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Rationale and Objectives. The purpose of this study was to determine whether contrast-limited adaptive histogram equal-
ization (CLAHE) or histogram-based intensity windowing (HIW) improves the detection of simulated masses in dense
mammograms.

Materials and Methods. Simulated masses were embedded in portions of mammograms of patients with dense breasts;
the mammograms were digitized at 50 um per pixel, 12 bits deep. In two different experiments, images were printed both
with no processing applied and with related parameter settings of two image-processing methods. A simulated mass was
embedded in a realistic background of dense breast tissue, with its position varied. The key variables in each trial in-
cluded the position of the mass, the contrast levels of the mass relative to the background, and the selected parameter set-
tings for the image-processing method.

Results. The success in detecting simulated masses on mammograms with dense backgrounds depended on the parameter
settings of the algorithms used. The best HIW setting performed better than the best fixed-intensity window setting and
better than no processing. Performance with the best CLAHE settings was no different from that with no processing. In
the HIW experiment, there were no significant differences in observer performance between processing conditions for ra-
diologists and nonradiologists.

Conclusion. HIW should be tested in clinical images to determine whether the detection of masses by radiologists can be

improved. CLAHE processing will probably not improve the detection of masses on clinical mammograms.
Key Words. Breast neoplasms, diagnosis; breast radiography; diagnostic radiology, observer performance; images,

processing.

Effective image display allows for an improvement in the
clarity of structural details. Mammography, especialy in
patients with dense breasts, is a low-contrast examination
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that might benefit from increased contrast between malig-
nant tissue and normal dense tissue. Image processing
may enable improved visualization of details (1). Our
overall aim is to improve the accuracy of mammography
through image processing, because at least 10% of palpa-
ble breast cancers are not visible with standard mammo-
graphic techniques (2).

Image-processing methods accentuate or emphasize
particular objects or structures in an image by manipulat-
ing the gray levels in the display. A predetermined trans-
formation is imposed to amplify the contrast between
structures and modify the recorded intensities, enhancing
visualization of important features on the displayed image
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(3). These methods are designed not to increase or sup-
plement the inherent structural information provided by
the image but simply to improve the contrast and, theoret-
ically, to enhance particular characteristics (4). Intensity
windowing (IW) is an image-processing technique
whereby new pixel intensities are determined by means of
a linear transformation that maps a fixed subrange of in-
tensity values for the image onto the available gray level
range of the display system (4). Histogram-based W
(HIW) is an extension of IW that dynamically determines
a selected subrange for IW based on the histogram of
intensity values for an individual image. Contrast-limited
adaptive histogram equalization (CLAHE) modifies the
intensity values of the image in a nonlinear fashion to
maximize contrast at all pixels on the recorded image.

Many investigators have studied the application of dig-
ital image-processing techniques to mammography. Mc-
Sweeney et a (5) tried to enhance the visibility of calcifi-
cations by using edge detection for small objects, but they
never reported any clinical results. Smathers et a (6)
showed that intensity band filtering could increase the
visibility of small objects. Chan et al (7) applied unsharp
masking to mammograms in a digital form and found that
the detectability of microcalcifications improved. Chan et
a (8) noted that the improvements may have been greater
had the observers been trained to make diagnoses from
processed rather than unprocessed (normal) mammo-
grams.

Hale et a (9) used Photoshop software (Adobe, San
Jose, Calif) to apply nonspecific contrast and brightness
adjustment to digitized mammograms and found that radi-
ologists were better able to determine the likelihood of
malignancy for mammographically apparent lesions. Yin
et a (10,11) showed that nonlinear bilateral subtraction is
useful in the computer detection of mammographic
masses. Kheddache and Kvist (12), using their own quali-
tative visua grading analysis, found improvements in the
grading of masdlike structures when they compared digi-
tally acquired, processed mammograms with conventional
mammograms. Wiebringhaus et al used phantoms to eval-
uate four different acquisition techniques. They found that
techniques that used digital image processing (IW, un-
sharp masking, and regulatable edge enhancement) had
more favorable receiver operating characteristic curves
(13). Muramatsu et al (14) and Nakata (15) have investi-
gated the parameters of the computed radiography ma-
chines used for mammaography and found that certain pa-
rameter combinations are more favorable than others for
the depiction of masses and microcalcifications.
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Previous work at the University of North Carolina
(UNC), Chapel Hill, has explored the use of IW and the
adaptive histogram equalization family of algorithms in
mammography and computed tomography (16-21). We
have previously described a laboratory-based method to
test the efficacy of image-processing algorithms in im-
proving the detection of masses in dense mammographic
backgrounds (22,23). With that method, on which our
current work is based, radiologists and nonradiologists
exhibit similar trends in detection performance. While
nonradiologists (who are easier to recruit for such studies)
did not perform as well as radiologists overal, the two
populations displayed parallel increases and decreases in
performance when image-processing methods were ap-
plied. Thus, nonradiologists may be used as an effective
surrogate for radiologists when the effects of image pro-
cessing on feature detection is being evaluated. The ex-
periments described in this article were performed to de-
termine whether CLAHE or HIW could improve the de-
tection of simulated masses in dense mammograms in a
laboratory setting.

MATERIALS AND METHODS

Both the experimental design and the data analysis for
the two experiments are the same, as in severa previ-
ously published studies; further details can be found in
earlier publications (19-22). This same experimental par-
adigm was used for both the HIW and CLAHE studies
and allows for the laboratory testing of a range of param-
eter values. The experimental subject is shown a series of
test images that include an area of a dense mammogram
with a simulated mass embedded in one of the four quad-
rants. The observer's task is to determine in which quad-
rant the mass is located, resulting in a four-alternative
forced-choice task. The test images are displayed with
masses inserted in different locations multiple times for
each combination of different processing parameters and
contrast values. The contrast of the object is varied from
easy to impossible to detect. Figure 1 shows an example
image from the CLAHE experiment with an inserted mass
of medium contrast.

HIW Study

The processing algorithm for HIW is one developed
locally at UNC by two of us (B.M.H., S.Z.). The algo-
rithm uses peak-seeking methods to identify the “hump”
of breast tissue in the histogram. Other humps corre-
sponding to nonbreast tissue (markers, labels, etc) are
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Figure 2. Histogram of recorded intensities for mammograms,
showing percentiles for breast tissue and resulting IW mapping to
display luminance (low-end HIW value is the 20th percentile).

discarded through heuristics. Once the hump of intensity
values that matches breast tissue has been identified, per-
centiles are calculated across this region of the histogram.
The resulting intensity window remapping is calculated
on the basis of these percentiles. This mapping is shown
in Figure 2.

The high end of the intensity window is aways the
100th percentile, and the low end is chosen from four
contending percentile values (ie, 20%, 35%, 50%, 65%).
Only the single value of 100% for the high end of the
intensity window range was considered because the pilot
work showed no difference for values close to 100%.
Vaues farther away from 100% were not considered be-
cause smaller values narrowed the IW range, resulting in
images with too much contrast, while values larger than
100% resulted in images with too little contrast, becom-
ing flatter and grayer. Unprocessed and |W-processed
images were also evaluated in the HIW study. In this arti-
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Figure 1. Example images from the CLAHE
study with simulated mass inserted. (a) Un-
processed image. (b) CLAHE-processed im-
age (clip level = 4, region size = 256 X 256
pixels). The mass is in the center of the upper
left quadrant. The contrast of the mass is 90
digital driving levels (second smallest of four
contrast levels).

cle, “IW-processed images’ are images processed with a
fixed (constant) intensity window range.

Figure 3 shows one of the study images processed un-
der all six conditions. IW was evaluated as a positive
control, since it has been previously shown to improve
the detection of simulated masses on mammograms com-
pared with unprocessed images, in a study that had the
same experimental paradigm (20). A range of fixed inten-
sity windows were evaluated in the prior study, and the
one that performed best was chosen for evaluation in this
study (20).

Forty background images (512 X 512 pixels each)
were extracted from clinical screen-film mammograms
digitized with a Lumisys digitizer (Lumisys, Sunnyvale,
Calif) with a 50-um pixel size and 12 bits (4,096 values)
of contrast per pixel. The images were selected from
craniocaudal or mediolateral oblique mammograms by a
radiologist (E.D.P.) who is expert in breast imaging. Only
areas that contained relatively uniformly dense tissue
were included, with adjacent fatty areas specifically ex-
cluded. These areas were selected because they are most
likely to hide soft-tissue masses in the clinical setting.
The mammograms were known to be normal by virtue of
at least 3 years of norma findings at clinical and mam-
mographic follow-up.

Mammographic masses were simulated by blurring
(via convolution with a Gaussian kernel with a spatial
standard deviation of 6 pixels) a disk that is approxi-
mately 5 mm in diameter when printed on film (1.51°
visua angle at a 38-cm viewing distance). Figure 1 shows
atypical background image with the mass added to it.
We used a simulated mass instead of real mass features
so that we could control precisely the location of the
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Figure 3. Example background from the
HIW study, shown in all six processing condi-
tions. Simulated mass is positioned in the
center of each image (unlike in the experi-
ment). (a) Unprocessed image has very low
contrast since it is from a uniformly dense
section of the mammogram. (b) IW process-
ing based on the best results from the earlier
UNC study of IW (20). (c) HIW processing
with lower IW value set to 20%. (d) HIW pro-
cessing with lower IW value set to 35%.

(e) HIW processing with lower IW value set to
50%. (f) HIW processing with lower IW value
set to 65%.

mass feature and the contrast between the feature and the
background. The simulated mass target is identical to
those in our previous experiments (18,20,22,23) to allow
for comparisons. In this experimental paradigm the radiol-
ogists had indicated that while the smulated structures
were not perfectly realistic, they had the same scale and
spatial characteristics as actual masses typically found in
mammography (18,22). Because the simulated masses are
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based on round disks, they are more representative of
benign masses than malignant masses as seen clinically.
The masses were added at four fixed contrasts levels:
2.00, 2.88, 4.17, and 6.03. Contrast is defined as the
change in luminance at the inserted feature location di-
vided by the mean luminance of the background before
insertion of the target (AL/L), and thus the values have
no units of measure. The contrast levels in this study
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were determined through a separate pilot study. They
were chosen to provide equal spacing on a logarithmic
scale, covering the range of 30% detectable (just above
25% chance in a four-alternative forced-choice experi-
mental paradigm) to 90% detectable (just above the 88%
shoulder point on the probit curve) according to the pre-
dicted probit curves. The calculation for the HIW pro-
cessing was based on the entire mammogram and then
applied to the 512 X 512 pixel background with the mass
target inserted.

Originally, there were 22 observers in the study, in-
cluding 20 students and two radiologists from UNC. Be-
cause of concerns about differences in performance be-
tween radiologists and students, three radiologist observ-
ers were added after completion of the original study to
verify the prior assumption of similar increases or de-
creases in performance for radiologists and nonradiolo-
gists (22). Because the inclusion of radiologists was not
planned from the outset, there was the possibility of lack
of power due to the imbalance between the two groups.
Nevertheless, nonsignificant results for comparing radiolo-
gists and students would reinforce the assumption of par-
allel increases or decreases in performance for the two
groups (22).

The digital images were printed onto standard 14 X
17-inch single-emulsion film (3M HNC laser film; 3M, St
Paul, Minn) with a film printer (Lumicam; Lumisys).
Each original 50-um pixel was printed at a spot size of
80 um, which produced film images of 4 X 4 cm (X1.6
enlargement). The background and target are magnified
together. The radiologist observersin previous experi-
ments with this same paradigm have reported that the
presentation maintained the realistic appearance of the
lesions and the mammographic backgrounds (18,22).
Forty images were printed per sheet of film. The images
were randomly ordered into an eight-by-five grid on each
sheet of film. Both the film digitizer and film printer were
calibrated, and the relationship between optical density on
film and digital units on the computer was measured to
generate transfer functions describing the digitizer and the
film printer. To maintain a linear relationship between the
optical densities on the origina analog film and the digi-
tally printed film, we calculated a standardization function
that provided a linear matching between the digitizer and
printer transfer functions (24). This standardization func-
tion was applied when the films were printed, to maintain
consistency between the original optical densities of the
original mammography film and those reproduced on the
digitally printed films. The film printer produces films

with a constant relationship between an optical density
range of 3.35-0.13, corresponding to a digital input range
of 0—4,095.

The order of the presentation of the stimuli was coun-
terbalanced to eliminate any systematic effect of unimpor-
tant variables. Each observer scored 720 images, that is,
30 independent trials for each combination of 24 settings
(six processing selections times four contrast levels). The
experiments were conducted in our experimental labora-
tory, which is controlled for light, sound, and other dis-
tractions. The ambient light in the room was 4 lux. Film
images were displayed on a standard mammography view
box that was masked to exclude excess light. Observers
were free to move and could use a standard mammogra-
phy magnifying glass, if desired. The average viewing
distance was 38 cm. Observers were dark adapted to the
light levels of the experiment for 5 minutes before any
readings. Observers were instructed to take breaks after
each block of stimuli and more often if necessary. No
time limits were imposed on the observers when they
were viewing the test images.

CLAHE Study Materials and Methods

The CLAHE study used the same experimental setup,
except for the following differences. There were 20 ob-
servers (al students). Ten processing settings were evalu-
ated: unprocessed and nine CLAHE parameter selections
(three-by-three grid). As with the HIW experiment, the
calculation for the CLAHE processing was based on the
entire image, with the result applied to the 512 X 512-
pixel background image. The nine CLAHE settings were
clip levels of 2, 4, and 16 combined with region sizes of
32 X 32, 64 X 64, and 128 X 128 pixels. Smaller clip
levels result in less contrast enhancement, and larger val-
ues produce more enhancement (17). In this earlier exper-
iment, the contrast of the mass stimulus was set to one of
four fixed levels (60, 90, 135, and 200), defined in terms
of digital driving level values of the display system in-
stead of contrast to the underlying background, as in the
HIW experiment. The display system was perceptually
standardized so that the digital driving levels of the dis-
play corresponded to fractions of a just-noticeable differ-
ence. As in the HIW experiment, a pilot experiment was
used to determine the four contrast levels. There were 10
processing choices combined with four contrast levels
multiplied by 32 trials, resulting in 1,280 observations for
each observer. The observers viewed 32 films of 40 im-
ages each.
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Data Analysis for HIW Study

The relationship between log,, (contrast) and the prob-
ability that the observer will correctly identify the quad-
rant containing the mass can be described with a probit
model. Fitting such a model requires the assumption that
the relationship between log,, (contrast) and the probabil-
ity of a correct response can be described by the cumula-
tive Gaussian distribution. The location parameter, w;, is
the mean of the corresponding Gaussian distribution for
the ith subject and jth processing condition. Processing
conditions that improve detection will cause this parame-
ter to be smaller, thus shifting the probit curve to the left.
To make al values positive, we have added a value of 2
to the estimated values of w;;. Note that this is equivalent
to multiplying the original contrast values by 100, which
is consistent with the values used in the pilot study; this
factor will cancel out when calculating differences of the
0 values for two processing conditions. We assume a
common spread parameter, o;, for all processing condi-
tions on the same subject. The assumption of a common
spread parameter makes sense, as it corresponds to an
equal change in logyo (contrast) producing an equal
change in perception, which is true for the display range
of this experiment. Smaller values of o; correspond to
steeper slopes, or greater increases in detection rates per
unit change in log,o (contrast).

The model to be fit may be summarized as follows:

Pr(correct) = ¥4 + (1 — ¥Ya)®[(x; — wij)oi 1.

The formula gives the probability that a subject gets the
correct answer. Here, i indexes subjects, and j indexes
enhancements with x representing the log,o (contrast).
The probit analysis will summarize the relationship be-
tween log,o (contrast) and proportion correct for each sub-
ject by processing condition. For comparisons among pro-
cessing conditions, further analysis is required. For each
observer and processing condition, 6; = u; + o} corre-
sponds to that value of log,, (contrast) on the estimated
curve for which the ith subject viewing the jth processing
condition will achieve an 88% probability of giving a
correct response. The difference between each subject’s
performance with unprocessed and processed images may
be defined as follows:

8ij =0~ 6= piu— Wijs
with larger (more positive) values of §; indicating better
performance under the processed condition. The differ-
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ence scores for the five processing conditions were used
as the outcomes in a repeated-measures analysis of vari-
ance with processing condition a between-subject factor.
There were four hypothesis tests of primary interest:

(a) test of no difference between the average differences
across HIW conditions, (b) test for trend over HIW con-
ditions compared with the unprocessed condition, (c) test
of difference between each processed condition and the
unprocessed condition (five tests), and (d) test of differ-
ences between the processed conditions (10 tests).

Each of the tests was conducted by using the univari-
ate approach to repeated measures with the Geisser-
Greenhouse test. To maintain an overall type | error rate
of 0.10 for the experiment, the first two hypotheses were
each tested at the 0.04 level. The five tests in the third set
of hypotheses were tested at the 0.002 (0.01/5) level.
Similarly, the 10 tests in the fourth set of hypotheses
were tested at the 0.001 (0.01/10) level.

The study was not originally designed to include radi-
ologists as observers. After the study was begun we de-
cided to include radiologists to investigate the interaction
between observer training (radiologists vs nonradiol ogists)
and processing conditions. The motivation was to confirm
our earlier results (21), which suggest that there is no
interaction. To assess the effect of differences between
radiologists and nonradiologists, the analysis plan was
modified to include a test of interaction for each set of
hypotheses. None of the tests showed significant differ-
ences, confirming that nonradiologist observers may be
used as surrogates for radiologist observers in this and
similar laboratory experimental paradigms. For this rea
son, results for radiologist and nonradiologist observers
are not reported separately but are combined as a single
observer pool for the remaining hypotheses.

Data Analysis for CLAHE Study

The CLAHE study used essentidly the same methods of
anaysis to test a dightly different set of hypotheses. (a) test
of interaction between CLAHE parameters of region size
and clip level, (b) test of effect of region size on feature
detection rate, (c) test of effect of clip level on feature detec-
tion rate, and (d) test of no difference in detection rate be-
tween CLAHE-processed and unprocessed images.

RESULTS

HIW Experiment

HIW hypothesis 1.—Our first hypothesis was that the
average difference between unprocessed and processed
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Table 1
Test of Trends across Choice of HIW Lower Percentile Values
Den

Test F Value daf daf € P Value*
Average 12.24 1 24 .002
Trends 25.82 0.941 <.001
Linear 19.75 1 24 <.001
Quadratic 42.80 1 24 <.001
Cubic 19.87 1 24 <.001

*All differences were significant at the .04 nominal « level.

A Values

Percentile

Figure 4. Estimated & values (unprocessed — HIW-processed 6
values) are shown for the four lower percentile choices of the HIW
algorithm. Reference line corresponding to the y value of 0.033
indicates the performance of fixed IW, which was evaluated as a
positive control. The y value of 0.0 corresponds to no difference
compared with the unprocessed condition and is included for vi-
sual comparison.

conditions did not differ across HIW conditions. Table 1
displays the results from these tests. The test of average
difference between processed HIW conditions and the
unprocessed condition was significant at the .04 level

(P = .002). Thus, observer detection performance was
changed by the use of HIW processing.

HIW hypothesis 2—This was a test for trend over
HIW lower percentile values as compared with unpro-
cessed images. We want to estimate which percentage
ranges are most likely associated with best observer per-
formance in feature detection. Results of an overall test
for a trend associated with increasing levels of lower per-
centiles in HIW processing were significant (P < .001).
Hence, a series of step-down tests was implemented to
explore the trend further. Results of step-down tests for
the linear, quadratic, and cubic trends were significant

Table 2
Mean Differences between Processed and Unprocessed
0 Scores

Mean Difference =

Condition Standard Deviation P Value
Fixed 0.033 = 0.013 .022
HIW

20% 0.071 = 0.010 <.001*
35% 0.045 = 0.013 .0018*
50% —-0.012 £ 0.012 .306
65% 0.042 + 0.013 .004

*These differences were significant at the .002 nominal « level.

(P < .001 for all trends). Figure 4 presents these trends
graphically. Performance was best at the 20% value, with
the possibility of high performance in the ranges below
20% and above 65%.

HIW hypothesis 3.—This was a test of differences be-
tween each processed condition and the unprocessed con-
dition (five tests). Table 2 displays two-sided P values for
the five tests of no difference between processed and un-
processed conditions. When tested at the 0.002 « level,
processing with HIW techniques at lower percentiles of
20% and 35% demonstrated significantly improved per-
formance compared with the unprocessed condition (P <
.001, = .0018, respectively). It should be noted, however,
that the test for significant improvement for HIW with a
lower percentile value of 65% (compared with the un-
processed condition) also yields very small P values. Fur-
thermore, although it was not significantly different from
0, the parameter estimate for the difference between 6
scores is negative for HIW processing with a lower per-
centile value of 50%, which corresponds to worse perfor-
mance than with the unprocessed condition. The mean
differences in 0 scores for the processed conditions are
illustrated graphically in Figure 4.

HIW hypothesis 4—This was a test of differences be-
tween the processed conditions (10 pairwise tests). To
determine which processing parameters to use clinically,
we wanted to compare all the choices to see whether
there was a single best choice or collection of best
choices. Table 3 shows the two-sided t test P values for
the 10 pairwise comparisons between the five processing
conditions. The processing condition that uses HIW tech-
niques with a lower percentile value of 50% is signifi-
cantly worse than any of the other four processing condi-
tions (P < .001, in &l cases). HIW processing with a
lower percentile value of 20% performed significantly
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Table 3
Mean Differences between Processed and Unprocessed
0 Scores

Table 4
Mean Difference between CLAHE Processed and
Unprocessed 0 Scores by Region Size and Clip Level

Mean Difference =

Comparison Standard Deviation P Value
IW vs HIW at 20% —0.038 = 0.010 .001*
IW vs HIW at 35% —0.012 = 0.009 199
IW vs HIW at 50% 0.045 * 0.007 <.001*
IW vs HIW at 65% —0.009 =+ 0.009 .324
HIW at 20% vs 35% 0.025 = 0.008 .006
HIW at 20% vs 50% 0.083 = 0.010 <.001*
HIW at 20% vs 65% 0.029 = 0.010 .009
HIW at 35% vs 50% 0.058 = 0.010 <.001*
HIW at 35% vs 65% 0.003 = 0.009 .699
HIW at 50% vs 65% —0.054 = 0.010 <.001*

Note.—Larger differences correspond to better performance
due to the processing condition on the left.
*These differences were significant at the .001 level.

better than fixed windowing (P = .001). There were no
other significant differences among the other four process-
ing conditions, although the comparisons between the
HIW techniques with a lower percentile of 20% and the
other HIW processing conditions all yielded small P val-
ues, as shown in Table 3.

CLAHE Results

CLAHE hypothesis 1.—This was a test of interaction
between the CLAHE parameters of region size and clip
level. The first question was whether region size and clip
level were independent and could be studied separately.
Table 4 includes tests for the effects of log, (region size),
log, (clip level), and their interaction based on the univar-
iate approach to repeated measures. The results of the test
of no interaction were significant at the 0.04 level (P <
.0001). Hence, a series of step-down tests was imple-
mented to investigate the nature of the interaction. The
test of a quadratic-by-quadratic trend had significant re-
sults (P < .0011), as did the test of linear-by-linear inter-
action (P < .0001). Thus, choice of region size depends
on clip level, and vice versa. Because of the significant
interaction between region size and clip level parameters
in CLAHE, no further investigation of region size and
clip level individually was performed (ie, hypotheses 2
and 3 were not tested).

CLAHE hypothesis 4—This was a test of no differ-
ence between CLAHE processing and the unprocessed
condition. To find out which of the processing conditions
performed best, al of the conditions were compared with

852

Logs (clip level)

Logs (region size) 1 2 4
5 —0.014 —-0.079 —-0.155
6 —0.048 —0.052 -0.112
7 —0.0005 —0.028 —0.053
Table 5

Mean Differences between CLAHE Processed and
Unprocessed 6 Scores

Region Size Mean Difference =
(pixels) Clip Level Standard Deviation P Value
32 X 32 2 —0.014 + 0.056 .2730
64 X 64 2 —0.048 + 0.059 .0018
128 X 128 2 —0.005 + 0.052 .6640
32 X 32 4 —0.079 + 0.047 .0001*
64 x 64 4 —0.052 + 0.056 .0005*
128 X 128 4 —0.028 + 0.060 .0516
32 X 32 16 —0.155 + 0.069 .0001*
64 X 64 16 —0.112 = 0.054 .0001*
128 X 128 16 —0.053 + 0.072 .0035

Note.—Larger differences correspond to better performance.
Negative values correspond to worse performance.

*These differences were significant at the .0011 level (ie, these
processed conditions were significantly different from the unpro-
cessed conditions).

the unprocessed condition. Table 5 includes two-sided t
test P values for the nine tests of no difference between
processed and unprocessed conditions. Five enhancement
conditions were not significantly different from the un-
processed condition; four were significantly different,
demonstrating poorer performance.

The results of these analyses combined with the previ-
ous laboratory work that used the same experimental par-
adigm suggest several conclusions. First, for the detection
of simulated masses on mammograms and similar lesion
detection tasks, the choice of parameters for a particular
image-processing algorithm can make the difference be-
tween improvement and degradation in detection perfor-
mance. In the HIW and CLAHE studies reported here, as
well as the previous CLAHE and IW studies (16,18-22),
some parameter choices perform better than the unpro-
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cessed condition for each processing method, while others
perform worse. These evaluations are of the “best” pa
rameter choices, that is, many less desirable ones have
already been discarded through comparison in pilot stud-
ies. Thus, it is very important to verify the proper choice
of parameters for image-processing algorithms applied to
medical images.

Second, we considered which agorithm of those tested
performs best in the detection of simulated masses on
mammograms. Some results were consistent across the
current HIW and CLAHE experiments, our previous IW
experiments (19-21), and the prior CLAHE experiment
(22). The best results from each of the processing meth-
ods, suggest the following relationship:

HIW > IW = unprocessed = CLAHE.

In the prior CLAHE study, the best CLAHE perfor-
mance was the same as that for unprocessed images when
the images were displayed on video (one parameter com-
bination was dightly better but not significantly so). In
this study, which used film image display, results were
similar, with five parameter settings performing the same
as the unprocessed condition and four performing worse.
In the prior IW study we found IW to be significantly
better than unprocessed images (20). In the current study,
in which we used an improved definition of contrast, we
again found IW to perform better, but not significantly
better. We did find an HIW condition that performed sig-
nificantly better than both IW and unprocessed imaging.

The results of these studies suggest that processing
techniques such as HIW have the greatest potential to
improve detection rates, but as with all image-processing
techniques, the benefit of HIW is not uniform and is
strongly dependent on the choice of the lower percentile
value. These results suggest that the benefits of this HIW
technique are at a minimum somewhere in the middle of
the conditions considered here (ie, around the 50% per-
centile choice for the low end of the intensity window
range). The best results were observed with the 20%
lower percentile for the low end of the intensity window
range. The trend analysis found trends through cubic or-
der in these data, suggesting the possibility of further
maximums at the extreme values (close to 0% and 100%)
for the low-end percentile. Our practical experience and
the pilot work for this experiment suggest that a maxi-
mum benefit occurs around 20%—40%, with minimum
benefit at the extremes (0% and 100%). We have found

that low-end percentile values near 0% caused a flatter,
lower-contrast image, while low-end percentile values
near 100% result in a black-and-white image with little to
no contrast in the midrange. Therefore, while the data
from this experiment suggest that choices of percentile
values below 20% or above 65% could further improve
detection ability, on the basis of the pilot work and our
other experiences with HIW, we do not expect much im-
provement in those areas.

We also found no statistically significant interaction
between observer type (radiologists vs nonradiol ogists)
and laboratory feature detection, under any of the pro-
cessing conditions, individualy or as a whole. This fur-
ther confirms a result previously described by Puff et a
(22). The conclusion is strengthened by the fact that we
reached the same results with a different display medium
(film vs video) and a different processing method (HIW
vs CLAHE). This finding is important because the use of
radiologist observers is a limiting factor in many medical
imaging studies. The ability to use nonradiologist observ-
ers as surrogates for radiologist observers in laboratory
feature detection experiments considerably expands the
scope of possible experiments. An especially important
application of nonradiologist observers is to reduce a
large set of processing methods and parameters choices to
a small set as the preliminary step for a clinical evaua
tion with radiologists.

Finally, no combination of the CLAHE parameters
studied resulted in improved detection of masses on mam-
mograms, which was consistent with the findings of Puff
et a (22). The most likely explanation is that any im-
provement in mass conspicuity was generally negated or
outweighed by the increase in false-positive results caused
by other structures that were processed with CLAHE and
mistaken for positive masses. An example is seen in Fig-
ure 5, which shows one of the backgrounds with the
highest false-positive rate when processed with CLAHE.
Highlighted in boxes are the inserted simulated mass
(lower right), which is not easily discernible, and the
structure that with CLAHE enhancement has a masslike
appearance (upper left).

For CLAHE parameters, there is an interaction be-
tween region size and clip level, making it difficult to
isolate their effects, but there seemed to be an effect with
each parameter. First, lower amounts of contrast enhance-
ment (ie, smaller clip levels) performed better. The best
performance was for a clip level of 2. A clip limit of 1 is
the smallest amount of enhancement, with a value of less
than 1 equivalent to not changing the image. Since none
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Figure 5. (a, b) Images from the CLAHE
study. Boxes at upper left contain the “false-
positive” structure that was commonly mis-
taken for a mass. Boxes at lower right con-
tain the real mass target at the lowest level of
contrast. (a) Unprocessed image. (b) CLAHE-
processed image (clip level = 4, region

size = 8 X 8 pixels).

of the CLAHE processing combinations outperformed the
unprocessed condition and since the best-performing com-
binations were with a clip level of 2, it may be that de-
tection with the CLAHE-processed images was generaly
inferior and was only close in performance when the clip
level was set so low that the processed image was mini-
mally different from the unprocessed image.

For region size, it was expected that smaller regions,
approaching the size of the mass, would narrowly encom-
pass the mass and optimize the enhancement of the mass
feature againgt its background. The best-performing re-
gion sizes, however, were the largest evaluated (128 X
128 pixels), suggesting that larger regions were more ap-
propriate, perhaps because the smaller regions did not
enclose the masses and immediate surround well, or (as
with clip level) because the observers performed better
when the CLAHE-processed images were most similar to
the unprocessed images (as region size increases in
CLAHE the difference between processed and unpro-
cessed images decreases).

In conclusion, we believe that of the techniques com-
pared (HIW, IW, CLAHE), HIW would be the most valu-
able for the mass detection task in mammography and
should be tested clinically to determine whether its use
improves radiologists’ diagnostic performance. The best
parameter choices for our HIW implementation are the
percentile values of 20% for the low end and 100% for
the high end of the intensity window (calculated just over
the breast tissue portion of the histogram). Recent work
in our laboratory has evaluated HIW in clinical settings,
with use of the best-performing parameter settings identi-
fied in this study. A multicenter clinical trial found that
HIW had the best overall performance of the nine pro-
cessing methods tested with digital mammograms for ra-
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diologist preference and performance evaluations, when
averaged across scanner type and feature type (25,26).
These results suggest that HIW may be effective for pre-
senting other mammographic features (microcal cifications
and spiculations) and that it may be as effective for digi-
tal mammograms as it is for digitized screen-film mam-
mograms. In the HIW experiment, no significant interac-
tion was found between observer type (radiologist or non-
radiologist) and feature detection performance, confirming
our earlier result that nonradiologist observers can be
used as surrogates for radiologist observers in laboratory
feature detection tasks. With CLAHE processing, the de-
tection of masses on mammograms was not improved; the
best results were achieved with low amounts of enhance-
ment (small clip levels) and larger regions, both of which
make the processed image more similar to the original
unprocessed image. Further clinical study of CLAHE pro-
cessing was not indicated.
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