenecks of jobs running in a geo-distributed cluster, we
conduct performance measurement study on a geo-
distributed Hadoop cluster. We run MapReduce jobs on
input data that are distributed in different sub-clusters in a
simulated geo-distributed cloud, which consists of 20 nodes
from two sub-clusters (SCA and SCB), and each has 10 nodes
and is from different datacenters. The cross-datacenter access
latency is 200ms, while the latency between the nodes within
a single sub-cluster is about 1ms. .

Figure 2 shows how MapReduce jobs WordCount and
Grep behave when they are running in our simulated
geographically distributed cluster. X-axis shows the timeline
of a job execution and Y-axis shows all task IDs in the order
of their execution. We obtain four interesting observations.
First, when zooming into a Map task group as shown in
Figure 2(a), we notice that those Map tasks that run much
longer are datacenter-remote Map tasks while those Map
tasks that have relatively shorter execution time are the
datacenter-local Map tasks. Also, the execution time of node-
local Map tasks is very similar to that of the datacenter-local
Map tasks when compare to the execution time of
datacenter-remote Map tasks. Thus in the remaining analysis,
we do not make explicit distinction between node-local Map
tasks and datacenter-local Map tasks, and refer to both
simply as datacenter-local Map tasks and compare them with
datacenter-remote Map tasks.

Second, the ratio between datacenter-local Map tasks and
datacenter-remote Map tasks is very similar to the ratio
between local input data and remote input data. Consider
WordCount with 15GB input data, the percentage of remote
map tasks is 48% when 50% of its input data is from a
remote datacenter (Figure 2(a)), and the percentage of
remote map tasks decreases to 23% when 20% of its input
data is remote (Figure 2(b)). Therefore, the percentage of

Figure 1. WordCount running in a sub-cluster

remote input data may be used to estimate the percentage of
datacenter-remote Map tasks in the subsequent discussion.

Third, we notice that, for WordCount, datacenter-remote
Map tasks and datacenter-local Map tasks appear
alternatively at the early stage of the Map phase. But as the
Map phase progresses, the amount of datacenter-remote Map
tasks increases significantly and dominates in the latter stage
of the Map phase. In Figure 2(a), from 0 second to about 400
second, datacenter-remote Map tasks appear approximately
every 25 seconds. However, there are very few datacenter-
local Map tasks from 400 to the end of the Map phase. This
is because at the beginning of the Map phase, the job will
digest its input data from both datacenter-local and
datacenter-remote input splits simultaneously as long as
there are enough map slots. Since the datacenter-remote Map
tasks take longer time to finish, the datacenter-local Map
tasks will be finished faster. Given that 50% of the input data
is distributed in the remote datacenter, thus at the latter stage
of Map phase, the rest of Map tasks are dominated by
datacenter-remote Map tasks. This remains to be true even
when the percentage of local input data is more than that of
remote input data, e.g., with 20% input data remote as shown
n Figure 2(b), we still observe that the number of datacenter-
remote Map tasks increases as the job approaches the latter
stage of the Map phase.

Finally, when zooming into a Reduce task group as
shown in Figure 2 for both WordCount and Grep, we find
that the Reduce tasks with a much longer execution time are
datacenter-remote Reduce tasks, while Reduce tasks with
shorter execution time are datacenter-local Reduce tasks. It is
interesting to note that the datacenter-remote Reduce tasks
occur randomly. This is because the data placement policy in
HDFS by default will choose three target nodes from the
geographically distributed cluster, one of which is the node
where the reduce write operation is issued, the other two are
randomly chosen if no rack information is provided. If one of
them is located in a different sub-cluster from the one where
the write operation is issued, a datacenter-remote Reduce
task will be created.

Figure 3 shows the Reduce phase of WordCount job
running in the rack-aware HDFS configuration. We notice
that the number of datacenter-remote Reduce tasks increases
dramatically in this case. By the data placement policy of
HDFS, when rack information is provided, the third replica
will be stored in a node which is from a different rack.
Therefore, a fair number of Reduce tasks become datacenter-
remote Reduce tasks in this configuration. At the same time,

the probability that all the replicas are stored in the same
datacenter is not zero. Thus, datacenter-local tasks still exist.
Similar results are also observed in executing the Grep jobs.

From the experimental analysis above, we argue that
there are three main design considerations for provisioning a
high performance geo-distributed cluster: First, mechanisms
that can reduce the amount of intermediate data being
shuffled across datacenters are critical for improving the
performance of Hadoop deployment cross multi-datacenters.
Second, adequate control of the number of datacenter-remote
Reduce tasks can speed up the execution time of Reduce
tasks. Third but not the least, mechanisms for reducing the
amount of datacenter-remote Map tasks is necessary for
effective Hadoop service provisioning in a geo-distributed
cloud.

III. OUR SOLUTION APPROACH

Following the design guidelines outline in the previous
section, we present our solution approach by focusing on the
three optimization techniques, each targeting at one of the
three problems: 1) Sub-cluster aware job/task scheduling, 2)
Sub-cluster aware reduce output placement, and 3) Map
input data pre-fetching.

Figure 4 shows the architecture of a geo-distributed
cluster with our proposed solutions. It consists of sub-
clusters from different datacenters, in which Map phase exe
time predictor, sub-cluster aware writer, and Map input pre-
fetcher are the core components that corresponding to our
optimization techniques.

A. Sub-cluster aware scheduling of jobs and tasks
Given a job submitted to a geo-distributed cluster, the job

scheduler should first examine whether the job can run

(a) WordCount on 15GB data,

50% input data remote

(b)WordCount on 15GB data,

20% input data remote

(c)Grep on 15GB data,
50% input data remote

Figure 2. Execution of MapReduce jobs with distributed input data

Figure 3. Reduce phase of WordCount

(d)Grep on 15GB data,
20% input data remote

within a sub-cluster and which sub-cluster this job can run
more efficiently. This optimization can significantly improve
the performance of the shuffle phase by minimizing the
unnecessary cross-datacenter network I/O traffics.

 The objective of this optimization is to find a sub-cluster
that can finish the given job in a shortest time, even if its
input data is distributed in multiple local datacenters. We
accomplish it by extending the current Hadoop MapReduce
job scheduler and task scheduler. By making the scheduler
sub-cluster aware, all the tasks of a given job can be assigned
to the nodes within the same sub-cluster. Concretely, this
optimization can be implemented in two steps: First, every
submitted job should notify the job scheduler the name of the
sub-cluster in which it prefers to running in. The job
schedule can check if all the tasks of this job can be assigned
to the nodes within this sub-cluster. Second, whenever
receiving a task assignment request from a TaskTracker, the
task scheduler checks which sub-cluster this TaskTracker
belongs to, and only assign the pending Map tasks to the
TaskTracker if it belongs to the same sub-cluster as the one
chosen by the given job.

One challenge still exists to make this optimization work
correctly and efficiently. Since it requires each MapReduce
job to indicate its preferred sub-cluster, we extend the job
scheduler by adding the prediction capability that can
estimate which sub-cluster this job can be executed in the
shortest time. When all input data of a job are located within
one sub-cluster, it is relatively easy to estimate the job
execution time of such sub-clusters and choose the one with
the shortest execution time. However, the input data of a job
may not be all located in the same sub-cluster. We address
this challenge by providing a Map phase execution time
prediction model below.

Map phase execution time prediction. When a MapReduce
job is submitted to a geographically distributed cluster, its
input data could be either located in a single sub-cluster, or
distributed among multiple sub-clusters. Considering the
heterogeneous capability among different sub-clusters,
simply putting the job in the sub-cluster, which has the
largest portion of its input data may not be optimal.
Therefore, we propose a prediction model to estimate the

Map phase execution time of a particular job running in a
given sub-cluster.

We present our prediction model for Map task execution
time based on two scenarios: (i) local input data and (ii)
distributed input data. In the first case, all the Map tasks are
datacenter-local Map tasks, while in the second case, there
exist both datacenter-local Map tasks and datacenter-remote
Map tasks. Before discussing the prediction model, we
present the list of parameters and terms we will use.
l Execution time of Map Phase (EMP): The total

execution time of the Map phase in a MapReduce job. It
measures the duration from the beginning of a MapReduce
job to the end of the last group of its Map tasks.

l Execution time of a Datacenter-Local Map task
(EDLM): The average execution time of datacenter-local
Map tasks.

l Execution time of a Datacenter-Remote Map task
(EDRM): The average execution time of datacenter-
remote Map tasks.

l Percentage of Remote input data (PR): The portion of
the input data that is located in a different sub-cluster from
the one in which the MapReduce job is running in.

l Number of Map Tasks in the job (NMT): The total
number of Map tasks to run in a MapReduce job.

l Number of Map Slots in a sub-cluster (NMS): The total
number of Map slots that can be used by a MapReduce job
in a given sub-cluster.

Among all the above parameters, the value of EMP is what
we are going to predict. The value of EDLM and EDRM are
gathered from historical execution statistics of similar
MapReduce jobs. The value of PR, NMT, and NMS can be
obtained from cluster configuration.
(1) Local input data

This case is the easiest and most straightforward one.
Figure 5 shows an abstraction of Map phase execution based
on previous experiments. Each yellow bar represents a group
of Map tasks that are executing simultaneously. The length
of the yellow bar reflects EDLM, while the width of the
yellow bar represents NMS. Since all the Map tasks are
datacenter-local Map tasks in this case, their execution times
are very much similar to each other when there are no

stragglers. Therefore, the execution time of the whole Map
phase can be calculated as following:

N M T
E M P E L D M

N M S
= g

(2) Distributed input data
Figure 6 shows the abstraction of Map phase execution in

the case of distributed input data. Both Datacenter-local Map
tasks and datacenter-remote Map tasks will be scheduled
simultaneously at the beginning of the job. The yellow bars,
which are shorter, represent the execution of datacenter-local

Figure 4. Architecture of a geo-distributed cluster

Figure 5. Abstraction of Map phase in case (1)

Map tasks. The blue bars, which are longer, represent the
execution of datacenter-remote Map tasks. Though the
execution time of a datacenter-remote Map task is set to be
twice as long as that of a datacenter-local Map task in Figure
6, the ratio between the execution time of these two
categories of Map tasks can vary in general.

According to Figure 6, the whole Map phase is divided
into two stages. Phase Mix represents the time that
datacenter-remote Map tasks execute simultaneously with
datacenter-local Map tasks. Phase Pure represents the
execution of datacenter-remote Map tasks only. Therefore,
the execution time of Map Phase is the summation of the
execution time of Phase Mix (PM) and the execution time of
Phase Pure (PP).

(1)
(1)

NMT PR NM T EDLM
PM EDLM

NM S PR NMS
-

= =
-

gg

As mentioned earlier, we use input data distribution to
estimate the Map tasks distribution. Therefore,

(1)NMT PR- represents the total number of datacenter-local
Map tasks. (1)NMS PR- equals to the number of slots that can
be used to run datacenter-local Map tasks in Phase Mix.
Then, the execution time of Phase Pure is calculated as:

(1)
E D L M

N M T P R N M T P R
E D R MP P E D R M

N M S

é ù- -ê ú
= ê ú

ê ú
ê ú

g g g
g

In which NMT PRg represents the total number of datacenter-
remote Map tasks, and (1)NMT PR EDLM EDRM-g g is the
number of finished datacenter-remote Map tasks in Phase
Mix. Therefore

E M P P M P P= +
B. Sub-cluster Aware Reduce Output Placement

As we mentioned earlier, HDFS uses replication to
provide data availability in case of node failure. By default,
all HDFS files are stored in three replicas. Given that the
reduce output file is to be written directly through HDFS,
the selection of target nodes can affect the execution time of
the Reduce tasks. If all the selected target nodes are from
the same sub-cluster in which the Reduce task is running,
this Reduce task will be finished faster. Otherwise, at least
one of the target nodes is selected from a different
datacenter, and this Reduce task will take a much longer
time to finish, since it has to flush data to another datacenter.

Current HDFS’s data placement policy is not sub-cluster
aware. In order to avoid data flushing between different sub-
clusters and make all Reduce tasks as datacenter-local
Reduce tasks, we modify the data placement policy in
HDFS as follows: First, HDFS’s NameNode should be able

to distinguish different sub-clusters. At the registration stage,
each DataNode sends the name of the sub-cluster to which it
belongs to the NameNode, so that NameNode is able to
obtain the structure of the whole geo-distributed cluster.
Second, HDFS’s NameNode should select all the target
nodes from the same sub-cluster as the one from which the
Reduce write operation is issued. This guarantees that there
will be no datacenter-remote Reduce task.

One of our ongoing research efforts is to introduce
periodic availability-based replication to meet desired
availability demand of cloud consumers. In addition, we
will extend the load balancing check to make it sub-cluster
aware.
C. Map Input Data Pre-fetching

This optimization strategy is to eliminate the amount of
datacenter-remote Map tasks by incorporating pre-fetching
of map input data. As shown in Figure 2, if the input data of
a MapReduce job is scattered around multiple datacenters,
datacenter-local Map tasks will execute simultaneously with
datacenter-remote map tasks at the beginning the Map phase.
This provides the opportunity to further improve the
performance of Map phase by interleaving the processing of
local input data and the pre-fetching of remote input data.
Thus all the Map tasks could be executing locally without
accessing data from a remote sub-cluster.

To implement this optimization, we need to make two
additional modifications to the task scheduler. First, we
need to assign the processing of local input data with a
higher priority than processing the remote input data. Since
the Map task scheduler is already sub-cluster aware, it
should be able to schedule the Map tasks to process the
input data from local sub-cluster first. This implies that at
the beginning of the Map phase, all the Map tasks will be
datacenter-local Map tasks. Second, we need to implement
the interleaving of the processing of local input data with
the pre-fetching of remote input data. While processing the
local input data at the beginning of the Map phase, the job
scheduler notifies the TaskTrackers to fetch the input data
from remote sub-clusters to the local-cluster. Therefore,
after processing all the pre-exist local input data, remote
input data is now also available in the local sub-cluster, and
datacenter-remote Map tasks can be eliminated.

IV. EXPERIMENTS

In this section, we present experimental results evaluating
the effectiveness of our above mentioned optimizations for
MapReduce jobs that are running in a geo-distributed cluster.

The results can be divided into two categories. First, we
show the accuracy of the Map phase execution time
prediction model by running representative MapReduce jobs
on various distribution of input data. Second, we plot how
much performance of Reduce phase can be improved by
utilizing Sub-cluster aware reduce output placement. The
setup of experimental environment is the same as those
specified in Figure 2.

Figure 6. Abstraction of Map phase in case (2)

In the first set of experiments, WordCount and Grep have
been used as representative MapReduce jobs that are
running in the geographically distributed cluster. The aim of
these experiments is to see the accuracy of our prediction
model. Therefore, we first calculate the Map phase
execution time using the prediction model assuming that the
job is going to run in Sub-Cluster A (SCA). Then, we
actually ran the job in SCA, and measure the real execution
time of the Map phase. After that, we compare the predicted
value and the measured value to see the accuracy of the
prediction model. In order to make the results more
convincing, each job is going to run multiple times with
various amount of input data as well as different forms of
input data distribution, so that we can see whether the
prediction model works well in various situations.

Figure 7 shows the results from this set of experiments.
All the jobs are running in SCA but with different amount of
total input data and different forms of input data distribution.
For example, ‘20% data remote’ means when this job starts
running in SCA, while 20% of its input data is located in
SCB and 80% of them is located in SCA. From this figure,
we observe that first, the more input data is located in SCB,
the longer the Map phase execution time is. This is because
larger amount of remote input data leads to more datacenter-
remote Map tasks, which degrades the performance of the
whole Map phase. Second, the predicted value of Map phase
execution time can be either longer or shorter than the real
value. However, the error is within 5%, which is acceptable.

The second set of experiments shows the improvement of
Reduce phase performance by utilizing Sub-cluster aware
reduce output placement optimization. Similar to the
experiments in the first set, two representative categories of
MapReduce jobs, WordCount and Grep, are running in a
simulated geographically distributed cluster with Sub-
cluster aware reduce output placement enabled and disabled
respectively. The execution time of the whole Reduce phase
is recorded and compared as an indicator of the performance.

Figure 8 shows the results of comparing the execution
time of the Reduce phase between different jobs running in
the simulated geographically cluster with our optimization
enabled and disabled. The configurations of these
experiments are the same as those shown in Figure 2. An
interesting observation from this figure is that, in all the
tested cases, by enabling Sub-cluster aware reduce output
placement, the average Reduce phase execution time has
been reduced up to 48% for the WordCount job, while that

of Grep job has only reduced by 13%. In other words, this
optimization brings larger extent of improvement to
WordCount than to Grep. This is because in our
experiments, the Reduce output data of the job WordCount
is larger than that of Grep. For example, WordCount job
with 15GB input, 50% of which is remote, writes
1151.89MB of data back through HDFS, whereas Grep job
in the same case only writes back 8432 Bytes of data. And
this optimization mainly works on accelerating the write
back of the Reduce output through HDFS. Therefore, the
more data the Reduce tasks need to write back, the larger
extent they can be benefited.

Figure 9 shows the detailed execution of the Reduce
phase from a WordCount job that is running in a geo-
distributed cluster with Sub-cluster Aware Reduce Output
Placement enabled. The amount of input data for this job is
15GB, 50% of which is located in a remote sub-cluster.
Each horizontal line in the figure represents the execution of
a Reduce tasks. Recall that in Figure 3, the length of some
lines are longer than that of the others, which means the
execution time of each Reduce tasks varies from each other.
As we analyzed earlier, this is because the co-existence of
datacenter-local Reduce tasks and datacenter-remote Reduce
tasks. With these two categories of Reduce tasks running
simultaneously, the execution time of the Reduce phase
shown in Figure 3 is 506 seconds. In Figure 9, however, we
observe that the execution time of all Reduce tasks is similar
to each other. In the other words, all the Reduce tasks
become datacenter-local Reduce tasks. That is because the
modified HDFS data placement policy choose to put all the
replicas into the same sub-cluster where the write operation
is issued, therefore datacenter-remote Reduce tasks are
eliminated. With this optimization, we observe that the
execution time of the whole Reduce phase reduces 48.4%
from 506 seconds to 261 seconds.

Figure 8. Reduce phase performance improvement

(b)Map exe time prediction

for Grep

(a) Reduce exe time of

WordCount

(b) Reduce exe time of

Grep
Figure 7. Accuracy of the prediction model

(a) Map exe time prediction
for WordCount

Figure 9. Reduce phase of WordCount with optimization enabled

V. RELATED WORK

Facebook’s project Prism [12] is a project that supports
geographically distributed Hadoop data stores, which
removes the limitations on Hadoop’s capacity to crunch data.
With Prism, a logical abstraction layer is added so that
Hadoop cluster can run across multiple data centers,
effectively removing limits on capacity. However, Prism has
not been open-sourced, neither the technique details of Prim
has been released. In addition, Google built and deployed its
globally-distributed relational database management system
Spanner [6], which automatically migrates data across
machines or even across datacenters to achieve load
balancing and failure recovery. Cisco and HP are also
making efforts to connect geographically dispersed
datacenters [13, 14] by optimizing the data link layers of the
network among datacenters. However, current interconnect
methods suffer from limitations such as transport
dependency, complexity and lack of resiliency. Since we
focus on connecting datacenters from software layer, our
solution approach can integrate with their solution to
provide highly efficient and scalable geo-distributed cloud.

Lots of efforts from academia in recent five years are
dedicated to better utilize the capacity of geo-dispersed
datacenters to improve the performance of applications
running on top of them. Using geographically load
balancing, [7] investigates the opportunities of lowering the
operational cost of each datacenter. [8, 9, 10] are working
on evaluating and improving the performance of
MapReduce jobs that are running on highly distributed data.
[8] categories MapReduce jobs into three types: local,
global, distributed, and analyzes the performance of these
three types of jobs. [11, 16] propose a hierarchical
MapReduce to alleviate the performance degradation in
distributed environment. In comparison, our work is the first
to provide comprehensive study and optimizations for
improving Hadoop service provisioning in multi-datacenter
Hadoop Cloud.

VI. CONCLUSION

We have described our approach to provisioning high
performance Hadoop clusters in a geographically distributed
cloud. We first compare multi-datacenter Hadoop
deployment with single-datacenter Hadoop deployment to
identify the performance issues inherent in a geographically
distributed cloud. Then we describe a suite of system-level
optimizations for improving performance of Hadoop service
provisioning in a geographically distributed cloud, including
prediction-based MapReduce job localization and task
scheduling, sub-cluster aware Reduce output placement, and
Map input data pre-fetching. We evaluate our solution
through experimental evaluation and show that our
prediction based localization has very low error ratio,
smaller than 5%, and our optimization can improve the
execution time of Reduce phase by 48.6%.

VII. ACKNOWLEDGEMENT

 This research is partially supported by grants from NSF
CISE NetSE program, SaTC program, I/UCRC, an IBM
faculty award and a grant from Intel ICST on Cloud
Computing.

REFERENCES
[1] K. Rajamani, C. Lefurgy, S. Ghiasi, J. Rubio, H. Hanson, and T. Keller.

"Power management solutions for computer systems and datacenters." In
Low Power Electronics and Design (ISLPED’08), ACM/IEEE
International Symposium on, Bangalore, India, 2008, pp. 135-136..

[2] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin, J. Larson, J.M. Leon,
Y. Li, A. Lloyd, and V. Yushprakh: “Megastore: Providing scalable,
highly available storage for interactiveservices.” In: Conf. Innovative Data
Systems Research (CIDR’11), Asilomar, California, 2011, pp. 223–234

[3] M. Burrows. “The chubby lock service for loosely-coupled distributed
systems.” In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI’06), Seattle, USA, 2006 ,pp. 335–350.

[4] T. Kraska, G. Pang, M.J. Franklin, S. Madden, and A. Fekete. “Mdcc:
Multi-data center consistency.” In Proceedings of the 8th ACM European
Conference on Computer Systems (EuroSys’13), Prague, Czech Republic,
pp. 113-126

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. "Dynamo:
amazon's highly available key-value store." In Proceedings of the 21st
ACM Symposium on Operating Systems Principles (SOSP’07), Stevenson,
USA, 2007, vol. 7, pp. 205-220.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S.
Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D.
Woodford. “Spanner: Google’s globally-distributed database”. In
Proceedings of the 10th symposium on Operating Systems Design and
Implementation (OSDI’12), HOLLYWOOD, USA, 2012, pp. 251-264

[7] H. Goudarzi, and M. Pedram. "Geographically Load Balancing for Online
Service Applications in Distributed Datacenters." In Proceedings of the
IEEE 6th International Conference on Cloud Computing (CLOUD’13),
San Jose, USA, 2013, pp. 351-358

[8] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman.
"Exploring mapreduce efficiency with highly-distributed data." In
Proceedings of the 2nd international workshop on MapReduce and its
applications (MapReduce’11), ACM ,San Jose, USA, 2011, pp. 27-34.

[9] A. Mandal, Y. Xin, I. Baldine, P. Ruth, C. Heerman, J. Chase, V.
Orlikowski, and A. Yumerefendi. "Provisioning and evaluating multi-
domain networked clouds for hadoop-based applications." In Proceedings
of IEEE Third International Conference on Cloud Computing Technology
and Science (CloudCom’11), Athens, Greece, 2011, pp. 690-697.

[10] L. Wang, J. Tao, H. Marten, A. Streit, S.U. Khan, J. Kolodziej, and D.
Chen. "MapReduce across distributed clusters for data-intensive
applications." In IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW’12),
Shanghai, China, 2012, pp. 2004-2011.

[11] T. Bicer, D. Chiu, and G. Agrawal. "A framework for data-intensive
computing with cloud bursting." In Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER’11), Austin, Texas, 2011

[12] Facebook’s Prism Project

http://www.wired.com/wiredenterprise/2012/08/facebook-prism/

[13] “Interconnecting Geographically Dispersed Data Centers Using VPLS-
Design and System Assurance Guide”, Cisco Systems, Inc, USA, 2009

[14] “Connecting Geographically Dispersed Data Centers”, HP

[15] R.D. Prisco, B. Lampson, and N. Lynch. "Revisiting the PAXOS
algorithm." Theoretical Computer Science 243, no. 1 (2000): 35-91.

[16] Y. Luo, Z. Guo, Y. Sun, B. Plale, J. Qiu, and W.W. Li. "A hierarchical
framework for cross-domain MapReduce execution." In Proceedings of
the second international workshop on Emerging computational methods
for the life sciences, pp. 15-22. ACM, 2011.

