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I. ABSTRACT

This is the first of a series of papers that the authors
propose to write on the subject of improving the speed
of response of learning systems using multiple models.
During the past two decades, the first author has worked on
numerous methods for improving the stability, robustness,
and performance of adaptive systems using multiple models
and the other authors have collaborated with him on some
of them. Independently, they have also worked on several
learning methods, and have considerable experience with
their advantages and limitations. In particular, they are well
aware that it is common knowledge that machine learning is
in general very slow. Numerous attempts have been made
by researchers to improve the speed of convergence of
algorithms in different contexts. In view of the success of
multiple model based methods in improving the speed of
convergence in adaptive systems, the authors believe that
the same approach will also prove fruitful in the domain
of learning. In this paper, a first attempt is made to use
multiple models for improving the speed of response of
the simplest learning schemes that have been studied. i.e.
Learning Automata.

II. INTRODUCTION

Learning is defined as any relatively permanent change in
behavior resulting from past experience, and a learning sys-
tem is characterized by its ability to improve in some sense,
its behavior with time, tending towards an ultimate goal. In
mathematical psychology, models of learning systems were
developed about fifty years ago to explain behavior patterns
among living organisms. These, in turn, were adapted to
synthesize engineering systems, which could be considered
to show ”learning behavior”. In fact, in 1971, Tsypkin [1]
argued that seemingly diverse problems in pattern recogni-
tion, filtering, identification, and control could be treated in
a unified manner as problems in learning, using probabilistic
iterative methods.

Reinforcement learning aims to find the optimal decision
(or decision rule) in uncertain environments, on the basis of
qualitative and noisy on-line performance feedback provided
by an environment, in the form of a reinforcement signal.
During the past four decades, learning theory has grown
into a huge field in which a very large number of models
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have been studied. While the models were initially static, the
approaches developed were extended to Markov Decision
Processes (MDP) with finite states, and later to stochastic
nonlinear difference equation models for continuous state
cases. Our objective in these reports is to successively
consider the principal models suggested in the literature in
all the different areas, and investigate how multiple model
based methods can be developed to increase the speed and
accuracy of learning in all of them.

A. Problem Areas

One of the earliest reinforcement learning models in the
literature is the ”learning automaton”. An agent can perform
one action out of a finite set of r actions at every instant into
an environment. The environment responds to each action
with either a ”reward” or a ”penalty”. The probability of
reward di of each action αi(i=1,2,...r) is unknown. The
objective is to device a procedure by which the agent learns
the best action (i.e. αopt corresponding to dopt = maxj dj).
A very large number of fixed structure and variable structure
schemes have been reported in the literature and these
have been treated in great detail in [2] by Narendra and
Thathachar. Developments in the basic learning automaton
models in stationary environments led to non-stationary
environments and eventually to Markov Decision Processes
(MDP).

In the latter, at every state in a finite Markov chain,
an agent can use one of a finite number of actions. A
transition matrix defines the probabilities with which the state
is transferred to any other state under a specific action, and
corresponding to such a transfer, there is a reward attached
to it. Both the transition matrix and reward probabilities
are unknown. The objective is to determine the optimal
action at every state, which results in the optimization of a
performance criterion defined over a finite or infinite horizon.
It is this problem which, in course of time, evolved to the
optimal control problem of Markov processes.defined by
unknown nonlinear difference equations. In such problems,
identification of the system and optimization are carried out
simultaneously at every stage.

Model- Free (Direct) and Model-Based (Indirect) Learning:
The large class of learning schemes which have evolved
over the years can be broadly categorized into model-free
or mode based classes. Model-free methods are direct
methods where the optimal policy is learned without trying
to identify the system. This is in sharp contrast to model
based methods, where a model of the process is constantly



updated and used to determine the optimal policy. This is
entirely in the spirit of indirect adaptive control. We shall
be interested in both direct and indirect schemes, while
evaluating the effect of multiple models. In this report we
shall consider only the simplest direct learning scheme i.e.
the learning automaton. In Section II, a brief description of
the scheme is provided and norms of behavior are described.
In Section III, many of the important but simple learning
schemes are reviewed and their properties are described.

Simulation results are provided to indicate the nature of
convergence that can be expected in such schemes. Learning
based on multiple models, which is the principal subject of
this report demonstrates that significantly better responses
can be achieved by using them.

III. THE LEARNING AUTOMATON

As stated in Section I, the learning automaton is the
simplest scheme considered in detail in this report. It is a
direct method and is concerned with an automaton choosing
the best action in a random static environment, based on
its responses. In spite of its simplicity, it addresses many
questions which are of fundamental importance in all the
learning schemes treated in the reports follow.

We first consider the learning automaton in its simplest
form. This is shown in Figure 1 where a random environment
E and an automaton A are connected in a feedback loop.
The random environment is described by a finite input set
α={α1, α2, ...αr} and an output set β={0, 1}. 1 is referred
to as a ”reward” and 0 as a ”penalty”. Corresponding to every
action αi is a reward probability di, where

di = Pr[β = 1|α = αi], αi ∈ α (1)

The actions αi can consequently be ordered using di so
that αi is better than αj if di > dj , and the best action αopt
is the action that corresponds to dopt, where maxi di=dopt

Fig. 1: The Learning Automaton

The Automaton: is a stochastic decision rule which, at
every instant (n+1) selects an action from the set α, based
on the response of the environment at step n, to an action
α(n). In the first part of the twentieth century, deterministic
automata were studied extensively in the (then) Soviet Union.

However, our interest is strictly in stochastic automata. The
operation of such an automaton can be described as follows.

At every instant ’n’ the stochastic automaton chooses an
action α(n), using a probability distribution on the finite ac-
tion set. i.e.{p1(n), p2(n), ..., pr(n)} where 0 ≤ pi(n) ≤ 1,
Σpi(n) = 1 are the action probabilities used for this choice.
Based on the response of the environment, the probabilities
pi(n) are updated for all i. Depending upon the qualitative
objectives sought after, the desired asymptotic behavior of
pi(n) (for all i) can be specified. In particular, if the objective
is to converge to the ”best” action, the ”learning algorithm”
has to be such that the probability popt(n) corresponding to
the best action converges to 1 in some stochastic sense, while
pi(n) (where di 6= dopt) converges to zero.

More General Stochastic Automata: can be described by
a sextuple of the form (β, Φ, α, P , A, G) where β is the
input set, Φ = {φ1, φ2, ..., φs} is the set of internal states
α = {α1, α2, ..., αr} is the output or action set, q is the state
probability vector (q1(n), ..., qs(n)) corresponding to the ’s’
states, A is the learning algorithm which generates q(n+1)
from q(n) and the response, and G: φ → α is the output
function. The above representation is merely given for the
sake of completeness, but almost all the important results in
the literature [2], have been derived using directly the action
probability vector p(n). In this paper, we will consequently
confine ourselves to the latter.

Psychology and Engineering: In the context of psychol-
ogy, a learning automaton may be regarded as a model of
the learning behavior of an organism. In such a case, the
environment is controlled by the experimenter. In engineer-
ing applications such as pattern recognition, identification,
or control (more generally machine learning), the controller
corresponds to the automaton, while the rest of the system,
with all uncertainties, constitutes the environment.

P,Q, and S Models: So far, we have assumed that the
output of the environment (or the input to the automaton)
is a binary set (0,1) i.e a penalty or a reward. We shall refer
to such a model as a P-model. If the input is a finite set
(say q1, q2, ...qm) with 0 ≤ qi ≤ 1, we shall refer to it as
a Q model. If, however, the input to the automaton (or the
output of the environment) can be any continuous function,
we shall refer to it as an S model.

Comment: While it may be desirable to use Q models or
S models in practical applications, the principal concepts can
be explained more easily and succinctly using P-models.

Norms of Behavior: While designing learning schemes, an
important question that arises even at the initial stages is
whether the updating is done in such a manner as to result in
a performance compatible with intuitive notions of learning.

Initially, when learning starts, it is natural to assume that
all actions are chosen with the same probability i.e (pi(0) =
1/r). This implies that the average reward is M0 = 1/r

∑
i=1

di

Hence, if the probabilities pi(n) are varied on-line, the
question arises as to whether M(n), the average reward, is
increasing. If limn→∞M(n) > M0, the learning scheme
is said to be expedient. If limn→∞E[M(n)] = dopt, the
automaton is said to be optimal. In practice, obtaining strictly



optimal schemes is a very difficult undertaking.
Comment: If the probabilities of all the actions other than

that of the optimal tend to zero, the automaton will never
choose them asymptotically. However, comparison with such
responses is needed to assure that the action chosen is indeed
optimal. The above considerations lead to the definition of
ε- optimality.

Definition: A learning scheme is said to be ε-optimal if

lim
n→∞

E[M(n)] = dopt − ε (2)

can be achieved for any arbitrary ε > 0, by a suitable choice
of the parameters of the reinforcement schemes. ε-optimality
consequently implies that the performance of the learning
automaton can be made to be as close to the optimal as
desired (but not zero).

Finally, if E[M(n)] increases monotonically i.e.

E[M(n+ 1)|p(n)] > M(n) (3)

for all n and all di, the automaton is said to absolutely
expedient.

IV. REVIEW OF LEARNING AUTOMATA SCHEMES

In the previous section we defined a stochastic learning
automaton and defined some norms by which the perfor-
mance of the different learning schemes can be evaluated.
The different schemes represent different sequential choices
of actions out of an input set, to improve the responses from a
random environment. In this section we present, very briefly,
the most significant schemes out of the set of all schemes
that have been proposed in the literature for this problem.
Perhaps more important are the mathematical results related
to the convergence of the different schemes, since we will
be concerned with similar issues while dealing with the
principal topic of this paper i.e. the effect of the use of
multiple models on the speed of convergence of learning
schemes. For detailed treatment of all aspects of learning
automata schemes, the reader is referred to the book by
Narendra and Thathachar [2].

A. Reinforcement Schemes

In general, most of the reinforcement schemes that have
been proposed in the past can be represented by the differ-
ence equation

p(n+ 1) = T (p(n), α(n), β(n)) (4)

where T is a mapping and α(n) and β(n) are respectively the
input chosen and the response obtained form the environment
at time ’n’. T determines how this information is to be used
for choosing p(n+1) at time (n+1).

Linear and Nonlinear Schemes: If T is linear, the scheme
is referred to as a linear scheme. Similarly, nonlinear and
hybrid schemes can also be defined (in the latter case two
or more schemes are combined).

Asymptotic Behavior: Learning Schemes can also be clas-
sified on the basis of their asymptotic behavior as expedient,
ε-optimal or optimal.

Ergodic and Non-ergodic: The theory of Markov pro-
cesses forms the principal vehicle for the study of learning
schemes. When these schemes are used in stationary environ-
ments, they result in Markov processes that are either ergodic
or contain absorbing states. Hence ergodic and non-ergodic
schemes are also terms used to describe learning automata
schemes.

B. General Reinforcement Schemes:

General reinforcement schemes for updating probabilities
can be represented as
α(n) = αi (i = 1, 2, ...r)
pj(n+ 1) = pj(n)− gj [p(n)] when β(n) = 1

= pj(n) +hj [p(n)] when β(n) = 0 (5)
j 6= i
We note that when action αi is performed at instant ’n’,

the output β(n) can be either a reward β(n) = 1 or a
penalty β(n) = 0. Qualitatively, this would suggest that
the probability pi(n) be increased in the former case and
decreased in the latter case. However, it is seen in equation
(5) that this is mathematically represented by a decrease or
increase in the probabilities of the actions not chosen. With
a reward, the probabilities of (n-1) actions are decreased,
and that determines the increase in the probability of the
action chosen. To conserve probability measure pi(n+ 1) =
pi(n) +

∑
j 6=i gj(p(n)). Similarly for a penalty pi(n+ 1) =

pi(n) −
∑
j 6=i hj(p(n)). gj and hj are continuous non-

negative functions and satisfy the inequalities 0 < gj(p) <
pj and 0 <

∑r
j=1,j 6=i[pj + hj(p)] < 1.

Comment: A very large number of learning schemes have
been proposed by different authors. If gj and hj are linear
functions, the learning schemes are linear. If even one of
the 2n functions is nonlinear, the scheme is defined as
nonlinear. In this brief introduction to learning schemes, we
shall consider only linear schemes. which are ε-optimal or
ergodic.

Linear Reward-Inaction (LR−I ) Scheme: If the automa-
ton has two actions, the probabilities p1(n) and p2(n) are
modified only when there is a reward. For example if α(n) =
α1 results in a reward, the probabilities are updated as:
p1(n+ 1) = p1(n) + a(1− p1(n)) = a+ (1− a)p1(n)
p2(n+ 1) = (1− a)p2(n) = (1− a)(1− p1(n))
For a penalty output, no changes are made in all the

probabilities. (i.e. penalty responses are ignored)
If the learning scheme has ’r’ actions and α(n) = αi

results in a reward pj(n+ 1) = (1− a)pj(n)
pi(n+ 1) = 1− (1− a)

∑
j 6=i pj(n) and pj(n) = pi(n) +

a(1− pi(n))
Comment: The LR−I scheme is an ε-optimal scheme and

has absorbing states (two in a two action scheme and r unit
vectors in an r-action scheme).

Linear Reward-Penalty (LR−P ) Scheme: If the action
probabilities are increased for a reward and decreased for
a penalty, we have ergodic schemes which do not have ab-
sorbing states. LR−εP schemes were proposed to have many
of the advantages of LR−I schemes, even while enjoying the
property of ergodicity. In this case reward and penalty are



not treated symmetrically, with changes (increase or decrease
in probability) small for a penalty output, compared to the
changes when the output is a reward. As is to be expected, the
convergence properties of ergodic schemes are very different
from those of the LR−I scheme.

Since our principal interest in this and the following papers
is in the use of multiple models for improving convergence
rates of learning algorithms, we now consider simulation
results obtained using LR−I , LR−P , and LR−εP schemes.

V. SIMULATION RESULTS

Numerous linear and nonlinear learning algorithms have
been proposed in the literature by various authors, and exten-
sive simulation studies have been carried out on the computer
on all of them. Our objective in this section is not to discuss
in detail all the proposed schemes, but merely to provide the
reader with an understanding of the factors that govern the
speed and accuracy of some of the more commonly used
schemes. The simulations included in this section will serve
as benchmark examples to be used for comparison purposes
while discussing alternate learning schemes.

Fig. 2: LR−I with 2 actions for a= 0.015

Fig. 3: LR−I with 10 actions for a= 0.015

Fig. 4: LR−P with 2 actions for a= 0.015, b=0.005

In Figure 2, the simulation study of an LR−I algorithm
with two actions is shown. The only parameter that can be
adjusted in this case is ”a”. For the experiment, a=0.015 was
chosen. The convergence time for a typical simulation is seen
to be approximately 500 steps.

Increasing ”a” improves the rate of convergence, but also
increases the probability of convergence to the wrong action.

In Figure 3, a ten-action case is considered and the
convergence time on a sample path is seen to be 2000 steps.
As stated earlier, LR−P schemes are ergodic and hence
sample paths do no converge to any fixed probability as in
the LR−I case, but converge in distribution. Once again, for
a two-action case , the probability of the best action reaches
0.95 in 500 steps.

Comment: In the following sections, we will be interested
in the improvement in convergence that can be achieved
using modifications in the learning schemes (i.e 500 steps
for 2 actions and 2000 steps for 10 actions).

VI. OTHER LEARNING SCHEMES

Thus far we have discussed (direct) learning algorithms in
which at the end of every trial the probability vector p(n)
is updated based on the response of the environment. There
are also a number of other updating schemes proposed in
the literature for variable structure stochastic automata. In
the ”Special Issue on Learning Automata of the Journal of
Cybernetics and Information Science” Edited by the first
author [3], Tyspkin and Poznyak (1977) attempt to unify
the various learning algorithms within the general framework
of stochastic approximation. Thathachar and Sastry (1985)
[4] incorporate estimates of the reward probabilities in the
updating schemes and prove ε-optimality. Such schemes have
been called estimator algorithms and have a higher rate of
convergence in stationary random environments as compared
to LR−I and LR−P schemes. One version of the estimator
algorithm is called the pursuit algorithm and is described in
the following section.

A. The Pursuit Algorithm

In the LR−I or LR−P schemes, the efficiency of an action
was judged on the basis of the output produced by the action
at one instant of time. However, our interest is in the action
αopt with the largest reward probability dopt. To estimate
this, the effect of every action over all the past attempts is



stored in this procedure. If d̄i is the estimate of di based
on all the past attempts of the ith action αi, the probability
vector p(n) is adjusted at every instant in the direction of the
current optimal action based on these estimates. The three
steps in the procedure are listed below:
(1) based on the probability distribution p(n) at instant ’n’
an action α(n)=αi is chosen which produces a reward or a
penalty.
(2) the estimate d̄i(n−1) of the reward probability is updated
on the basis of the above response to d̄i(n). If the highest
value of d̄i(n) is dj(n)(j=1,2,...,r), the action probability
vector p(n) is modified as

p(n+ 1) = p(n)(1− λ) + λl (5)

where λ is a scalar with 0 < λ < 1, and l is a unit vector
with unity as the ith element and all other elements zero. This
orients the vector p(n) more towards the optimal action.

Comment: In the 1960s, in adaptive control, it was realized
that adaptive parameters should be adjusted on the basis
of all the past data, rather than instantaneous values. The
modification described here for learning algorithms was
motivated by this.

The pursuit algorithm can also be shown to be ε-optimal,
and is significantly faster than the LR−I and LR−P schemes
as shown in the simulations included below for two action
and ten action schemes.

Fig. 5: Pursuit algorithm with two actions

Fig. 6: Pursuit algorithm with ten actions

Figure 5 and 6 indicate typical responses of a two action
and a ten action learning automaton using a pursuit algo-
rithm. It is seen that the typical times for convergence are

300 and 1500 respectively, which are significantly faster than
obtained using those simple LR−I schemes.

VII. LEARNING AUTOMATA USING MULTIPLE MODELS

From the previous discussions, a model can be set up to
estimate the reward probability of each action. Following
this, a certainty equivalence principle can be used to decide
which action appears to be the best, and the action probability
vector can be moved by a small step towards the unit vector
corresponding to that action.

Multiple Fixed Models: Let 0 < q1 < q2 < ... < qm <
1 be m fixed probabilities. Let these values represent fixed
estimates of the reward di corresponding to action αi. If
similar models are also used for all the ’r’ actions, there are
a total of mr probabilities that are used to determine the
strategy at any instant.

Let the output of the ith action αi at stage n consist of
n1 rewards and n−n1 penalties. Then corresponding to any
probability, (say q1), the likelihood of the event is qn1

1 (1 −
q1)n−n1 = di(q1). Similarly, di(q2), di(q3), ..., di(qm) are
computed and the maximum di(opt)(n) is determined. At this
stage, since the maximum value of di(opt)(n) for all i actions
is known, the probability vector (as in the pursuit algorithm)
is adjusted incrementally in the direction of the unit vector
corresponding to that action.

The relation between the models described above and the
pursuit algorithm has been studied extensively, but due to
space limitations is not included here. Only the simulation
for the 10 action case is shown in Figure 7. It is seen
that there is a substantial improvement both in the speed
of convergence as well as the smoothness of the optimal
probability. The convergence time of 300 is seen to be a
significant improvement over the 2000 steps needed with
the LR−I algorithm, and 1500 steps needed with the pursuit
algorithm.

The result given in Figure 7 are not conclusive but merely
indicate that considerably more work needs to be done using
multiple models.

Fig. 7: Ten actions with Multiple Fixed Models

Multiple Adaptive Models: Even though the learning au-
tomaton is a direct scheme, the procedure described above
was used to estimate which of the fixed probabilities (mod-
els) was closest to the unknown reward probability corre-
sponding to each action. A natural extension of the above



procedure is to make all the models adaptive (i.e. adjust
the probabilities {q1, q2, ...qr}) adaptively, on the basis of
the responses of the environment to the various actions. It
is immediately evident that all values must converge to the
reward di for the ith action, as ’n’ tends to infinity. This fact
can be made use of to determine where dopt lies, and the
action corresponding to it. This will be treated in detail in
future papers.

Time-Varying Environments: The multiple model based
approach was introduced in adaptive control over two
decades ago to perform satisfactorily in rapidly varying
environments. We conclude this report by using the fixed
model based approach to track a time-varying environment
with ten actions. The time-variations concern only action α2

whose reward probabilities vary periodically with a period
of 1000 units.

In the first 500 units of time d2 = 0.9 and α2 corresponds
to the optimal action. In the second interval of 500 units,
d2 = 0.05 and d3 corresponds to the optimal action. Thus,
ideally, the optimal action switches periodically between α2

and α3. The response of the multiple model based learning
automaton is shown in Figure (??). While the classical
learning automaton, using a single model, cannot cope with
the time-varying environment described in Figure (??), the
learning scheme based on multiple models reacts rapidly, and
is seen to track the optimal action.

Fig. 8: Evolution of probabilities of optimal actions: ten
actions with single model in a periodic environment(only
p2 and p3 are presented)

Fig. 9: Ten actions with multiple models in a periodic
environmentonly (p2 and p3 are presented)

VIII. MULTIPLE MODEL REINFORCEMENT LEARNING IN
DYNAMIC ENVIRONMENTS

In adaptive control, multiple model based approaches have
been very effective in indirect control i.e. those situations
where identification of the process to be controlled precedes
taking a control action. If a model of the process is known,
it can be used to generate a control input which results in
the desired response of the model, and consequently (it is
hoped) of the plant. If multiple models are used, methods for
choosing the ”best” model or ” a combination of the models”
have been discussed in the adaptive literature. Our objective
is to use a similar approach in the future for learning schemes
as well.

Comment: In the previous section, ”multiple models” were
used for a direct learning scheme. This merely underscores
the fact that the term ”model” can be loosely interpreted as
a description of the system which permits a decision to be
made concerning its behavior.

In this section, we provide a sketch as to how multiple
model approaches can be extended to reinforcement learning
problems involving dynamic environments. In such a case,
the details of the methods and their theoretical analysis are
considerably more complex than those for a static environ-
ment involving learning automata, and will be described in
detail in future papers.

Problem Formulation:

Discrete-State: A Markov Decision Process (MDP) is
defined by the following quantities:
• The State Space S, a finite set,
• The action set A, a finite set, listing all actions available

to the agent in any state
• A state transition probability function P : SXSXA→

(0; 1)
• An immediate payoff function R : SXSXA → 0; 1]

where 0 corresponds to no reward and 1 corresponds to
reward.

The objective of the agent is to maximize the overall dis-
counted reward, i.e., the objective is not merely to maximize
the reward for the next transition, but to maximize the reward
over all future transitions made from an initial state.

Continuous-State: A nonlinear dynamical environment is
described by the equation

x(k + 1) = f [x(k), u(k), n(k)]

where x(k), u(k), and n(k) are the state, agent action, and
noise respectively at instant k. The performance index is
given by

J =

∞∑
(k=0)

γkR[x(k), u(k)]

where 0 < γ < 1 is a discount factor.
The objective of the agent is to determine a policy u(k) =

g[x(k)] to optimize J .
In the model-based approaches to reinforcement learning,



an identification model of the environment (in the form of
P̂ and R̂ matrices for discrete case, and f̂ function in the
continuous case) is estimated during on-line learning and this
model is used in conjunction with dynamic programming or
the Hamilton-Jacobi-Bellman equation to optimize J.

Multiple Model Approaches: In the discrete-state MDP
formulation, since each element of the P matrix is a proba-
bility, multiple fixed or adaptive models can be set up to
estimate them, and the best model can be selected in a
manner similar to that used for a learning automaton. The
best selected model(s) can then be used to carry out the
dynamic programming computations.

In the continuous state case, instead of only one such
model, a bank of identification models, as described below,
is used:

x̂i(k + 1) = f̂i[x(k), u(k), θi(k)]i = 1, . . . , N

and these models are combined in some manner to compute
the predicted state, with the aim of achieving higher accuracy
than each of the individual models. It is worth noting that the
structure of the models need not necessarily be the same, but
can in principle be heterogeneous. This approach, as stated
earlier, has been a popular one in the adaptive control field, to
improve transient performance of adaptive control systems.
The authors believe that such an approach can also be used
in reinforcement learning systems as one way to speed up
learning.

IX. CONCLUSIONS

In adaptive control, multiple model based approaches have
been very effective in indirect control i.e. those situations
where identification of the process to be controlled precedes
taking a control action. Our objective is to use a similar
procedure in the future for learning schemes as well.

In this paper, a very simple learning scheme (i.e. the
Learning Automaton) was introduced, and it was shown
that approaches, similar to those in adaptive control using
multiple models, would result in faster and smoother con-
vergence in time-invariant and time-varying environments.
Future reports will attempt to extend the approach introduced
here to significantly more complex learning schemes in static
and dynamic environments.
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