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Abstract—With more data generated and collected in a 
geographically distributed manner, combined by the increased 
computational requirements for large scale data-intensive analysis, 
we have witnessed the growing demand for geographically 
distributed Cloud datacenters and hybrid Cloud service 
provisioning, enabling organizations to support instantaneous 
demand of additional computational resources and to expand in-
house resources to maintain peak service demands by utilizing 
cloud resources. A key challenge for running applications in such 
a geographically distributed computing environment is how to 
efficiently schedule and perform analysis over data that is 
geographically distributed across multiple datacenters. In this 
paper, we first compare multi-datacenter Hadoop deployment with 
single-datacenter Hadoop deployment to identify the performance 
issues inherent in a geographically distributed cloud. A 
generalization of the problem characterization in the context of 
geographically distributed cloud datacenters is also provided with 
discussions on general optimization strategies. Then we describe 
the design and implementation of a suite of system-level 
optimizations for improving performance of Hadoop service 
provisioning in a geo-distributed cloud, including prediction-based 
job localization, configurable HDFS data placement, and data pre-
fetching. Our experimental evaluation shows that our prediction 
based localization has very low error ratio, smaller than 5%, and 
our optimization can improve the execution time of Reduce phase 
by 48.6%. 

Keywords: Geographically distributed cloud, Hybrid cloud, 
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I. INTRODUCTION 

A fundamental innovation of cloud computing is the 
transformation of the arrangement of computing resources 
from static, long term and high upfront ownership 
investment based systems to dynamic provisioning systems.  
By providing cloud infrastructure and platform as services 
dynamic resource sharing across organizational and 
geographical boundaries can be enabled seamlessly to 
respond to changing demands and requirements. As a result, 
we witness the growing attentions of hybrid cloud and multi-
datacenter cloud deployment from both industry and 
academic research communities. These cloud technologies 
offer solutions to deal with high velocity and high volume of 
big data generated from geographically dispersed sources 
while providing real-time experience to a broader range of 
cloud consumers. More companies, such as IBM, Google, 
and Facebook, are managing multiple cloud-based 
datacenters, which are usually geographically dispersed, to 
deal with the increasing computational requirements on 
large-scale data intensive analysis while providing 

guaranteed low latency to their customers. Furthermore, 
recent study on efficient energy management for datacenters 
[1] shows that compared with putting all the infrastructures 
into a single datacenter, it is more energy efficient to divide a 
single high-density datacenter into multiple smaller 
datacenters, and keep low energy costs for each of them.. 

We argue that there are two categories of technical 
challenges for developing a geographically distributed cloud 
with high performance and high availability guarantee. The 
first category of challenges is centered on adapting and 
extending existing cloud computing software platform. 
Example key questions include (i) what additional 
capabilities should be provided on top of existing cluster 
computing infrastructure that is typically configured, 
allocated, managed and optimized in a single cloud 
datacenter; (ii) how should existing cluster computing 
facilities be extended to provide efficient execution runtime 
environment for applications running in a geographically 
distributed cloud. The second category of challenges is 
centered on new technologies for enabling fast 
interconnection between cloud datacenters. The example 
efforts include Facebook Prism [12], Google Megastore [2] 
and Spanner [6], HP FlexFabric Interconnect [14], Cisco 
VPLS [13], enabling virtualization of heterogeneous 
compute, storage, network resources through a common 
orchestration interface using technology, such as storage 
virtualization, network virtualization and software defined 
networking.  

In this paper we focus on addressing the two research 
questions mentioned in the first category. Concretely, the 
cloud computing resource management today is tightly 
coupled with the autonomous administration of each physical 
datacenter. It discourages resources sharing and limits the 
utilization efficiency of datacenter resources. For example, 
when one of the datacenters is overloaded and unavailable, 
the inability of automated off-loading of some workloads to 
other datacenters can significantly hurt the competitiveness 
of both cloud service providers and cloud consumers. In 
addition, although it is feasible to deploy a multi-datacenter 
Hadoop cluster at the application layer and run Hadoop 
workloads across geographically distributed datacenters, the 
current Hadoop solutions fail to provide resource-aware job 
scheduling and task scheduling for multi-datacenter Hadoop 
cluster instances that are running in a geographically 
distributed cloud, comprising of multiple autonomous and 
possibly heterogeneous data centers. This limitation prevents 
seamless resource utilization across datacenters, and can lead 
to unpredictably poor performance for Hadoop MapReduce 
jobs.  For example, current Hadoop MapReduce solutions do 
not differentiate cluster nodes at a local datacenter from 
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cluster nodes at a remote datacenter in its job scheduler and 
its task scheduler, which leads to copying the same piece of 
data into multiple datacenters [2, 3, 4]. This can make the 
cost of maintaining data consistency prohibitively high [5].  
At the same time, transferring large amount of data across 
datacenters can be unmanageably time consuming.  

Bearing these problems in mind, in this paper we first 
conduct analytical and experimental study to identify the 
performance issues inherent in a geographically distributed 
cloud by comparing multi-datacenter Hadoop deployment 
with single-datacenter Hadoop deployment. We provide a 
generalization of the problem characterization in the context 
of geographically distributed cloud datacenters and discuss 
the general optimization strategies. Then we describe the 
design and implementation of a suite of system-level 
optimizations designed specifically for improving the 
performance of Hadoop service provisioning in a multi-
datacenter cloud: (i) prediction-based MapReduce job 
localization, (ii) configurable HDFS data placement, and (iii) 
Map input pre-fetching. To the best of our knowledge, there 
is no comprehensive study of multi-datacenter Hadoop 
deployments from job and task scheduling perspective. The 
experimental evaluation shows that our prediction based 
localization has very low error ratio, less than 5%, and our 
optimization can improve the execution time of Reduce 
phase by 48.6%.  

The rest of this paper is organized as follows. Section 2 
reviews the basic concepts and notations and identifies the 
main performance bottlenecks through experimental analysis. 
Second 3 presents our solution approach for improving 
Hadoop service provisioning in a geographically distributed 
cloud. We evaluate the effectiveness of our solution 
approach in Section 4, outline the related work in Section 5 
and conclude the paper in Section 6.  

II. DESIGN OVERVIEW 

A. Problem Definition  
We define a geographically distributed cloud as a virtual 

cloud datacenter that manages multiple geographically 
dispersed datacenters. Advantages of such a geo-distributed 
cloud include the capability of coordinated provisioning of 
computing resources from multiple autonomous datacenters 
to provide cloud consumers the configurable ability to 
processing and analyzing large scale datasets by moving 
computation to data. Furthermore, the system facility to 
configure and compute across datacenters seamlessly can 
further enhance the capability for hybrid cloud service 
provisioning. One of the challenges in developing such 
system facility is the fact that most of the jobs running across 
geographically dispersed datacenters may not always deliver 
the same level of performance guarantee as those running 
within a single datacenter for at least two reasons. First, the 
network I/O bandwidth between geographically disparate 
datacenters is typically less predictable and significantly 
slower than intra-datacenter bisection network bandwidth. 
Second, the larger and the more frequent the data transfer is 
between datacenters, the larger performance degradation the 
cross-datacenter job execution will have. Thus, our goal is to 

develop system-level facilities that enable efficient and 
seamless cross-datacenter big data processing in a geo-
distributed cluster. In this paper, a geo-distributed cluster 
refers to a large cluster that is established by including 
multiple sub-clusters, each sub-cluster is from a different 
datacenter and has its own namespace. We use sub-cluster to 
refer to a cluster setup within a given datacenter. This 
architecture brings several advantages. First, more flexible 
services can be provided when sub-clusters are configured 
into a geo-distributed cluster, because resources can be 
shared among these sub-clusters to handle cloud burst [15] 
and load balancing. Second, it enables across-datacenter 
computing for content and data sharing and increased failure 
resilience. Our solution approach should meet the following 
three system properties. First, this geo-distributed cluster 
should be transparent to existing applications in terms of 
both usability and functionality. Second, failures in one sub-
cluster should not affect the routine execution of the other 
clusters no matter they are located in the same datacenter as 
the failed cluster or not. Third, sub-clusters in each single 
datacenter should be able to provide the same functionality 
and performance as an independent cluster in the presence of 
geo-distributed cluster instances.  

B. HDFS and Hadoop MapReduce 
HDFS (Hadoop Distributed File System) is an open 

source distributed file system designed to run on a cluster of 
commodity hardware. HDFS stores each file as a sequence 
of blocks with the same size and each block is replicated for 
fault tolerance. HDFS supports distributed computing by a 
master-slave based coordination architecture, where the 
master node, called NameNode, stores the metadata and 
synchronize the slaves to perform distributed computation. 
And all the raw data are stored and processed on the slave 
nodes, called DataNode. 

Hadoop MapReduce is an open-sourced software and 
distributed multi-phase programming framework that allows 
processing big data in parallel on large HDFS clusters. Each 
Hadoop MapReduce job runs in two stages: Map and 
Reduce. The Reduce stage consists of three phases: shuffle, 
sort, and reduce. There is a JobTacker runing on the master 
node, which is responsible for job scheduling and task 
scheduling. And a TaskTracker runs on each of the allocated 
slave nodes for launching and executing the Map tasks and 
Reduce tasks assigned by the JobTracker. We identify the 
following three components as the critical sections for 
improving the performance of a MapReduce job running in 
a geo-distributed cluster: input splits of Map tasks, output 
records of Reduce tasks, and execution of shuffle phase. 

There are three categories of Map tasks according to 
where the input split of a Map task locates: The first 
category is the node-local Map task, which reads the input 
split stored locally at the same physical node as the Map 
task is running. This is the most efficient type of Map tasks, 
since their input can be retrieved from local disk. The 
second category is the datacenter-local Map task, which 
reads the input split not from the same compute node as the 



task is running on, but from the node that is located in the 
same datacenter. Therefore, this input split has to be 
transferred within the datacenter before the Map task starts. 
The third category is datacenter-remote Map task, which 
reads the input split located in a different datacenter. 
MapReduce framework schedules the node-local Map task 
as the highest priority, but the other two categories of Map 
tasks also exist when a node without any local input split is 
still asking for Map tasks. 

The output records of each Reduce task will be written 
through HDFS to the stable storage, and each block needs to 
be replicated to three or more nodes within the HDFS 
cluster. We use the term target nodes to refer to the nodes 
that HDFS chooses to store the replicas of a certain block. 
Since a Reduce task returns successfully only when all of its 
output replicas are written correctly to the stable storage, the 
selection of target nodes can affect the performance of 
Reduce tasks in a geo-distributed cluster. For example, if 
one of the target nodes is located in a different datacenter, 
this Reduce task is expected to execute for a relatively 
longer time since one of its output records will be written 
across datacenters. Thus, we call the Reduce task that writes 
its output to a remote datacenter as datacenter-remote 
Reduce task, and the Reduce task that writes its output only 
to the local datacenter as datacenter-local Reduce tasks.  

The shuffle phase in the Hadoop MapReduce framework 
is an area where refinements and improvements are 
continually being made. During the shuffle phase, every 
Reduce task fetches its portion of intermediate data from 
each Map task’s output file. Therefore, the shuffle phase 
generates large network I/O traffic and is the bottleneck of a 
MapReduce job. Shuffling data across datacenters can be 
more demanding on network I/O bandwidth and thus leads 
to even lower efficiency. 

Figure 1 shows the execution of a MapReduce job 
WordCount in a sub-cluster. We make several interesting 
observations. First, Map tasks and Reduce tasks are 
executed in groups (Map task group and Reduce task group), 
the number of tasks in each group depends on the number of 
nodes in the cluster allocated for Map or Reduce tasks and 
the number of available slots on each node. The total 
number of Map tasks equals to the total number of input 
splits (80 in this example), while the total number of Reduce 
tasks is pre-configured (also 80 in this example). Second, by 
configuring early shuffle to start upon reaching 5% or more 
Map tasks completed, we observe that the shuffle phase of 
the first Reduce task group started upon the first Map task 
group finished. By taking a closer look, we see that although 
early shuffle enables the first Reduce task group to finish 
earlier, it does incur some delay in the execution of the other 
Map tasks that are concurrently running. In this example, 
the execution time of the following Map tasks is on average 
23.9 seconds, longer than that in the first Map task group 
(20.9 seconds). Third, the average execution time of sort 
phase takes about 1 second. This is because the local 
combine operation at Map phase in WordCount decreases 

the size of intermediate data, which makes the sort phase in 
Reduce finishes very quickly. Fourth, when we zoom into 
each task group as shown in Figure 1, we find that the tasks 
in each single group do not start exactly at the same time 
because each task is encapsulated in a JVM, the time spent 
on initialization is not exactly the same for each JVM when 
they are competing for resources on the same physical 
machine. In the rest of the paper, the execution time of task 
groups is given by the average value. 

C. Geo-Distributed Cluster: Design Consideration  
In order to gain a better understanding of performance 

bottlenecks of jobs running in a geo-distributed cluster, we 
conduct performance measurement study on a geo-
distributed Hadoop cluster. We run MapReduce jobs on 
input data that are distributed in different sub-clusters in a 
simulated geo-distributed cloud, which consists of 20 nodes 
from two sub-clusters (SCA and SCB), and each has 10 nodes 
and is from different datacenters. The cross-datacenter access 
latency is 200ms, while the latency between the nodes within 
a single sub-cluster is about 1ms. . 

Figure 2 shows how MapReduce jobs WordCount and 
Grep behave when they are running in our simulated 
geographically distributed cluster. X-axis shows the timeline 
of a job execution and Y-axis shows all task IDs in the order 
of their execution. We obtain four interesting observations. 
First, when zooming into a Map task group as shown in 
Figure 2(a), we notice that those Map tasks that run much 
longer are datacenter-remote Map tasks while those Map 
tasks that have relatively shorter execution time are the 
datacenter-local Map tasks. Also, the execution time of node-
local Map tasks is very similar to that of the datacenter-local 
Map tasks when compare to the execution time of 
datacenter-remote Map tasks. Thus in the remaining analysis, 
we do not make explicit distinction between node-local Map 
tasks and datacenter-local Map tasks, and refer to both 
simply as datacenter-local Map tasks and compare them with 
datacenter-remote Map tasks. 

Second, the ratio between datacenter-local Map tasks and 
datacenter-remote Map tasks is very similar to the ratio 
between local input data and remote input data. Consider 
WordCount with 15GB input data, the percentage of remote 
map tasks is 48% when 50% of its input data is from a 
remote datacenter (Figure 2(a)), and the percentage of 
remote map tasks decreases to 23% when 20% of its input 
data is remote (Figure 2(b)). Therefore, the percentage of 

 
Figure 1. WordCount running in a sub-cluster 



remote input data may be used to estimate the percentage of 
datacenter-remote Map tasks in the subsequent discussion.  

Third, we notice that, for WordCount, datacenter-remote 
Map tasks and datacenter-local Map tasks appear 
alternatively at the early stage of the Map phase. But as the 
Map phase progresses, the amount of datacenter-remote Map 
tasks increases significantly and dominates in the latter stage 
of the Map phase. In Figure 2(a), from 0 second to about 400 
second, datacenter-remote Map tasks appear approximately 
every 25 seconds. However, there are very few datacenter-
local Map tasks from 400 to the end of the Map phase. This 
is because at the beginning of the Map phase, the job will 
digest its input data from both datacenter-local and 
datacenter-remote input splits simultaneously as long as 
there are enough map slots. Since the datacenter-remote Map 
tasks take longer time to finish, the datacenter-local Map 
tasks will be finished faster. Given that 50% of the input data 
is distributed in the remote datacenter, thus at the latter stage 
of Map phase, the rest of Map tasks are dominated by 
datacenter-remote Map tasks. This remains to be true even 
when the percentage of local input data is more than that of 
remote input data, e.g., with 20% input data remote as shown 
n Figure 2(b), we still observe that the number of datacenter-
remote Map tasks increases as the job approaches the latter 
stage of the Map phase.  

Finally, when zooming into a Reduce task group as 
shown in Figure 2 for both WordCount and Grep, we find 
that the Reduce tasks with a much longer execution time are 
datacenter-remote Reduce tasks, while Reduce tasks with 
shorter execution time are datacenter-local Reduce tasks. It is 
interesting to note that the datacenter-remote Reduce tasks 
occur randomly. This is because the data placement policy in 
HDFS by default will choose three target nodes from the 
geographically distributed cluster, one of which is the node 
where the reduce write operation is issued, the other two are 
randomly chosen if no rack information is provided. If one of 
them is located in a different sub-cluster from the one where 
the write operation is issued, a datacenter-remote Reduce 
task will be created.  

Figure 3 shows the Reduce phase of WordCount job 
running in the rack-aware HDFS configuration. We notice 
that the number of datacenter-remote Reduce tasks increases 
dramatically in this case. By the data placement policy of 
HDFS, when rack information is provided, the third replica 
will be stored in a node which is from a different rack. 
Therefore, a fair number of Reduce tasks become datacenter-
remote Reduce tasks in this configuration. At the same time, 

the probability that all the replicas are stored in the same 
datacenter is not zero. Thus, datacenter-local tasks still exist. 
Similar results are also observed in executing the Grep jobs. 

From the experimental analysis above, we argue that 
there are three main design considerations for provisioning a 
high performance geo-distributed cluster: First, mechanisms 
that can reduce the amount of intermediate data being 
shuffled across datacenters are critical for improving the 
performance of Hadoop deployment cross multi-datacenters. 
Second, adequate control of the number of datacenter-remote 
Reduce tasks can speed up the execution time of Reduce 
tasks. Third but not the least, mechanisms for reducing the 
amount of datacenter-remote Map tasks is necessary for 
effective Hadoop service provisioning in a geo-distributed 
cloud. 

III. OUR SOLUTION APPROACH 

Following the design guidelines outline in the previous 
section, we present our solution approach by focusing on the 
three optimization techniques, each targeting at one of the 
three problems: 1) Sub-cluster aware job/task scheduling, 2) 
Sub-cluster aware reduce output placement, and 3) Map 
input data pre-fetching.  

Figure 4 shows the architecture of a geo-distributed 
cluster with our proposed solutions. It consists of sub-
clusters from different datacenters, in which Map phase exe 
time predictor, sub-cluster aware writer, and Map input pre-
fetcher are the core components that corresponding to our 
optimization techniques. 

 
 

A. Sub-cluster aware scheduling of jobs and tasks 
Given a job submitted to a geo-distributed cluster, the job 

scheduler should first examine whether the job can run 
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Figure 2. Execution of MapReduce jobs with distributed input data 
 

 
Figure 3. Reduce phase of WordCount 

(d)Grep on 15GB data, 
20% input data remote 



within a sub-cluster and which sub-cluster this job can run 
more efficiently. This optimization can significantly improve 
the performance of the shuffle phase by minimizing the 
unnecessary cross-datacenter network I/O traffics. 

 The objective of this optimization is to find a sub-cluster 
that can finish the given job in a shortest time, even if its 
input data is distributed in multiple local datacenters. We 
accomplish it by extending the current Hadoop MapReduce 
job scheduler and task scheduler. By making the scheduler 
sub-cluster aware, all the tasks of a given job can be assigned 
to the nodes within the same sub-cluster. Concretely, this 
optimization can be implemented in two steps: First, every 
submitted job should notify the job scheduler the name of the 
sub-cluster in which it prefers to running in. The job 
schedule can check if all the tasks of this job can be assigned 
to the nodes within this sub-cluster. Second, whenever 
receiving a task assignment request from a TaskTracker, the 
task scheduler checks which sub-cluster this TaskTracker 
belongs to, and only assign the pending Map tasks to the 
TaskTracker if it belongs to the same sub-cluster as the one 
chosen by the given job.  

One challenge still exists to make this optimization work 
correctly and efficiently. Since it requires each MapReduce 
job to indicate its preferred sub-cluster, we extend the job 
scheduler by adding the prediction capability that can 
estimate which sub-cluster this job can be executed in the 
shortest time. When all input data of a job are located within 
one sub-cluster, it is relatively easy to estimate the job 
execution time of such sub-clusters and choose the one with 
the shortest execution time. However, the input data of a job 
may not be all located in the same sub-cluster. We address 
this challenge by providing a Map phase execution time 
prediction model below.  
 

Map phase execution time prediction. When a MapReduce 
job is submitted to a geographically distributed cluster, its 
input data could be either located in a single sub-cluster, or 
distributed among multiple sub-clusters. Considering the 
heterogeneous capability among different sub-clusters, 
simply putting the job in the sub-cluster, which has the 
largest portion of its input data may not be optimal. 
Therefore, we propose a prediction model to estimate the 

Map phase execution time of a particular job running in a 
given sub-cluster.  

We present our prediction model for Map task execution 
time based on two scenarios: (i) local input data and (ii) 
distributed input data. In the first case, all the Map tasks are 
datacenter-local Map tasks, while in the second case, there 
exist both datacenter-local Map tasks and datacenter-remote 
Map tasks. Before discussing the prediction model, we 
present the list of parameters and terms we will use. 
l Execution time of Map Phase (EMP): The total 

execution time of the Map phase in a MapReduce job. It 
measures the duration from the beginning of a MapReduce 
job to the end of the last group of its Map tasks. 

l Execution time of a Datacenter-Local Map task 
(EDLM): The average execution time of datacenter-local 
Map tasks.  

l Execution time of a Datacenter-Remote Map task 
(EDRM): The average execution time of datacenter-
remote Map tasks. 

l Percentage of Remote input data (PR): The portion of 
the input data that is located in a different sub-cluster from 
the one in which the MapReduce job is running in. 

l Number of Map Tasks in the job (NMT): The total 
number of Map tasks to run in a MapReduce job.  

l Number of Map Slots in a sub-cluster (NMS): The total 
number of Map slots that can be used by a MapReduce job 
in a given sub-cluster. 

Among all the above parameters, the value of EMP is what 
we are going to predict. The value of EDLM and EDRM are 
gathered from historical execution statistics of similar 
MapReduce jobs. The value of PR, NMT, and NMS can be 
obtained from cluster configuration. 
(1) Local input data 

This case is the easiest and most straightforward one. 
Figure 5 shows an abstraction of Map phase execution based 
on previous experiments. Each yellow bar represents a group 
of Map tasks that are executing simultaneously. The length 
of the yellow bar reflects EDLM, while the width of the 
yellow bar represents NMS. Since all the Map tasks are 
datacenter-local Map tasks in this case, their execution times 
are very much similar to each other when there are no 

stragglers. Therefore, the execution time of the whole Map 
phase can be calculated as following: 

N M T
E M P E L D M

N M S
= g  

(2) Distributed input data  
Figure 6 shows the abstraction of Map phase execution in 

the case of distributed input data. Both Datacenter-local Map 
tasks and datacenter-remote Map tasks will be scheduled 
simultaneously at the beginning of the job. The yellow bars, 
which are shorter, represent the execution of datacenter-local 

 

Figure 4. Architecture of a geo-distributed cluster 

 
Figure 5. Abstraction of Map phase in case (1) 



Map tasks. The blue bars, which are longer, represent the 
execution of datacenter-remote Map tasks. Though the 
execution time of a datacenter-remote Map task is set to be 
twice as long as that of a datacenter-local Map task in Figure 
6, the ratio between the execution time of these two 
categories of Map tasks can vary in general. 

According to Figure 6, the whole Map phase is divided 
into two stages. Phase Mix represents the time that 
datacenter-remote Map tasks execute simultaneously with 
datacenter-local Map tasks. Phase Pure represents the 
execution of datacenter-remote Map tasks only. Therefore, 
the execution time of Map Phase is the summation of the 
execution time of Phase Mix (PM) and the execution time of 
Phase Pure (PP).  

(1 )
(1 )

NMT PR NM T EDLM
PM EDLM

NM S PR NMS
-

= =
-

gg  

As mentioned earlier, we use input data distribution to 
estimate the Map tasks distribution. Therefore, 

(1 )NMT PR- represents the total number of datacenter-local 
Map tasks. (1 )NMS PR-  equals to the number of slots that can 
be used to run datacenter-local Map tasks in Phase Mix. 
Then, the execution time of Phase Pure is calculated as: 
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In which NMT PRg  represents the total number of datacenter-
remote Map tasks, and (1 )NMT PR EDLM EDRM-g g is the 
number of finished datacenter-remote Map tasks in Phase 
Mix.  Therefore 

E M P P M P P= +  
B. Sub-cluster Aware Reduce Output Placement 

As we mentioned earlier, HDFS uses replication to 
provide data availability in case of node failure. By default, 
all HDFS files are stored in three replicas. Given that the 
reduce output file is to be written directly through HDFS, 
the selection of target nodes can affect the execution time of 
the Reduce tasks. If all the selected target nodes are from 
the same sub-cluster in which the Reduce task is running, 
this Reduce task will be finished faster. Otherwise, at least 
one of the target nodes is selected from a different 
datacenter, and this Reduce task will take a much longer 
time to finish, since it has to flush data to another datacenter. 

Current HDFS’s data placement policy is not sub-cluster 
aware. In order to avoid data flushing between different sub- 
clusters and make all Reduce tasks as datacenter-local 
Reduce tasks, we modify the data placement policy in 
HDFS as follows: First, HDFS’s NameNode should be able 

to distinguish different sub-clusters. At the registration stage, 
each DataNode sends the name of the sub-cluster to which it 
belongs to the NameNode, so that NameNode is able to 
obtain the structure of the whole geo-distributed cluster. 
Second, HDFS’s NameNode should select all the target 
nodes from the same sub-cluster as the one from which the 
Reduce write operation is issued. This guarantees that there 
will be no datacenter-remote Reduce task.  

One of our ongoing research efforts is to introduce 
periodic availability-based replication to meet desired 
availability demand of cloud consumers. In addition, we 
will extend the load balancing check to make it sub-cluster 
aware.  
C. Map Input Data Pre-fetching 

This optimization strategy is to eliminate the amount of 
datacenter-remote Map tasks by incorporating pre-fetching 
of map input data. As shown in Figure 2, if the input data of 
a MapReduce job is scattered around multiple datacenters, 
datacenter-local Map tasks will execute simultaneously with 
datacenter-remote map tasks at the beginning the Map phase. 
This provides the opportunity to further improve the 
performance of Map phase by interleaving the processing of 
local input data and the pre-fetching of remote input data. 
Thus all the Map tasks could be executing locally without 
accessing data from a remote sub-cluster.  

To implement this optimization, we need to make two 
additional modifications to the task scheduler. First, we 
need to assign the processing of local input data with a 
higher priority than processing the remote input data. Since 
the Map task scheduler is already sub-cluster aware, it 
should be able to schedule the Map tasks to process the 
input data from local sub-cluster first. This implies that at 
the beginning of the Map phase, all the Map tasks will be 
datacenter-local Map tasks. Second, we need to implement 
the interleaving of the processing of local input data with 
the pre-fetching of remote input data. While processing the 
local input data at the beginning of the Map phase, the job 
scheduler notifies the TaskTrackers to fetch the input data 
from remote sub-clusters to the local-cluster. Therefore, 
after processing all the pre-exist local input data, remote 
input data is now also available in the local sub-cluster, and 
datacenter-remote Map tasks can be eliminated.  

IV. EXPERIMENTS 

In this section, we present experimental results evaluating 
the effectiveness of our above mentioned optimizations for 
MapReduce jobs that are running in a geo-distributed cluster.  

The results can be divided into two categories. First, we 
show the accuracy of the Map phase execution time 
prediction model by running representative MapReduce jobs 
on various distribution of input data. Second, we plot how 
much performance of Reduce phase can be improved by 
utilizing Sub-cluster aware reduce output placement. The 
setup of experimental environment is the same as those 
specified in Figure 2. 

 
Figure 6. Abstraction of Map phase in case (2) 



In the first set of experiments, WordCount and Grep have 
been used as representative MapReduce jobs that are 
running in the geographically distributed cluster. The aim of 
these experiments is to see the accuracy of our prediction 
model. Therefore, we first calculate the Map phase 
execution time using the prediction model assuming that the 
job is going to run in Sub-Cluster A (SCA). Then, we 
actually ran the job in SCA, and measure the real execution 
time of the Map phase. After that, we compare the predicted 
value and the measured value to see the accuracy of the 
prediction model. In order to make the results more 
convincing, each job is going to run multiple times with 
various amount of input data as well as different forms of 
input data distribution, so that we can see whether the 
prediction model works well in various situations.  

Figure 7 shows the results from this set of experiments. 
All the jobs are running in SCA but with different amount of 
total input data and different forms of input data distribution. 
For example, ‘20% data remote’ means when this job starts 
running in SCA, while 20% of its input data is located in 
SCB and 80% of them is located in SCA. From this figure, 
we observe that first, the more input data is located in SCB, 
the longer the Map phase execution time is. This is because 
larger amount of remote input data leads to more datacenter-
remote Map tasks, which degrades the performance of the 
whole Map phase. Second, the predicted value of Map phase 
execution time can be either longer or shorter than the real 
value. However, the error is within 5%, which is acceptable.  

The second set of experiments shows the improvement of 
Reduce phase performance by utilizing Sub-cluster aware 
reduce output placement optimization. Similar to the 
experiments in the first set, two representative categories of 
MapReduce jobs, WordCount and Grep, are running in a 
simulated geographically distributed cluster with Sub-
cluster aware reduce output placement enabled and disabled 
respectively. The execution time of the whole Reduce phase 
is recorded and compared as an indicator of the performance. 

Figure 8 shows the results of comparing the execution 
time of the Reduce phase between different jobs running in 
the simulated geographically cluster with our optimization 
enabled and disabled. The configurations of these 
experiments are the same as those shown in Figure 2. An 
interesting observation from this figure is that, in all the 
tested cases, by enabling Sub-cluster aware reduce output 
placement, the average Reduce phase execution time has 
been reduced up to 48% for the WordCount job, while that 

of Grep job has only reduced by 13%. In other words, this 
optimization brings larger extent of improvement to 
WordCount than to Grep. This is because in our 
experiments, the Reduce output data of the job WordCount 
is larger than that of Grep. For example, WordCount job 
with 15GB input, 50% of which is remote, writes 
1151.89MB of data back through HDFS, whereas Grep job 
in the same case only writes back 8432 Bytes of data. And 
this optimization mainly works on accelerating the write 
back of the Reduce output through HDFS. Therefore, the 
more data the Reduce tasks need to write back, the larger 
extent they can be benefited. 

Figure 9 shows the detailed execution of the Reduce 
phase from a WordCount job that is running in a geo-
distributed cluster with Sub-cluster Aware Reduce Output 
Placement enabled. The amount of input data for this job is 
15GB, 50% of which is located in a remote sub-cluster. 
Each horizontal line in the figure represents the execution of 
a Reduce tasks. Recall that in Figure 3, the length of some 
lines are longer than that of the others, which means the 
execution time of each Reduce tasks varies from each other. 
As we analyzed earlier, this is because the co-existence of 
datacenter-local Reduce tasks and datacenter-remote Reduce 
tasks. With these two categories of Reduce tasks running 
simultaneously, the execution time of the Reduce phase 
shown in Figure 3 is 506 seconds. In Figure 9, however, we 
observe that the execution time of all Reduce tasks is similar 
to each other. In the other words, all the Reduce tasks 
become datacenter-local Reduce tasks. That is because the 
modified HDFS data placement policy choose to put all the 
replicas into the same sub-cluster where the write operation 
is issued, therefore datacenter-remote Reduce tasks are 
eliminated. With this optimization, we observe that the 
execution time of the whole Reduce phase reduces 48.4% 
from 506 seconds to 261 seconds.  

Figure 8. Reduce phase performance improvement 
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Figure 9. Reduce phase of WordCount with optimization enabled 



V. RELATED WORK  

Facebook’s project Prism [12] is a project that supports 
geographically distributed Hadoop data stores, which 
removes the limitations on Hadoop’s capacity to crunch data. 
With Prism, a logical abstraction layer is added so that 
Hadoop cluster can run across multiple data centers, 
effectively removing limits on capacity. However, Prism has 
not been open-sourced, neither the technique details of Prim 
has been released. In addition, Google built and deployed its 
globally-distributed relational database management system 
Spanner [6], which automatically migrates data across 
machines or even across datacenters to achieve load 
balancing and failure recovery. Cisco and HP are also 
making efforts to connect geographically dispersed 
datacenters [13, 14] by optimizing the data link layers of the 
network among datacenters. However, current interconnect 
methods suffer from limitations such as transport 
dependency, complexity and lack of resiliency. Since we 
focus on connecting datacenters from software layer, our 
solution approach can integrate with their solution to 
provide highly efficient and scalable geo-distributed cloud. 

Lots of efforts from academia in recent five years are 
dedicated to better utilize the capacity of geo-dispersed 
datacenters to improve the performance of applications 
running on top of them. Using geographically load 
balancing, [7] investigates the opportunities of lowering the 
operational cost of each datacenter. [8, 9, 10] are working 
on evaluating and improving the performance of 
MapReduce jobs that are running on highly distributed data. 
[8] categories MapReduce jobs into three types: local, 
global, distributed, and analyzes the performance of these 
three types of jobs. [11, 16] propose a hierarchical 
MapReduce to alleviate the performance degradation in 
distributed environment. In comparison, our work is the first 
to provide comprehensive study and optimizations for 
improving Hadoop service provisioning in multi-datacenter 
Hadoop Cloud.  

VI.  CONCLUSION  

We have described our approach to provisioning high 
performance Hadoop clusters in a geographically distributed 
cloud. We first compare multi-datacenter Hadoop 
deployment with single-datacenter Hadoop deployment to 
identify the performance issues inherent in a geographically 
distributed cloud. Then we describe a suite of system-level 
optimizations for improving performance of Hadoop service 
provisioning in a geographically distributed cloud, including 
prediction-based MapReduce job localization and task 
scheduling, sub-cluster aware Reduce output placement, and 
Map input data pre-fetching. We evaluate our solution 
through experimental evaluation and show that our 
prediction based localization has very low error ratio, 
smaller than 5%, and our optimization can improve the 
execution time of Reduce phase by 48.6%.  
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