
Improving High-Level Synthesis with Decoupled Data Structure Optimization

Ritchie Zhao, Gai Liu, Shreesha Srinath, Christopher Batten, Zhiru Zhang
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{rz252, gl387, ss2873, cbatten, zhiruz}@cornell.edu

Abstract
Existing high-level synthesis (HLS) tools are mostly effective on
algorithm-dominated programs that only use primitive data struc-
tures such as fixed size arrays and queues. However, many widely
used data structures such as priority queues, heaps, and trees feature
complex member methods with data-dependent work and irregular
memory access patterns. These methods can be inlined to their call
sites, but this does not address the aforementioned issues and may
further complicate conventional HLS optimizations, resulting in a
low-performance hardware implementation. To overcome this de-
ficiency, we propose a novel HLS architectural template in which
complex data structures are decoupled from the algorithm using a
latency-insensitive interface. This enables overlapped execution of
the algorithm and data structure methods, as well as parallel and
out-of-order execution of independent methods on multiple decou-
pled lanes. Experimental results across a variety of real-life bench-
marks show our approach is capable of achieving very promising
speedups without causing significant area overhead.

1. Introduction
Over the past decade, the benefits provided by traditional technol-
ogy scaling has gradually diminished due to challenges with power
consumption and physical design at the newest technology nodes.
As a result, general-purpose processors and software are no longer
seen as a sustainable solutions for future computing needs. Engi-
neers and researchers are increasingly exploring specialized hard-
ware accelerators in order to obtain the performance and energy
efficiency necessary for applications which traditionally lay in the
software-only domain. High-level synthesis (HLS) is a key enabler
of this trend, allowing designers to automatically synthesize hard-
ware from high-level specifications written in a software program-
ming language and making microarchitectural optimizations (such
as pipelining or memory banking) accessible in the form of prag-
mas. HLS design methodologies can markedly reduce the develop-
ment effort and cost of creating specialized hardware compared to
register-transfer level (RTL) flows [5].

A common design pattern in software engineering is to separate
a program into algorithms and data structures. To maximize the
performance of an application, both parts must be well-optimized;
for instance, achieving the best asymptotic runtime of Dijkstra’s
algorithm requires a priority queue with efficient push and pop
methods. To hide design complexity, software programmers often
leverage readily available libraries of commonly used data struc-
tures which offer a set of carefully crafted methods to achieve high
performance and code reusability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
DAC ’16, June 05-09, 2016, Austin, TX, USA
2016 ACM. ISBN 978-1-4503-4236-0/16/60$15.0
DOI: http://dx.doi.org/10.1145/2897937.2898030

1 void bintree::insert (key, value) {
2 NodeType curr = root;
3 // data dep. variable-bound loop
4 while (curr && !curr.insert_at(key)) {
5 curr = curr.choose_child(key);
6 }
7
8 // modify the tree structure
9 insert_node(curr, key, value);

10 rebalance_tree();
11 }

(a)

1 NodeType bintree::find (key) {
2 NodeType curr = root;
3 // data dep. variable-bound loop
4 while (curr && curr->key != key) {
5 curr = curr.choose_child(key);
6 }
7
8 return curr;
9 }

(b)

Figure 1: Self-balancing binary tree methods – (a) insert adds
a key/value pair to the tree, then rebalances it; (b) find returns the
node containing the input key or NULL if not found. For brevity,
we use the function choose child to choose the left or right child
based on the input key, and insert at to determine whether to
insert at the current node based on the input key. insert node
performs the actual insert operation.

However, current HLS tools primarily focus on algorithm-
dominated programs that only utilize primitive data structures such
as fixed-size arrays or queues (e.g., DSP applications). These prim-
itive data structures typically only provide very simple read and
write methods, which can easily be inlined to the main algorithm
without complicating any of the key HLS optimizations such as
pipelining and unrolling. In contrast, more complex data structures
(e.g., hash tables, priority queues, and trees) usually contain meth-
ods that exhibit data-dependent work and irregular memory access
patterns. For these methods, inlining does not significantly improve
the generated hardware.

For example, Figure 1 shows the insert and find methods of a
self-balancing binary tree. The code snippets show that both meth-
ods contain a variable-bound loop, which complicates unrolling. In
addition, the insert method mutates the tree in nontrivial ways
in the rebalancing step, and to avoid violation of data dependences
we cannot easily overlap other invocations of insert with itself or
find. These properties make it very difficult to optimize any HLS
code utilizing the binary tree structure. Traditional HLS techniques
are typically unable to extract coarse-grained parallelism across
these method calls invoked within a sequential monolithic program,
resulting in poorly optimized hardware. This has prevented com-
plex data structures from gaining widespread use within the HLS
programming space, even though current tools make it possible to
write synthesizable code for such objects.

To address the challenges of complex data structure synthesis,
we propose to decouple the data structure methods from the algo-

1 void
2 priority_queue::heap_up (i) {
3 while (i != 0) {
4 // j is i’s parent node
5 j = (i-1) / 2;
6
7 if (heap[i] < heap[j])
8 swap(heap[i], heap[j]);
9 else break;

10
11 i = j;
12 } }

1 NodeType
2 hash_table::find (k) {
3 i = hash_func(k);
4 NodeType n = hashtbl[i];
5
6 while (n && n->key!=k) {
7 n = n->next;
8 }
9

10 return n;
11 }

Figure 2: Complex data structure method ex-
amples – (a) heap up is used to restore the heap
condition in a heap-based priority queue after a
push. (b) hash find looks up the hash bucket
for a key and searches through the collision chain
to find the associated value.

(a) heap up (b) hash find

rithm. This not only enables traditional HLS optimizations to be
applied to each individual part, but also allows us to exploit paral-
lelism between method calls. In this paper, we propose a novel HLS
methodology and an associated architectural template to create spe-
cialized container units (SCUs), which implement such decoupled
data structures efficiently in HLS by enforcing a clean separation
between computation and data access. Our proposed approach is
partly inspired by the C++ standard template library (STL) [10],
which utilizes the concept of containers to represent common data
structures.

There are several previous efforts at designing specialized hard-
ware for a limited subset of complex data structures (e.g., priority
queue [7], random decision tree [11]) using both HLS and RTL
flows. However, the focus of this paper is not to create the most
optimized implementation of any data structure; our technique is
orthogonal to such efforts. Instead, we propose a technique which
can potentially improve the performance of any program using a
complex software data structure. In essence we are trading off opti-
mality for generality and ease of use. In this sense, our work repre-
sents a first step towards enabling efficient complex data structure
synthesis for HLS, and to expand the scope of HLS beyond highly
regular, algorithm-dominated applications. Our primary technical
contributions are as follows:

• We investigate the synthesis problem for a set of STL-inspired
data structures containing complex methods that are poorly
optimized by conventional HLS techniques.

• We propose a novel HLS architectural template, in which com-
plex data structure methods are decoupled using a latency-
insensitive interface to facilitate pipelining and parallelization.

• We experimentally demonstrate how our techniques lead to
significant performance improvements on a variety of classic
data structures and algorithms.

The rest of this paper is organized as follows: Section 2 pro-
vides an overview of complex data structures and methods; Section
3 presents our methodology and the architectural template for spe-
cialized container units. We report experimental results for various
data structures in Section 5, discuss related works in Section 6, and
conclude the paper in Section 7.

2. Preliminaries
In this section, we introduce several important concepts and terms
that will be used in the subsequent discussions.

2.1 Complex Data Structures in HLS
We first define a complex data structure method as one which is (1)
long latency and/or variable latency, (2) difficult to pipeline due to
variable-bound loops and/or memory dependences. A complex data
structure is then defined as one whose key methods are complex.

Figure 2 contains examples of complex methods belonging to two
well-known data structures: heap and hash table.

Figure 2(a) shows heap up, which plays an important role in
the push method of a heap-based priority queue by iteratively
swapping the newly pushed value up towards the top of the heap
if necessary. The variable-bound main loop as well as the early
exit condition (which complicates unrolling and pipelining) marks
this as a complex method. Figure 2(b) shows hash find, which
searches for a key in a hash table utilizing separate chaining. This
method is complex because it hashes the key to an array index
(causing unpredictable memory access), then traverses a variable-
length collision chain (requiring the use of a variable-bound loop).

2.2 Accessor and Mutator Methods
It is useful to classify various data structure methods based on
certain properties which affect how they may be optimized during
synthesis. We identify two broad classes of methods, borrowing
terminology used in object-oriented software programming:

• Accessor Methods — methods that only read and never write to
the data structure, and can thus be executed in parallel and/or
out-of-order with respect to other accessor methods.

• Mutator Methods — methods that change the data structure and
must be executed serially and in-order with respect to other
(even non-mutator) methods.

In this study, we assume that complex mutator methods cannot
be overlapped with other methods, since they modify memory
and can create dependences (e.g., read-after-write). A sophisticated
compiler or expert designer may be able to guarantee safety for the
concurrent execution of a mutator and other methods, in which case
our architecture can be extended to handle such calls.

Al
go

rit
hm

 U
ni

t

A-SMUs M-SMUs

M
em

ory Hierarchy

Crossbar
& Arbiter

.

Dispatcher

Collector

Specialized Container Unit (SCU)

Local Data
Memory

Figure 3: SCU architectural template – Complex methods are
synthesized into specialized method units (SMUs) managed by a
Dispatcher and Collector. SMUs interface with memory through
a crossbar and arbiter. Mutator SMUs (M-SMUs) connect to the
collector if they return a value. Accessor SMUs (A-SMUs) can be
further optimized to support multi-lane out-of-order execution.

1 s = u.begin_neighbors();
2 e = u.end_neighbors();
3
4 // algorithm loop
5 for (v = s; v < e; ++v) {
6 #pragma pipeline
7 alt = dist[u] + edge[u][v];
8
9 if (dist[v] > alt) {

10 dist[v] = alt;
11
12 // Priority Queue
13 // push method
14 Q.push(v, dist[v]);
15 }
16 }

idle

stallstall

stall

time

. . .

. . .

stallv=0

v=0 v=2

. . .

. . .

v=1 v=2 v=3

v=3

v=0

v=0 v=2

. . .

. . .

v=1 v=2 v=3

v=3

Algorithm

Push
Method

(b)

(c)

(d)

v=4

v=4

stall

idle

v=0

v=0 v=2

v=1 v=2 v=3

v=3

(a) Dijkstra’s algorithm inner loop

Figure 4: Execution of a program containing a complex mutator method – (a) Code for the inner loop of Dijkstra’s algorithm, which
uses push into a priority queue. Not every loop iteration calls push; (b) Baseline execution with no optimization, both algorithm and method
modules are poorly utilized; (c) Decoupled execution with overlapping eliminates unnecessary stalling in the algorithm; (d) Pipelining the
algorithm (indicated via overlapped blocks) further improves utilization, throughput is now limited by the method.

3. Decoupled Data Structure Optimization
To address the challenges facing complex data structure synthesis,
we propose to synthesize SCUs based on an architectural template.
The design of the SCU is based on two key ideas. Firstly, we
use compute-access decoupling to hide the latency of complex
data structure methods from the algorithm and to allow modular
optimization of the algorithm and the data structure. Secondly, we
utilize hardware replication to exploit coarse-grain parallelism and
possible conditional method calls.

3.1 SCU Architectural Template
The SCU architecture is shown in Figure 3, and composes of sev-
eral distinct modules connected using latency-insensitive message-
based interfaces. The dispatcher is responsible for receiving method
calls from the algorithm in the form of a message that contains the
opcode to indicate the requested method and the argument values
based on the method type. The precise message format (widths
of each field) is application specific. In some cases an algorithm
uses only one method, in which case the opcode can be omitted
entirely. The dispatcher is responsible for decoding messages and
dispatching work to a specialized method unit (SMU) that executes
the accessor or mutator methods using two separate channels. Note,
we use separate channels for accessor and mutator methods as (1)
it is possible to have multiple outstanding accessor calls executing
in parallel, and (2) the message formats are usually quite different
between the two method classes. There are two groups of SMUs:
the mutator specialized method units (M-SMUs) that support mu-
tator calls and the accessor specialized method units (A-SMUs)
that support accessor calls. The dispatcher preserves dependencies
between the mutator and accessor calls by ensuring that no other
methods are launched while an M-SMU is active. However, the ar-
chitectural template provides the freedom to a designer or compiler
to relax this constraint if memory safety can be guaranteed during
concurrent method executions.

Each accessor method in the data structure is synthesized to cre-
ate an A-SMU. A-SMUs can be configured with a single instance
of the synthesized method (single-lane) or the synthesized method
can be replicated (multi-lane). This provides a significant degree
of freedom to the designer for exploiting the parallelism across ac-
cessor method calls. Each mutator method is synthesized to create a
single-lane M-SMU. Note, that a given M-SMU is a single instance
of the mutator method as the mutator executions can modify the un-

derlying data-structure and multiple mutator executions cannot be
overlapped. The final module is the collector, which is responsi-
ble for collecting results from the A-SMUs and the M-SMUs and
returning them to the algorithm in the original method call order.
Note that some mutator methods do not return any values, in which
case it will not be connected to the collector; instead the dispatcher
will send a response message back to the algorithm unit.

The memory ports of each SMU are connected via a crossbar
to a multi-port memory that stores the data members. A simple
hardware arbiter controls which memory requests are served dur-
ing each cycle between accessors. There is no need for arbitration
between mutators in our scheme as only one will ever be active at
any time. This arbitrated memory interface allows our SCU tem-
plate to be portable across different types of storage with varying
number of memory ports. Although we focus on on-chip memories
in this study, we note that with a decoupled memory interface it
would not be difficult to extend our architectural template to utilize
an external memory hierarchy, as shown in Figure 3.

It is important to note that only the complex methods of a
data structure are decoupled in this fashion. Simple, constant-time
methods such as size are synthesized in the conventional manner.
This requires us to keep a copy of certain data in the algorithm
unit, but the overhead of doing so is small. Similarly, some methods
like top from the priority queue can be serviced in the dispatcher
without needing to invoke a decoupled method unit.

3.2 Overlapped Execution with Mutator Methods
Figure 4(a) shows code for the inner loop of Dijkstra’s Algorithm;
the code attempts to update the distance to each neighbor v of a
node u. If successful, it pushes v onto a min priority queue keyed
by the distance. Figure 4(b) shows the baseline execution without
decoupling. The algorithm must stall each time it calls push, and
the method unit is idle while the algorithm runs. Overall application
performance is low due to poor hardware utilization.

Using decoupling, we can take advantage of the fact that push
is a method which does not return any values. After receiving a
push request, the dispatcher immediately returns a response to the
algorithm at the same time it activates the appropriate M-SMU. The
algorithm can then proceed to the next iteration, which is executed
concurrently with the push call from the previous iteration as seen
in see Figure 4(c). This greatly reduces stalling on both hardware
modules. Figure 4(c) also illustrates how our approach exploits

1 void KeySearch (keys, vals) {
2 // algorithm loop
3 for (k : keys) {
4 // Hash Table find method
5 // returns matching bucket node
6 HashTableNode n;
7 n = H.find(k);
8
9 // check if key was found

10 if (n != NULL) {
11 vals[i] = n.value;
12 }
13 }
14 }

idle

time

. . .

(b)

(c)

stall

idleidle

stallstallk=0

k=0 k=1

k=2

k=1 k=2

k=3

. . .

. . .

k=0

k=0

k=1 k=3

k=3

k=1

k=2

Lane 1

Lane 2

Lane 3

Algorithm

Find
Method

k=2

(a) KeySearch kernel

Figure 5: Execution of a kernel containing a complex accessor method – (a) Code for the KeySearch kernel, which searches a hash table
for a list of keys using the find method and contains a variable-bound while loop; (b) Baseline execution with no optimization, the algorithm
cannot be pipelined; (c) Decoupled execution on parallel lanes and pipelining the algorithm greatly improves method throughput.

conditional method calls in the loop. An iteration of Dijkstra only
calls push if it successfully relaxes the best-known distance, and
in some cases we can process multiple algorithm iterations in the
period it takes to execute a single call to push.

Decoupling also facilitates the pipelining of the algorithm loop.
Typically, for current HLS tools to effectively pipeline an outer
loop, the inner loops must be unrolled [17], which cannot be done
for the variable-bound nested loop in the push method. After de-
coupling, the method call is replaced with simple operations to read
and write the latency-insensitive interface. Figure 4(d) shows the
execution of the program after pipelining. The SMU is saturated
and its throughput now dictates the performance of the application.

keysearch
Unit

Hash
Table
SCU

Collector

Lane 1

Lane
2

Lane N

.

Dispatcher

ROB

A-SMU

RQ

Figure 6: Multi-lane SMU example – The find method in a hash
table can be parallelized using a multi-lane A-SMU. The host SCU
must contain a Request Queue and Reorder Buffer to ensure correct
operation. The SCU’s local memory is not shown here.

3.3 Parallel Execution of Accessor Methods
The previous example showcases optimizations which can be made
to a mutator method, but accessors receive the further benefit of
parallel and out-of-order execution across multiple lanes. Figure
5(a) shows the KeySearch kernel, which iteratively finds keys
inside a hash table. As before, the find method cannot be pipelined
and the baseline execution is often stalled (see Figure 5(b)).

Our approach instead generates an SCU for the hash table as
shown in Figure 6, which includes a multi-lane accessor SMU. In
this architecture, each incoming method call is given an ID and
placed into a request queue (RQ) in the dispatcher to wait for an
available lane. Each call added to the queue also reserves an entry
at the tail of the reorder buffer (ROB). On each cycle, the head
request of the RQ checks each SMU lane in a round-robin fashion,
dispatching to the lane if it is idle. When a lane completes execution

of a method request, the result is written to the appropriate entry
in the ROB and that entry is marked valid. Different lanes execute
independently and can finish in any order. Results are only returned
from the head of the ROB when it is valid. This ensures results are
produced by the SCU in the original call order.

Figure 5(c) shows the execution of KeySearch on three lanes.
The algorithm is pipelined, though the long latency of the method in
iteration k=2 causes some stalling. Iterations that reuse lanes (e.g.,
k=0 and k=3) improve the hardware utilization. We also see that
the k=3 call finishes before k=2, in which case its return value is
stored in the ROB until its predecessors have also finished and their
values returned to the algorithm. With sufficient lanes, the latency
of the method calls can be hidden from the algorithm and the total
throughput increases significantly.

3.4 Dynamic Memory Allocation
Our decoupled architecture also enables the elegant integration of
a dynamic memory allocator which allows data structures to call
malloc and free to alter their storage size at runtime. Such self-
sizing structures carry considerable benefits in ease of use, as their
sizes do not need to be statically known. Multiple applications or
data structures drawing from the same pool of memory will also
tend to be more memory efficient in the average case. However, the
need for malloc and free to interact with a free list (or some other
global record of free segments) makes them behave as complex
mutator methods. The SCU approach is helpful in this case because
the optimizations which apply to mutators also benefit any data
structure which makes use of dynamic memory allocation.

4. Implementation
The synthesis of an SCU can be automated using code transforma-
tions combined with parameterized hardware generators. The first
step in SCU synthesis is to identify which methods are to be decou-
pled as well as whether each method is an accessor or mutator. This
is easily done using a compiler pass to detect variable-bound loops
and the presence of memory writes. The request and response mes-
sage formats can then be inferred from each method’s arguments
and return type. After this a source-to-source transform strips the
code from the methods to be decoupled and replaces them with in-
structions to send and receive SCU messages. The method bodies
are then used to create standalone functions which can be pushed
through the HLS flow to generate hardware modules. This allows a
data structure to be converted to a SCU with only minor program-
mer effort and no change to the algorithm code.

Table 1: Latency and resource usage comparison for each benchmark — Target clock period is 5ns. Methods = which methods were
specialized in the SCU; LAT = latency; CP = achieved clock period; SLICE = # of slices; LUT = # of look-up tables; FF = # of flip-flops; BRAM
= # of block rams; DSP = # of DSPs; Speedup = improvement in latency relative to baseline.

Benchmark Data Structure Methods LAT CP LUT FF BRAM DSP Speedup

Dijkstra-Base Priority Queue push, pop 4006 4.36 640 884 2 4
Dijkstra-SCU empty 2207 4.38 750 850 3 4 1.82x

DigitrecKnn-Base Priority Queue push, pop 2732 4.66 467 635 2 0
DigitrecKnn-SCU 2331 4.70 583 586 2 0 1.17x

DFS-Base Dynamically- push, pop 2851 4.12 1157 1798 2 3
DFS-SCU Sized Stack empty 1615 4.63 1263 1873 2 3 1.77x

ImgSeg-Base Random classify 17007 4.69 226 181 5 0
ImgSeg-SCU Decision Tree 8506 4.95 437 333 7 0 2.00x

KeySearch-Base Hash Table find 21281 4.05 4533 3462 12 0
KeySearch-SCU 13592 4.49 6527 4207 14 0 1.57x

The next step is to determine the number of parallel lanes to
synthesize for each accessor method. The optimal number depends
on the throughput of the algorithm loop, the average latency of a
single method call, as well as the memory throughput required by
each lane. Creating more lanes is not useful if the algorithm cannot
fill them with calls or if memory bandwidth is saturated. Currently,
we require the designer to explore this design space and indicate the
desired number of lanes using pragmas. With the above information
the dispatcher, collector, and memory interface (including crossbar
and arbiter) can all be generated from parameterized templates.

5. Experimental Results
To evaluate our techniques, we used a state-of-the-art commercial
HLS tool and Vivado to implement the synthesized RTL, target-
ing the Xilinx Virtex-7 FPGA. The baseline designs were simply
pushed through this flow from C++ code to the final implementa-
tion. For the decoupled designs we synthesized the algorithm and
decoupled data structure methods separately, composed them in a
simple RTL wrapper, then pushed the combined module through
the implementation flow. All clock period and area numbers were
obtained post place and route, and all latency numbers were ob-
tained from cycle-accurate RTL simulation. The simulation test-
benches were written leveraging a Python-based hardware model-
ing framework called PyMTL [8], which simplified the creation of
our testing and evaluation environment.

Table 1 shows the benchmark algorithms chosen for evalua-
tion as well as the data structures they use. Dijkstra solves the
single-source shortest path problem with Dijkstra’s algorithm us-
ing a priority queue implemented as an array-based binary heap.
DigitrecKnn uses the K-nearest neighbors algorithm to classify
digits, leveraging the same priority queue design to keep track of
the best matching candidates. DFS performs a depth-first search of
a graph using a dynamically-sized stack (invoking a dynamic mem-
ory allocator using implicit free lists). These three algorithms make
heavy use of push and pop, both of which are synthesized as de-
coupled mutator SMUs to take advantage of overlapped execution.
The empty method is also invoked, but it is not complex and is in-
lined into the algorithm. The next two benchmarks are read-heavy
kernels which make many calls to a complex accessor method/
Both use a two-lane A-SMU architecture with a 32-entry ROB.
Dual-port block RAMs (BRAMs) were used to implement the data
memory. ImgSeg segments an image by classifying each pixel into
one of multiple predefined classes. The data structure used is a ran-
dom decision tree with 11 levels stored in an array. KeySearch was

shown earlier, and finds a list of input keys inside a 2000 entry hash
table stored in an array.

In Dijkstra and DFS, the algorithm is mostly responsible for
loading and storing graph data, which is small compared to the
latency of the data structure method. However, both benchmarks
exhibit conditional method calls: in Dijkstra, a node is only
pushed to the priority queue if its distance was updated; in DFS,
adding a node to the stack does not always require the memory
allocator. This property, along with pipelining of the algorithm,
allows for significant execution overlap achieving good speedup.
In contrast DigitrecKnn sees much less improvement due to the
fact that the workload is unbalanced towards the SCU, causing
reduced benefit for execution overlapping. In two of the designs
the FF usage is lower in the SCU design, which can be attributed to
more aggressive operation chaining caused by pipelining.

ImgSeg and KeySearch are both kernels which do most of their
work inside the method call. Performance improvement comes
from parallel execution of the accessor method. In both cases al-
though there is speedup, there is also non-trivial area overhead
(1.93x LUTs and 1.84x FFs for the decision tree, 1.43x LUTs and
1.22x FFs for the hash table). This is due to modules necessary for
managing parallel lanes in the SCU, which become more complex
going from a 1-lane to 2-lane design. Table 2 gives an area break-
down of the SCU in the 2-lane hash table design. The dispatcher,
collector, and memory interface incurs significant overhead.

However, we also have results showing that this area overhead
stays relatively constant even when the number of lanes is in-
creased. Table 7 shows the scalability of our approach up to 4 lanes.
FF and LUT usage grow very slowly, and BRAM usage stays con-
stant after 2 lanes as the increase from 1 to 2 is used for the ROB.
Meanwhile, performance improves linearly as more lanes are added
despite the limited memory bandwidth of 2 read ports in our design.
This is possible because each lane does not fully saturate a single
port’s memory bandwidth, a key property leveraged by our arbi-
trated memory interface.

Table 2: Area breakdown of the KeySearch SCU (2 lanes).

KeySearch-SCU FF LUT BRAM
Dispatcher 19% 26% 0
Collector 25% 25% 2
SMU #1 14% 7% 0
SMU #2 14% 10% 0
Mem Interface 28% 32% 12

1

1.5

2

2.5

3

1 2 3 4 5

No
rm

al
ize

d
to

 1
 La

ne

Number of Lanes

Speedup
LUT
FF
BRAM

Figure 7: Latency and resource usage of KeySearch-SCU with
increased number of lanes.

6. Related Work
Several recent studies have investigated the benefits of specialized
data structure accelerators to eliminate memory accesses and im-
prove the performance of data and instruction caches [16]. Hard-
ware implementations of some data structures have been reported
including linked lists [18], queues [1, 7], trees [11, 2], and other
pointer-based structures [12, 15]. Our work focuses on synthesiz-
ing container units for a broader range of complex data structures,
instead of crafting the most efficient implementation of a specific
structure. Nevertheless, many of the above techniques (e.g., cus-
tomized prefetching) are complementary to our work.

Loew et al. also studied data structure co-processing in the form
of decoupling and offloading complex methods [9]. Their imple-
mentation relies on CPU multithreading, as opposed to using spe-
cialized hardware. In several cases the authors observed a slow-
down due to inter-thread communication latency.

Cheng and Wawrzynek proposed generating pipelines with de-
coupled stages for memory operations to improve memory through-
put and tolerate access latency [4]. However, their work targets raw
memory loads and stores to improve pipeline throughput, while we
focus on improving the synthesis of complex data structure meth-
ods using decoupling and managed parallel lanes.

The implementation of a dynamic memory allocator builds on
similar systems such as DMM-HLS [6]. Our contribution is to show
how memory management functions can be integrated with our
approach and optimized as part of data structure methods.

Cattaneo et al. used compute-access decoupling and polyhe-
dral analysis to optimize loop tile sizes for memory reuse [3].
CoRAM++ is a recent work on data structure-specific memory
interface modules for transferring data to FPGA from DRAM [14],
which focuses mostly on optimizing traversals on multi-dimensional
arrays and linked lists from off-chip memory. In comparison to both
works, we we study more complex data structures and methods and
use on-chip memory management.

The idea of using a decoupled multi-lane accelerator for par-
allelism extraction bears similarity to ElasticFlow [13]. However,
ElasticFlow targets irregular loop nests, while our techniques tar-
get coarse-grained parallelism across independent data structure
method calls. We also demonstrate speedup for mutator methods
due to decoupling even without the multi-lane architecture.

7. Conclusions and Future Work
We propose a novel methodology and architectural template for the
HLS of complex data structures. By decoupling complex methods
from the algorithm, our approach is capable of exploiting coarse-
grained parallelism between the algorithm and method call via

overlapped execution. For accessor methods, we can further im-
prove performance via parallel and out-of-order execution across
multiple lanes. We evaluate our approach by implementing four
different complex data structures and obtain promising speedups.
Future work includes integrating SCUs with a memory hierarchy
for accessing off-chip memories and using intelligent static analy-
sis to identify opportunities to parallelize mutator methods.

Acknowledgements
This work was supported in part by NSF Awards #1149464,
#1337240, #1453378, #1512937, a DARPA Young Faculty Award,
and donations from Intel Corporation and Xilinx, Inc.

References
[1] G. Bloom, G. Parmer, B. Narahari, and R. Simha. Shared Hardware

Data Structures for Hard Real-Time Systems. Int’l Conf. on Embedded
Software, Oct 2012.

[2] A. Carbon, Y. Lhuillier, and H.-P. Charles. Hardware Acceleration
of Red-Black Tree Management and Application to Just-In-Time
Compilation. Journal of Signal Processing Systems, Oct 2014.

[3] R. Cattaneo, G. Pallotta, D. Sciuto, and M. D. Santambrogio. Explicitly
Isolating Data and Computation in High Level Synthesis: the Role of
Polyhedral Framework. Intl. Conf. on ReConFigurable Computing
and FPGAs (ReConFig), Dec 2015.

[4] S. Cheng and J. Wawrzynek. Architectural Synthesis of Computational
Pipelines with Decoupled Memory Access. Int’l Conf. on Field
Programmable Technology (FPT), Dec 2014.

[5] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-Level Synthesis for FPGAs: From Prototyping to Deployment.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), Apr 2011.

[6] D. Diamantopoulos, S. Xydis, K. Siozios, and D. Soudris. Mitigating
Memory-induced Dark Silicon in Many-Accelerator Architectures.
Computer Architecture Letters (CAL), Mar 2015.

[7] M. Huang, K. Lim, and J. Cong. A Scalable, High-Performance
Customized Priority Queue. Int’l Conf. on Field Programmable Logic
and Applications (FPL), Sep 2014.

[8] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework
for Vertically Integrated Computer Architecture Research. Int’l Symp.
on Microarchitecture (MICRO), Dec 2014.

[9] J. Loew, J. Elwell, D. Ponomarev, and P. H. Madden. A Co-Processor
Approach for Accelerating Data-Structure Intensive Algorithms. Int’l
Conf. on Computer Design (ICCD), Oct 2010.

[10] D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Library.
Addison-Wesley Professional, 2009.

[11] J. Oberg, K. Eguro, R. Bittner, and A. Forin. Random Decision
Tree Body Part Recognition Using FPGAS. Int’l Conf. on Field
Programmable Logic and Applications (FPL), Aug 2012.

[12] J. Park and P. C. Diniz. Data Reorganization and Prefetching of
Pointer-Based Data Structures. IEEE Design and Test of Computers,
Aug 2011.

[13] M. Tan, G. Liu, R. Zhao, S. Dai, and Z. Zhang. ElasticFlow: A
Complexity-Effective Approach for Pipelining Irregular Loop Nests.
Int’l Conf. on Computer-Aided Design (ICCAD), Nov 2015.

[14] G. Weisz and J. C. Hoe. CoRAM++: Supporting Data-Structure-
Specific Memory Interfaces for FPGA Computing. Int’l Conf. on Field
Programmable Logic and Applications (FPL), Sep 2015.

[15] F. Winterstein, S. Bayliss, and G. A. Constantinides. High-Level
Synthesis of Dynamic Data Structures: A Case Study Using Vivado
HLS. Int’l Conf. on Field Programmable Technology (FPT), Dec 2013.

[16] L. Wu, M. Kim, and S. A. Edwards. Cache Impacts of Datatype
Acceleration. Computer Architecture Letters, Jun 2012.

[17] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis,
Jul 2012.

[18] J. Xu, Y. Dou, J. Song, Y. Zhang, and F. Xia. Design and Synthesis
of a High-Speed Hardware Linked-List for Digital Image Processing.
Congress on Image and Signal Processing (CISP), May 2008.

