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a b s t r a c t

We present a novel method for calculating the opportunity costs to fishers from their displacement by the
establishment of marine protected areas (MPAs). We used a fishing community in Kubulau District, Fiji to
demonstrate this method. We modelled opportunity costs as a function of food fish abundance and prob-
ability of catch, based on gear type and market value of species. Count models (including Poisson, nega-
tive binomial and two zero-inflated models) were used to predict spatial abundance of preferred target
fish species and were validated against field surveys. A profit model was used to investigate the effect of
restricted access to transport on costs to fishers. Spatial distributions of fish within the three most fre-
quently sighted food fish families (Acanthuridae, Lutjanidae, Scaridae) varied, with greatest densities
of Lutjanidae and Acanthuridae on barrier forereefs and greatest densities of Scaridae on submerged
reefs. Modelled opportunity cost indicated that highest costs to fishers arise from restricting access to
the barrier forereefs. We included our opportunity cost model in Marxan, a decision support tool used
for MPA design, to examine potential MPA configurations for Kubulau District, Fiji Islands. We identified
optimum areas for protection in Kubulau with: (a) the current MPA network locked in place; and (b) a
clean-slate approach. Our method of modelling opportunity cost gives an unbiased estimate for multiple
gear types in a marine environment and can be applied to other regions using existing species data.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid degradation of marine resources resulting from
human activity has motivated a global movement to increase the
protection of the oceans (IUCN, 2009). The establishment of marine
protected areas (MPAs) is a widespread and acknowledged tool for
conserving biodiversity and providing ecosystem services, with
widely reported increases in biomass of fisheries resources, size
of target species, and species richness within protected areas
(Lester et al., 2009). However, these benefits will only be realized
through effective protected area design as well as compliance
and enforcement.

Systematic conservation planning can account for trade-offs be-
tween benefits and social costs during the selection of areas by
explicitly defining biodiversity, fisheries and socio-economic goals
(e.g. Ban and Klein, 2009; Gaines et al., 2010). Systematic methods
are currently preferred for designing MPA networks in developed
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countries (Sala et al., 2002). Despite progress in the technical as-
pects of designing effective networks, recent research highlights
the need to more effectively include socio-economic data in con-
servation planning with the aim of increasing the potential to
implement plans (Naidoo et al., 2006; Polasky, 2008).

Use of socio-economic information is especially important in
the context of developing countries where these data are generally
limited and social acceptance is a critical factor in determining
MPA success (Johannes, 1998; Ban et al., 2009). While inclusion
of socio-economic data in the design of MPAs has increased in
the last decade (Ban and Klein, 2009), spatial variation in costs to
stakeholder groups needs to be better understood (Klein et al.,
2008; Adams et al., 2010). This is especially important in Pacific is-
land countries where: communities are highly dependent on mar-
ine resources for subsistence (Adams et al., 1997); many fishers
have limited spatial and occupational mobility (e.g. Cinner et al.,
2009); and customary marine tenure places social and governance
constraints on MPA network design (Aswani and Hamilton, 2004).

The most prevalent type of socio-economic data in conservation
planning relate to fisheries catch (Ban and Klein, 2009). Catch per
unit effort (CPUE) data are typically derived from log books in
regulated fisheries or, more commonly in developing countries,
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from socio-economic survey questions about fishing location, gear
used, and the type and amount of fish caught. These data reflect the
spatial distribution of fishing effort and can be combined with eco-
logical surveys to examine the effects of fishing on fish community
composition (Jennings and Polunin, 1996). The collection of CPUE
data is becoming standard practice, particularly for commercial
fisheries within developed countries (Ban and Klein, 2009), while
national-scale collection of artisanal and subsistence CPUE data is
possible at relatively low-cost in developing countries (IAS,
2009). Recent studies have examined how to use CPUE data to plan
for multiple fisheries so that MPAs do not displace opportunity
costs disproportionately onto single stakeholder groups (Klein
et al., 2008).

One limitation of CPUE data is that, by definition, they only cap-
ture the current fishing effort. This implies, often wrongly, that
existing MPAs have no opportunity cost. It also ignores areas with-
out current effort that might be suitable for harvest if currently
fished areas became unavailable through the establishment of
MPAs. A response to these limitations in conservation planning
has been to define cost as a function of both effort and extent of
areas being considered for conservation to ensure that no potential
MPAs are seen as having zero opportunity cost (e.g. Game et al.,
2008). However, for areas with no current fishing effort, assuming
homogeneous per-unit-area cost does not capture the potential
heterogeneity of effort. Areas outside MPAs can lack current fishing
effort for several reasons, including the common inability of survey
data to capture the seasonality of fishing distributions, and the lack
of access to motor boats, particularly in developing countries (Salas
and Gaertner, 2004). As access to motor boats increases, it is rea-
sonable to expect that fishing effort will change and move further
offshore to areas currently not fished.

Because of the limitations of CPUE data as a basis for conserva-
tion planning, a method is needed to estimate the opportunity
costs of areas that are currently not fished. Decisions about MPA
size and configuration can then account for the heterogeneous
opportunity costs to fishers in both fished and currently unfished
areas. A method has been developed to estimate the opportunity
costs to agriculture of forested parts of landscapes (Naidoo and
Adamowicz, 2006), but an analogous method has not been pub-
lished for marine environments. In response to this need, we pres-
ent a novel method for estimating the opportunity costs of
establishing MPAs to groups of rural fishers using multiple gear
types. We describe the model and then demonstrate its application
with a case study from Kubulau District, Fiji, to show how the
resulting map of opportunity costs can be used with conservation
planning software to recommend a new, more socially acceptable,
configuration of community-managed MPAs. We address four
main questions that are relevant not only in Kubulau but also for
fisheries management globally:

(1) Where are the preferred target fish species located?
(2) Where is current fishing effort focused and how does it vary

by gear type?
(3) What are the differences between current and potential

opportunity costs?
(4) How can the current MPA network be modified to reduce

conflict with users?

2. Methods

2.1. Study area

Kubulau District is an administrative unit of Bua Province, in
south west Vanua Levu, Republic of Fiji Islands (Fig. 1). Traditional
fishing grounds (qoliqoli) in Fiji have been legally demarcated by
the Fiji Native Lands and Fisheries Commission. The 261.6 km2 of
inshore waters within the Kubulau qoliqoli contain a diverse array
of habitats, including reef flats, seagrass beds, coastal fringing reefs,
soft bottom lagoons, patch reefs, offshore barrier reefs and deep
channels. Estimates of biomass of targeted food fish from under-
water visual census (UVC) surveys along Kubulau forereefs be-
tween 2007 and 2009 range from 0.04 to 15.8 tonnes ha�1 (WCS,
unpublished data).

In 2005, the communities of Kubulau formally established a
network of village-managed (tabu) areas and MPAs covering nearly
80 km2 of the qoliqoli, including 17 tabu areas and three MPAs
(Namena, Nasue and Namuri; Clarke and Jupiter, 2010). Tabu areas
may be periodically harvested by owners of traditional fishing
rights at the discretion of the village chief, while the MPAs are per-
manently closed. The initial design of the tabu areas and MPAs was
informed by both socio-economic and biological research under-
taken by local managers and their conservation partners – the
Wildlife Conservation Society, WWF, Wetlands International-Ocea-
nia and the Coral Reef Alliance. A ridge-to-reef management plan
was completed for Kubulau District in July 2009 and has been en-
dorsed by the council of chiefs (WCS, 2009). However, lack of con-
sideration for the traditional fishing rights of certain clans has
created conflict over access to some closed areas, with violent
altercations in at least one case between community fish wardens
and locals wanting to fish in an MPA (Clarke and Jupiter, 2010).

The total population of Kubulau District is approximately 1000
people distributed across 10 villages and one settlement. Presently
only five of the coastal villages (Navatu, Namalata, Kiobo,
Natokalau, Nakorovou) have motorized vessels for fishing. In addi-
tion, one motor boat has been donated to the entire district by a
local NGO for enforcement and is occasionally used for fishing.
Six fishing gear types were identified, with preferred gear types
including gill nets, spearguns and hand line (Supplementary mate-
rial Table S1).

2.2. Opportunity cost and profit models

Fig. 2 shows a flow diagram of the data inputs, intermediate
models and steps for the full models of opportunity cost and profit.
The following sections describe the parts of the flow diagram.

2.2.1. UVC data for food fish species
In April–May and September 2009, underwater visual census

(UVC) surveys were carried out at 63 locations within the Kubulau
qoliqoli. Observers measured fish abundance and size within the
following families that are targeted for consumption and sale:
Acanthuridae, Balistidae, Carangidae, Haemulidae, Lethirinidae,
Lutjanidae, Scaridae, Serranidae (groupers only) and Siganidae.
Sites were chosen to maximize spatial representation across reef
habitats with a minimum of three replicate transects per site, typ-
ically distributed across depth categories. Measurements of fish
size (total length) and abundance were scored along replicate
(n = 3–5) 5 m � 50 m belt transects. Transects were deep
(12–15 m) and shallow (5–8 m) at most forereef sites, and shallow
and reef-top (1–3 m) at backreef sites. Each sighted fish >2 cm was
classified to species level within size categories (2–5, 6–10, 11–15,
16–20, 21–25, 26–30, 31–35, 36–40 cm). The length of fish >40 cm
was estimated to the nearest cm to improve estimates of biomass.
Biomass was calculated from size class estimates of length (LT) and
existing published values from Fishbase (Froese and Pauly, 2009)
used in the standard weight-length expression M ¼ aLb

T , with a
and b values preferentially selected from sites closest to Fiji (e.g.
New Caledonia). If no length–weight (L–W) conversion factor was
present for the species, the factor for a species of similar morphol-
ogy in the same genus was used (Jennings and Polunin, 1996). If a
suitable similar species could not be determined, the average for
the genus was used. Because most of the New Caledonia fishes



Fig. 2. Flow diagram of data inputs and model steps for opportunity cost and profit models for all gear types.

Fig. 1. The study area, Kubulau District, Vanua Levu, Fiji. Inset shows map of Fiji with Kubulau District and traditional fishing ground (qoliqoli) demarcated for reference. (a)
Reef habitats (patch, fringing and barrier) in the Kubulau qoliqoli and names of reefs. Sites of biological surveys are also shown. (b) Villages in Kubulau District with labels
indicating villages surveyed for CPUE data (Navatu, Kiobo, Nakorovou and Raviravi) and villages with motorized vessels (Navatu, Namalata, Kiobo, Natokalau, Nakorovou).
Current tabu areas and MPAs are delineated.
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were measured to fork length (FL), a length–length (L–L) conver-
sion factor was obtained from Fishbase where possible to convert
from total length (TL) to FL before biomass estimation. Food fish
species (n = 148) were selected from the recorded families for
spatial modelling of abundance throughout the qoliqoli (see
Section 2.2.3).
2.2.2. Habitat data and other predictor variables
We focused on coral reef habitats for our modelling because: (1)

the majority of targeted fish biomass within the qoliqoli was found
to be associated with coral reefs and (2) relatively comprehensive
spatial layers were available for exposed and submerged coral reefs
but not for other habitats. Exposed and submerged coral reefs were



Table 1
Reef habitat type, percentage of total reef cover in study region, area in study region,
percentage of survey sites allocated, and conservation targets.

Habitat Percentage
of total
reef cover
in study
region (%)

Area of
habitat
in
study
region
(km2)

Percentage
of survey
sites (%)

Conservation
target (%)

Conservation
target (km2)

Barrier 54 36.9 63.5 30 11.1
Fringing 17 20.1 19.0 30 6.0
Patch 29 11.7 17.5 30 3.5
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digitized by the Fiji Department of Lands from aerial photographs
taken in 1994 and 1996. Where data were missing, we digitized ex-
posed reefs from Fiji topographic map sheets at 1:50,000 scale but
were unable to digitize additional submerged reefs. We classified
reefs primarily as barrier, patch or fringing based on previous sur-
veys and reference to Landsat data (Table 1). To derive biophysical
predictor variables for species abundance models, we further clas-
sified the reef types by: exposure to tides; exposure to waves; and
depth (Supplementary material Table S2). Depth was classified as
shallow (depth 6 10 m) or deep (depth > 10 m) based on contour
lines from digitized nautical charts. Other predictor variables were
protection status and linear distance from shore (Supplementary
material Table S2). Distance from shore for each survey location
was calculated using ArcInfo 9.2 (ESRI) software.
Table 2
Fish price as set by the Fiji Department of Fisheries branch office in Savusavu, Vanua
Levu, Fiji.
2.2.3. Food fish species abundance models
Food fish species count and biomass were taken from the UVC

survey data and pooled by site and standardized for number of
transects. Because species abundance data are often characterized
by a large number of zeros, zero-inflated models have recently
been developed which allow for the concurrent estimation of
occurrence and abundance (e.g. Joseph et al., 2009). For each spe-
cies we considered four different models: Poisson (P), negative
binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated nega-
tive binomial (ZINB) (see Supplementary material for mathemati-
cal details). The Poisson and negative binomial models are
standard count models used to estimate abundance. The zero-in-
flated models simultaneously model probability of detection and
abundance. Because Poisson models can be sensitive to low num-
bers we selected species for modelling that occurred in at least
15% of survey sites. This allowed us to use data on 54 species from
22 genera (Supplementary material Table S3).

We fitted the models using the general linear model (glm) and
zero-inflated model (zeroninfl) functions in R (R Development Core
Team, 2005). These packages use maximum likelihood to estimate
coefficients for the generalized linear models (Poisson and negative
binomial) and zero-inflated models. We used forward and back-
ward removal to select the best subset of predictors for each model
(see Supplementary material Table S3 for predictors selected for
each species). For each species we selected the best model by com-
paring proportion of zeros (predicted zeros/observed zeros) and
Akaike’s information criterion (AIC, Akaike, 1974). The best-fitting
model has the lowest AIC (see Supplementary material for discus-
sion of goodness of fit). Abundance was predicted for each species
across the qoliqoli on a 50 m grid to reflect abundance data pooled
by site and standardized to abundance per 2500 m2 (50 m � 50 m).
To determine abundance by family and fish price class we pre-
dicted abundance by species and summed abundances for these
groupings.
Class Price (FJD/kg) Family

A $3.00 Lethrinidae, Serranidae, Siganidae
B $2.50 Carangidae, Haemulidae, Lutjanidae
C $2.00 Acanthuridae, Scaridae, Balistidae
2.2.4. Food fish species biomass models
Because many of the food fish species exhibit ontogenetic

movements from inshore to offshore, we modelled biomass for
each species to capture heterogeneous distribution of biomass
across habitats (e.g. Lutjanus fulviflamma juveniles are found in
mangrove estuaries while adults commonly school in deep la-
goons; Froese and Pauly, 2009). Based on UVC data, we estimated
biomass for each species with multiple regression, using both for-
ward and backward stepwise removal to select the best fit model
(Supplementary material Table S4). All predictors considered for
abundance were included in the biomass models.

2.2.5. CPUE survey data
Between May 2008 and June 2009, area specific catch per unit

effort (CPUE) information (in catch person�1 h�1 m�2) was
collected from fishers from four villages (Raviravi, Navatu, Kiobo,
Nakorovou) within Kubulau District. Trained community volun-
teers recorded information once per week from all fish landings
in the village during a 24 h period. Fishers were asked for informa-
tion on the total number of fish caught, the number of people fish-
ing, the time spent fishing, the gear used for fishing, and the
transport used for fishing. All participants (n = 191 total) were
asked to indicate where they fished on a map. Of the 191 fishers,
72 drew polygons for fishing areas and the others identified their
fishing spots with points. In cases where one of the polygons was
associated with more than one gear type or method of transport,
only the most efficient gear type and method of transport was cho-
sen to represent the polygon to avoid underestimating opportunity
costs.

To create a single layer to represent fishing effort, all fishing
spots identified as points were translated into polygons with an
area equivalent to that of the largest drawn polygon with the same
combination of transport and gear, to ensure that the extent of
fishing grounds was not spatially underestimated (Supplementary
material Table S1). A final uniform CPUE was calculated for each
polygon by dividing the catch by the number of people fishing,
time spent and fishing area.

2.2.6. Percentage catch models by gear type
For each gear type we compared the predicted abundance of

food fish species to the number of fish caught as reported in CPUE
surveys and expressed this as percentage catch (catch/abundance).
Percentage catch was modelled spatially by gear type across the
entire qoliqoli using multiple regression analysis, where AIC was
used to determine the best subset of predictors (Supplementary
material Tables S5 and S6).

2.2.7. Market value from Fijian Government
Market value, or sale price, of species from 2009 was obtained

from the closest Fiji Department of Fisheries district office in
Savusavu (Table 2).

2.2.8. Opportunity cost by gear
To estimate the opportunity costs to fishing, we considered the

gear types in the region and the food fish species for each as iden-
tified by catch records in the CPUE data. Based on the food fish spe-
cies identified for each gear type, we defined the opportunity cost
to gear type j to be cj
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cj ¼
Xn

i¼1

pjiaibimi

where n was the number of species for gear type j, pji was the per-
centage catch for gear type j of species i (Section 2.2.6), ai was the
expected abundance of species i (Section 2.2.3), bi was the expected
biomass of species i (Section 2.2.4), and mi was the market value of
species i (Section 2.2.7). Opportunity cost by gear type was esti-
mated for all reefs on a 50 m grid to match the outputs of models
of abundance and biomass.

2.2.9. Opportunity cost to all gear types
We defined the opportunity cost, c, of each 50 m reef grid cell as

the sum of opportunity costs to all gear types weighted by the cur-
rent proportion, wj, of the total number of fishers represented by
each gear type in the fishery:

c ¼
XJ

j¼1

wjcj

where wj was calculated as the number of fishers using gear type j
divided by the total number of fishers. This approach captured the
current distribution of gear types in the fleet, recognising that a
fishing site is not exclusively available for fishing by any one gear
type.

2.2.10. Profit by gear
In developing countries, such as Fiji, many of the fishers are

subsistence and therefore are unlikely to be market-driven
(e.g. Cakacaka et al., 2010). Also, not all opportunity costs are pres-
ently realized because most transport types restrict access to many
reefs and fuel costs limit the attractiveness of using boats to fish on
distant reefs. Therefore, we wanted to ensure that our model was
capturing both current fishing effort as well as potential effort indi-
cated by modelled opportunity cost. We incorporated input costs
and differential access by considering expected profit, rjm, from
catches at each 50 m reef grid cell by gear type, j, with transport
type, m. We excluded time costs, such as forgone revenue from
other activities, in our profit model because occupational mobility
in this region is limited. We restricted our consideration of input
costs to supplies for motorized transport, in this case only fuel.
For transport by boats, we considered profit by gear type, j, to be

rjm ¼maxðcjm � f ;0Þ

where cjm is the opportunity cost and f is the fuel cost. Fuel costs
were estimated at FJD$0.78 per km using a 25 hp engine (based
on expected average price of $1.45 per litre, Fijian Government Feb-
ruary 2009). For each gear type, j, with transport type, m, we set
profit equal to zero for distances beyond the maximum possible dis-
tance travelled with transport type m and, in the case of boats,
where profit becomes negative. For each 50 m reef grid cell the ex-
pected profit, r, for a gear type j is the weighted sum of transport
types, m:

rj ¼
XM

m¼1

tjmrjm

where tjm is determined by the current distribution of transport
types, m, for gear type j and calculated within each group of fishers
using a particular gear type, j, as the number of fishers with trans-
port type m divided by the total number of fishers.

2.2.11. Profit to all gear types
We defined the profit, r, of each 50 m reef grid cell as the sum of

profits to all gear types weighted by the current proportion, wj, of
the total number of fishers represented by each gear type in the
fishery:
r ¼
XJ

j¼1

wjrj

where wj was calculated as the number of fishers using gear type j
divided by the total number of fishers.

2.2.12. Spatial correlations for costs and profit
To compare the opportunity cost and profit models with the

CPUE data, Spearman’s rank correlation was calculated by gear
type and for total catch across 250 m grid cells in which CPUE data
were present (n = 952). For these correlations, we aggregated our
modelled data to 250 m grids because this was the size of the
smallest reported fishing ground.

2.3. Design of cost-effective MPAs

We used Marxan software (Ball et al., 2009) to explore options
for design and reconfiguration of a cost-effective MPA network for
Kubulau that met the conservation targets for all reef types (Table
1). The conservation target of 30% was based on the Fijian Govern-
ment’s declaration at the Barbados Plan of Action in Mauritius in
2005 to protect 30% of its inshore waters. We used a 50 m grid
for our planning units to match the resolution of our modelled
opportunity costs. For each 50 m grid, we recorded the type of reef
habitat and costs based on CPUE and estimated opportunity cost.
We selected CPUE as a cost measure to reflect current fishing effort.
We selected opportunity cost to capture the expected fishing dis-
tribution as access to motorized transport increases and fishing
behaviour becomes more market-driven. We considered four
scenarios:

� Scenario 1 – We used CPUE as the cost layer and did not include
current tabu areas and MPAs (clean slate CPUE).
� Scenario 2 – We used CPUE as the cost layer and required that

current tabu areas and MPAs were included in the reconfigured
MPA network (locked in CPUE).
� Scenario 3 – We used opportunity cost as the cost layer and did

not include current tabu areas and MPAs (clean slate Opp).
� Scenario 4 – We used opportunity cost as the cost layer and

required that current tabu areas and MPAs were included in
the reconfigured MPA network (locked in Opp).

Marxan uses a simulated annealing algorithm to find good solu-
tions to the mathematical problem:

minimize
XNs

i¼1

xici þ b
XNs

i

XNs

h

xi � ð1� xhÞcv ih

subject to the constraint that all the representation targets are met

XNs

i

xirij P Tj 8 j

and x is either zero or 1

xi 2 f0;1g 8 i

where rij is the occurrence level of feature j in site i, ci is the cost of
site i, Ns is the number of sites, Nf is the number of features, and Tj is
the target level for feature j. The control variable xi has value 1 for
sites selected for the reserve network and value 0 for sites not
selected.

The first equation minimizes the penalties associated with the
cost of the network and its configuration or shape. The parameter
cvih reflects the cost of the connection, in this case simply the
shared boundary, of planning units i and h. The parameter b, is
the boundary length modifier (BLM), a user-defined variable that
controls the importance of minimizing the total boundary length



Fig. 3. Modelled abundance per 2500 m2 (50 m � 50 m grid cell) for the three most abundant families and by market class in Kubulau District. (a) Acanthuridae.
(b) Lutjanidae. (c) Scaridae. (d) Market class A; families included are Lethrinidae, Serranidae and Siganidae. (e) Market class B; families included are Carangidae, Haemulidae
and Lutjanidae. (f) Market class C; families included are Acanthuridae, Balistidae and Scaridae.
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of the selected areas. For each scenario, we selected the BLM with
the method described by Stewart and Possingham (2005), intended
to achieve a level of connectivity between selected areas that does
not unduly increase the overall cost of the solution. For each



Fig. 4. Catch per unit effort (CPUE), opportunity cost and profit in Kubulau District. First column shows total CPUE, calculated as catch person�1 h�1 m�2. Second column
shows modelled opportunity cost in Fiji Dollars (FJD) per 2500 m2 (50 m � 50 m grid cell). Third column shows modelled profit in Fiji Dollars (FJD) per 2500 m2 (50 m � 50 m
grid cell). (a) Total across all gear types. (b) Gill net. (c) Speargun.
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scenario we then ran Marxan with the simulated annealing sche-
dule and 1000 repeat runs. We measured the similarity of solutions
from the four scenarios by spatial correlation (Spearman’s) of
selection frequency.
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3. Results

Abundance models indicated that the greatest numbers of tar-
geted fish were within the families Acanthuridae, Lutjanidae and
Scaridae, which vary spatially in abundance across the qoliqoli
(Fig. 3). Acanthurids were the most abundant family for all reef
types (Fig. 3a). Acanthurids were most abundant on barrier fore-
reefs and submerged patch reefs and occurred in medium densities
on inshore fringing reefs (Fig. 3a). Lutjanids were most abundant
on barrier forereefs (Fig. 3b). Scarids had high abundance on all
types of submerged reefs, with highest abundance on forereefs
and the fringing reef around Namenalala (Fig. 3c). Abundance by
market class also varied spatially (Fig. 3). Species in class C were
most abundant and widely distributed across all habitats in the
qoliqoli, particularly on seaward facing slopes of patch reefs and
forereef slopes of barrier reefs (Fig. 3f). Class B fish were most
abundant on outer barrier forereefs (Fig. 3e), while class A fish
were least abundant in these areas and most abundant on sub-
merged inshore barrier and patch reefs (Fig. 3d).

For all gear types combined, CPUE, as indicated by fisher survey
records, was relatively uniform across all inshore reefs with the
highest effort occurring on fringing reefs near villages (Fig. 4a).
Table 3
Spearman’s rank correlations (q) across currently fished reefs of catch per unit effort
(CPUE) with modelled opportunity cost (opp) and profit (prof) for different gear types.
Values correlated are for 250 m � 250 m grid cells (total area of 60 km2, n = 952).

qopp,CPUE qprof,CPUE

Gill net �0.311*** 0.481***

Hand line �0.024 0.197***

Hand spear �0.115*** 0.090**

Hawaiian sling �0.007 0.065*

Speargun 0.285*** �0.102***

Trolling 0.049 �0.045
Total 0.158*** 0.160***

* p < 0.05.
** p < 0.005.
*** p < 0.001.

Table 4
Spearman’s rank correlations (q) between gear types of catch per un
type) across the 60 km2 of currently fished reefs. Values correla
n = 952). (a) CPUE from interviews; italics indicates non-significant
Modelled profit (all p < 0.001).

Gill net Hand line Hand sp

(a)
Hand line 0.007
Hand spear 0.266*** 0.198***

Hawaiian sling �0.086** �0.136*** 0.019
Speargun �0.256*** �0.186*** �0.046
Trolling 0.024 0.056* 0.048
Total 0.192*** 0.184*** 0.216*

(b)
Hand line 0.957
Hand spear 0.993 0.950
Hawaiian 0.975 0.934 0.987
Speargun 0.993 0.954 0.990
Trolling 0.983 0.930 0.981
Total 0.997 0.961 0.993

(c)
Hand line 0.917
Hand spear 0.938 0.840
Hawaiian sling 0.901 0.865 0.975
Speargun 0.843 0.838 0.723
Trolling 0.905 0.868 0.975
Total 0.889 0.867 0.776

* p < 0.05.
** p < 0.005.
*** p < 0.001.
Modelled total opportunity cost was highest for offshore barrier
forereefs that are currently largely inaccessible to fishers without
boats. Modelled total profit was highest for barrier forereefs that
can be accessed with a communal raft known as a bilibili (within
3 km of the shore). Exposed fringing reefs had the lowest total val-
ues for opportunity cost and profit (Fig. 4a). Opportunity cost and
profit had similar magnitudes, with maximum values of $12 FJD
per 2500 m2. Across areas with CPUE data, total modelled opportu-
nity cost and profit were positively correlated with total CPUE
(Table 3).

CPUE values were spatially dissimilar between gear types, with
negative correlations or non-significant relationships between
most gear types (Table 4a). CPUE from gill nets and spearguns were
the least similar (q = �0.256). Total CPUE was positively correlated
with all gear types except for Hawaiian sling and trolling. Total
CPUE had the largest positive correlation with catch by speargun
(q = 0.601). Opportunity cost and profit were spatially very similar
between gear types, with much larger coefficients than for CPUE
(Table 4b,c). The relative strengths of correlations between gear
types for opportunity cost and profit were, however, similar to
those for CPUE (Table 4b and c). For both opportunity cost and
profit, speargun and gillnet had the largest positive correlations
with total values.

Modelled opportunity cost and profit had similar distributions,
but varied in magnitude and distribution by gear type (Fig. 4).
Speargun users had the highest opportunity costs and profit of
all fishers with a maximum value of $24 FJD/2500 m2 (Fig. 4c) fol-
lowed by gill net users (Fig. 4b). Speargun users had positive profit
across more offshore reefs than other gear types, which predomi-
nantly had zero profit for offshore reefs (Fig. 4). Modelled opportu-
nity cost had mixed spatial correlations with CPUE by gear type
while profit by gear type was predominantly positively correlated
with CPUE (Table 3). Modelled opportunity cost was negatively
correlated with CPUE for gear types that are used primarily for
nearshore fisheries (e.g. gill net, q = �0.311). Opportunity cost
was positively correlated with CPUE for gear types that use
offshore reefs (e.g. speargun, q = 0.285). The largest positive
it effort (CPUE), opportunity cost and profit (total and by gear
ted are for 250 m � 250 m grid cells (total area of 60 km2,
relationship. (b) Modelled opportunity costs (all p < 0.001). (c)

ear Hawaiian sling Speargun Trolling

�0.024
�0.069* �0.172***

** �0.019 0.601*** �0.212***

0.981
0.985 0.985
0.980 0.998 0.985

0.718
0.997 0.772
0.762 0.994 0.766



Fig. 5. Marxan best solutions (top row) and selection frequencies (bottom row) for the four scenarios for Kubulau District. (a) Best solution for scenario 1, clean slate catch per
unit effort (CPUE). (b) Best solution for scenario 2, locked in CPUE. (c) Best solution for scenario 3, clean slate opportunity cost (Opp). (d) Best solution for scenario 4, locked in
Opp. (e) Selection frequency for scenario 1, clean slate CPUE. (f) Selection frequency for scenario 2, locked in CPUE. (g) Selection frequency for scenario 3, clean slate Opp. (h)
Selection frequency for scenario 4, locked in Opp.
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Fig. 6. Total cost to fishers in Kubulau District calculated for Marxan best solutions
for the four scenarios, displayed as percentage of total cost for four cost metrics:
area, catch per unit effort (CPUE), opportunity cost (Opp), and profit. We
determined % total cost for all metrics by dividing the summed cost of the areas
selected for protection by the total cost across the study area. We included area as a
cost metric to demonstrate that summed areas selected in Marxan runs were
comparable between cost scenarios, even though other metrics differed strongly.
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correlation between profit and CPUE was for gill nets (q = 0.481).
The largest negative correlation between profit and CPUE was for
speargun (q = �0.102; Table 3).

The current network of tabu and MPAs in Kubulau qoliqoli cov-
er 40% of all barrier reefs, 36% of fringing reefs, and 2% of patch
reefs. Selection frequencies for the clean-slate scenarios with CPUE
and opportunity costs were strongly and positively correlated
(q1,3 = 0.880, p < 0.001). Selection frequencies for the locked-in
scenarios with CPUE and opportunity costs were also strongly
and positively correlated (Spearman’s rank correlation coefficient
q2,4 = 0.867, p < 0.001). Correlations were weaker but still signifi-
cant between selection frequencies for the clean-slate and
locked-in scenarios for CPUE (q1,2 = 0.320, p < 0.001) and opportu-
nity cost (q3,4 = 0.082, p < 0.001). All scenarios selected portions of
Cakaunivauaka reefs to meet the patch reef target of 30% (Fig. 5).
For the locked-in scenarios, the barrier reef and fringing reef
targets were predominantly met by the current tabu areas and
MPAs, so nearly all additional areas selected were patch reefs
within Cakaunivuaka Reef (Fig. 5b and d). Best solutions from the
clean-slate analyses also selected areas of Cakaunivuaka Reefs
while indicating that Namuri MPA plus some of the inshore com-
munity tabu areas could be replaced by adding protection to
Nakadamulevu Reef (Fig 5a and c). Despite the strong overall cor-
relation, there were some notable spatial differences in selection
frequencies for the clean-slate scenarios using CPUE versus oppor-
tunity cost. Selection frequencies were higher in the southern por-
tion of Namena barrier reef for the opportunity cost scenario but
higher on the fringing reef near Navatu for the CPUE scenario
(Fig. 5e and g).

There were two expected general results from analysis of total
costs of scenarios (Fig. 6). First, CPUE and opportunity cost were
each minimized when directly used in the Marxan analyses. Sec-
ond, for both CPUE and opportunity cost, clean-slate solutions
were less costly than locked-in solutions. Specifically, the opportu-
nity cost scenarios resulted in best solutions that reduced opportu-
nity costs and profit by approximately 12% compared to CPUE
scenarios (Fig. 6). However, using opportunity cost resulted in
selecting MPAs with substantially higher CPUE (5–20% of total
CPUE, Fig. 6). CPUE and opportunity cost produced comparable re-
sults in terms of total area selected.
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4. Discussion

We first discuss the model components and outcomes with spe-
cific reference to the case study from Kubulau District and then
discuss the broader application of our model, particularly in
data-poor regions across the South Pacific.
4.1. Spatial distribution of catch and effort in Kubulau qoliqoli

Our models are based on the underlying assumption that reefs
with high abundance will have higher catch and therefore be of
higher value to fishers (e.g. Edwards et al., 2010). As observed in
other studies in Fiji and the tropical Western Pacific, the greatest
proportion of targeted fish available for catch are from the families
Acanthuridae (market class C), Lutjanidae (class B) and Scaridae
(class C) (Jennings and Polunin, 1995; Kuster et al., 2005). The
highest predicted abundance for acanthurids and scarids was on
the outer reef slopes and patch lagoon reefs, which is comparable
with previous reports of high CPUE for reef fish on lagoon reefs
and outer reef slopes in Fiji (Jennings and Polunin, 1995). Given
that Kubulau fishers on the whole are largely targeting inshore
fringing reefs for fish in classes B and C with lower value per kg,
most do not appear to be influenced by market value of catch. If
price variation were greater there might be more incentive for fish-
ers with motorized boats to pursue Class A species in offshore reefs
(Poos et al., 2010).

The spatial location of effort across Kubulau qoliqoli is primarily
driven by access to transport. The majority of fishers from Kubulau
do not have access to motorized boats and fish largely for subsis-
tence (Cakacaka et al., 2010). Therefore, current effort across all
gear types is highest on reefs closest to villages (inshore fringing
and patch reefs). The same trend of heavy effort on nearshore reefs
has been observed in other regions where access to motorized
transport is limited (Aswani, 1998; Bene and Tewfik, 2001). There-
fore, our profit model best reflected current fishing effort because,
unlike the opportunity cost model, it considered accessibility and
travel costs.

By contrast, the quantity of catch is largely driven by access to
markets and more efficient gear, such as spearguns and gill nets,
owned by several fishers mostly from Navatu and Kiobo operating
on an artisanal scale. Highest profit values for gill nets are on the
fringing reefs where they are typically used to target schooling fish,
particularly mullets (Rawlinson et al., 1995). Meanwhile, high prof-
its for spearguns are on the offshore barrier reefs, where they are a
preferred gear type due to their ability to efficiently target larger,
more valuable fish (Dalzell, 1996; McClanahan and Mangi, 2000;
Kuster et al., 2005). Because spearguns and gill nets require consid-
erable initial investment (approximately $300FJD for a speargun
and $200FJD for a gill net), it is unlikely that fishers are willing
to make the financial outlay unless they can guarantee revenue
from catch (Veitayaki, 1990; Teh et al., 2009).

Fishers from Navatu, Namalata and Kiobo have reliable access
to a middle man who lives in Navatu village and regularly sells fish
to the markets in Savusavu (Clarke and Jupiter, 2010). Therefore,
they have the financial incentive to invest in motorboats which en-
ables them to access distant, high-density fishing grounds with
highly efficient gear to maximize catch. Increased access to mar-
kets could drive purchases of spearguns and motorized transport,
causing higher fishing effort on the offshore reefs causing the profit
model to converge on the opportunity cost model. This type of
market-driven fishing displacement has been observed in other
multispecies fisheries, where the high value of catch has strongly
influenced the location of fishing effort, particularly in situations
with rising fuel prices and depletion of commercial stocks
(Arrelano and Swartzman, 2010).
In fact, it is likely that the number of catch locations from arti-
sanal fishers on outer barrier reefs is under-represented in CPUE
surveys. Two likely reasons are a fear of releasing information on
choice productive fishing grounds and awareness that some of
these fishing locations violate community management rules
(e.g. are within MPA boundaries). For example, within the past
year, fishers from Navatu have been repeatedly caught fishing
within the Namena Marine Reserve (Clarke and Jupiter, 2010),
although these catch locations were never recorded on CPUE
forms. In such cases where recorded fishing effort might not accu-
rately match actual or future effort, the opportunity cost model
provides an unbiased alternative. It allows conservation planners
to value reefs that are currently reported as unfished and, when
designing MPAs, to minimize displacement of fishers not included
in surveys or who misreported their fishing grounds.
4.2. Marxan results and implications for reconfiguration of MPAs

There were notable similarities between the Marxan scenarios
that used CPUE and opportunity cost. Both locked-in approaches
indicated that high-priority additions to the MPA network were
areas within Cakaunivuaka Reef. Both clean-slate approaches were
spatially similar and indicated other potential areas that could be
added to the network, such as those within Nakadamulevu Reef.
However, the CPUE clean-slate approach identified the fringing
reef near Navatu for protection because there is currently a tabu
area on this reef and therefore no effort (Fig. 5a). In contrast, the
clean-slate approach using opportunity cost left this reef open to
fishing because of its high cost (Fig. 5c). The opportunity cost sce-
narios had lower total costs when considering opportunity cost
and profit, but considerably higher costs when considering CPUE
(Fig. 6). This indicates that using opportunity cost in Marxan re-
duces the impacts to both current and future fishing effort. How-
ever the communities should be consulted regarding the Marxan
scenarios to determine whether the opportunity cost models pro-
duced amenable MPA selections. Consultation with the communi-
ties will allow the stakeholders to determine the relative
importance of maintaining current fishing grounds over future
fishing grounds.

Given that recent monitoring from the Namuri MPA suggests
that it is being substantially affected by poaching (Jupiter et al.,
2010), and outputs from both clean-slate scenarios do not select
sites within Namuri, it would be worthwhile to suggest a
trade-off to the Kubulau community. This would open portions of
Namuri to fishing in exchange for protection of areas within
Nakadamulevu and the adjacent Nakadamulailai Reefs. Closure of
these areas could potentially also offset opening a portion of
Namena Marine Reserve, which has been heavily contested by
one of the Navatu clans, members of which have been repeatedly
caught fishing in Namena.

Because the clan perceives inequity in the distribution of costs
and benefits of the present tabu areas and MPAs, the Marxan solu-
tions could reduce conflict by producing more socially acceptable
configurations (Lal, 2005). Some of this conflict might have arisen
because the environmental and social goals of MPA establishment
and management were ill-defined from the outset. Having a clear
understanding of these goals is critical to ensure that MPA design
does not adversely affect current fishing industries and community
identity (Klein et al., 2008; Ban et al., 2009).
4.3. Model applications and conclusions

The opportunity cost model provides data for use in decision
support tools for conservation planning such as Marxan and
Marxan with Zones (Ball et al., 2009; Watts et al., 2009).
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Our modelling approach incorporates socio-economic consider-
ations and can be applied in regions with poor data on human uses
and those where people are highly dependent on natural resources
to ensure that conservation actions minimize impacts on local
communities (Ban et al., 2009; Ban and Klein, 2009). Standard so-
cio-economic survey methods often have limitations. In marine
applications, these include lack of participation by users of all gear
types, partial disclosure of fishing areas, and lack of standardized
methods for integrating spatial data (for methods on standardizing
data collection with GIS see De Freitas and Tagliani, 2009). Our
model differs from standard survey approaches by accounting for
variation in the spatial distribution of natural resources rather than
focusing on current extractive effort.

For marine regions, our model is appropriate for considering so-
cio-economic goals in fisheries where gear preferences or access to
transport are expected to change dramatically (Salas and Gaertner,
2004). In these regions, there may be little to no existing biological
and socio-economic data. While our model requires multiple mod-
elling steps, it can be adapted for data-poor regions. The main data
restriction for our model is existing fish count surveys which may
not exist in some regions. However, most regions in which NGOs
are active will have fish abundance or presence/absence data
would be suitable for the approach described here. The remaining
data for predicting fish abundance could be acquired strictly from
remote sensing and basic navigational charts (such as depth and
reef classification). The socio-economic inputs such as percentage
catch can be estimated based on several survey days in villages.
Due to data quality issues and multiple model inputs, error in
the model can be tested using standard techniques such as info-
gap and sensitivity analysis (Halpern et al., 2006). Sensitivity anal-
ysis might be particularly useful if particular inputs in the model
have higher associated error. For example, in our model the per-
centage catch models have high uncertainty associated with them
due to small sample size. Therefore, a sensitivity analysis could
demonstrate how modelled opportunity cost and profit vary with
increments of error in estimates of percentage catch by gear type.
This analysis could be incorporated into Marxan scenarios to inves-
tigate how sensitive area selections are to variability in the oppor-
tunity cost model.

Although Marxan is a static planning tool, recent applications
have implemented Marxan in dynamic multi-year simulations
(Visconti et al., 2010). Fishing effort and fish abundance are likely
to interact dynamically through time and a multi-year dynamic ap-
proach to MPA design may be more realistic (e.g. see Christensen
et al., 2009). Our models can be adapted to incorporate fisheries
dynamics for multi-year simulations. For example, our profit and
opportunity cost models can be used to examine how costs will
change as market access drives changes in access to gear type
and transport. Changes in gear type can be modelled with opportu-
nity cost by exploring a range of weightings to reflect a larger pro-
portion of fishers using efficient gear types such as spearguns. The
effects of changes in transport on spatial effort can be explored in
the profit model by altering weightings to reflect a larger propor-
tion of fishers using motor boats, as has been observed across Fiji
(Kuster et al., 2005).

Despite the acknowledged importance of socio-economic data
in resource management, previous studies have suggested that
artisanal fishers in developing countries are not always market-
driven (Pet-Soede et al., 2001; Daw, 2008), with fishing behaviour
being determined more by factors such as values on time, risk
aversion, and cultural identity (Bene and Tewfik, 2001; Salas and
Gaertner, 2004). These factors can be considered explicitly by
treating them as additional input costs in the profit model. The ex-
pected costs from such scenarios can then be used in conservation
planning software to provide a more thorough exploration of con-
figuration options for MPAs and the range of impacts on local com-
munities. The profit model therefore allows for a comprehensive
analysis of trade-offs between conservation actions and local eco-
nomic development that is not possible with CPUE data.
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