Chapter 18: Electrochemistry

In an oxidation-reduction (redox) reaction, ______ are transferred.

 $Mg + 2 AgNO_3 \rightarrow Mg(NO_3)_2 + 2 Ag$

Oxidation: _____ of electrons _____ of electrons

Oxidizing agent: Reducing agent:

Oxidation numbers:

- Elements: # = 0
- Ions: # = charge
- O: usually -2
- H: usually +1
- Halogens: usually –1

Balancing redox reactions

Balance this net ionic equation (spectator ions omitted)

 $Fe^{2+}(aq) + MnO_4^{-}(aq) \rightarrow Fe^{3+}(aq) + Mn^{2+}(aq)$

- 1. Divide net ionic equation into 2 half-reactions
- 2. Balance each half-reaction
 - Elements (not O or H)
 - O (add H₂O)
 - H (add H⁺)
 - Charge (add e[−])

- 3. Multiply half-reactions by integers so $\# e^-$ is equal
- 4. Add two half-reactions and cancel electrons fully.

Balancing in basic solution

- 5. If you're told the reaction is in **<u>basic</u>** solution:
 - a. Add OH^- to both sides to cancel H^+

b. Combine $H^+ + OH^- \rightarrow H_2O$

c. Cancel excess H_2O

Practice balancing

 $MnO_4^- + SO_3^{2-} \rightarrow MnO_2 + SO_4^{2-}$ in acidic, and basic solns

Voltaic cells

Electrochemical cells involve the use of electrical energy in the transfer of electrons between substances

- 1. <u>Voltaic cells</u> (galvanic cells) contain a **spontaneous** reaction that produces electrical energy (like a battery)
- 2. <u>Electrolytic cells</u> use electrical energy to drive a nonspontaneous reaction

Most cells have two **electrodes** (conductive metal strips) in an **electrolyte** solution (soluble ionic compound)

One half-reaction takes place at each electrode:

- <u>Anode</u>: electrode where oxidation occurs (electrons are **lost** from the cell at the anode)
- <u>Cathode</u>: electrode where reduction occurs (electrons enter the cell at the cathode)

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

Oxidation half-reaction: Reduction half-reaction:

Copyright © 2008 Pearson Prentice Hall, Inc.

The <u>anode</u> is the electrode of the oxidation half-rxn The <u>cathode</u> is the electrode of the reduction half-rxn

<u>Salt bridge</u>: completes circuit by keeping charges constant in each container

<u>Active electrode</u>: metal is part of redox reaction <u>Inactive electrode</u>: metal conducts electricity but does not participate in redox reaction (graphite or Pt)

<u>Cell notation</u>: shows two half reactions with phases separated by | and half reactions separated by ||

Reduction potentials

<u>Electrical current</u>: rate of electron flow (amperes, A) related to stoichiometry of redox reactions - not covered in this course

Electrical potential difference:

the driving force for flow of electrons (volts, V)

- 1 V = 1 J/C (coulomb: unit of electrical charge)
- An energetic term, directly related to spontaneity and free energy
- <u>Cell potential</u> (*E*_{cell}): potential (in V) between two electrodes
- *E*_{cell} > 0 for a spontaneous process

Copyright © 2008 Pearson Prentice Hall, In

<u>Standard reduction potential</u> (E°) potential for a reduction, relative to the standard hydrogen electrode $2 H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g) \qquad E^{\circ}_{red} = 0.00 V$ (by definition)

Reductions more spontaneous than this are **positive**, reductions less spontaneous than this are **negative**.

Standard reduction potentials

TABLE 18.1 Sta	andard Reduction Potentials at 25 °C			
	Reduction Half-Reaction		<i>E</i> ° (V)	
Stronger	$F_2(g) + 2e^-$	$\longrightarrow 2 F^{-}(aq)$	2.87	Weaker
oxidizing agent	$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	$\longrightarrow 2 H_2O(l)$	1.78	reducing agent
	$PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^-$	\longrightarrow PbSO ₄ (s) + 2 H ₂ O(l)	1.69	
	$MnO_4^{-}(aq) + 4 H^{+}(aq) + 3 e^{-}$	\longrightarrow MnO ₂ (s) + 2 H ₂ O(l)	1.68	
	$MnO_4^{-}(aq) + 8 H^+(aq) + 5 e^-$	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(l)	1.51	
	$Au^{3+}(aq) + 3e^{-}$	\longrightarrow Au(s)	1.50	
	$PbO_2(s) + 4 H^+(aq) + 2 e^-$	$\longrightarrow Pb^{2+}(aq) + 2 H_2O(l)$	1.46	
	$Cl_2(g) + 2e^-$	$\longrightarrow 2 \operatorname{Cl}^{-}(aq)$	1.36	
	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^-$	$\longrightarrow 2 \operatorname{Cr}^{3+}(aq) + 7 \operatorname{H}_2 O(l)$	1.33	
	$O_2(g) + 4 H^+(aq) + 4 e^-$	$\longrightarrow 2 H_2O(l)$	1.23	
	$MnO_2(s) + 4 H^+(aq) + 2 e^-$	\longrightarrow Mn ²⁺ (aq) + 2 H ₂ O(l)	1.21	
	$IO_3^{-}(aq) + 6 H^+(aq) + 5 e^-$	$\longrightarrow \frac{1}{2} I_2(aq) + 3 H_2O(l)$	1.20	
	$Br_2(l) + 2e^-$	$\longrightarrow 2 \operatorname{Br}^{-}(aq)$	1.09	
	$VO_2^+(aq) + 2 H^+(aq) + e^-$	\longrightarrow VO ²⁺ (aq) + H ₂ O(l)	1.00	
	$NO_3^{-}(aq) + 4 H^+(aq) + 3 e^-$	\longrightarrow NO(s) + 2 H ₂ O(l)	0.96	
	$ClO_2(g) + e^-$	$\longrightarrow ClO_2^-(aq)$	0.95	
	$Ag^+(aq) + e^-$	\longrightarrow Ag(s)	0.80	
	$Fe^{3+}(aq) + e^{-}$	\longrightarrow Fe ²⁺ (<i>aq</i>)	0.77	
	$O_2(g) + 2 H^+(aq) + 2 e^-$	\longrightarrow H ₂ O ₂ (<i>aq</i>)	0.70	
	$MnO_4^{-}(aq) + e^{-}$	$\longrightarrow MnO_4^{2-}(aq)$	0.56	
	$l_2(s) + 2e^-$	$\longrightarrow 2 \Gamma(aq)$	0.54	
	$Cu^+(aq) + e^-$	\longrightarrow Cu(s)	0.52	
	$O_2(g) + 2 H_2O(l) + 4 e^{-1}$	$\longrightarrow 4 \text{ OH}^{-}(aq)$	0.40	
	$Cu^{2+}(aq) + 2e^{-}$	\longrightarrow Cu(s)	0.34	
	$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^-$	\longrightarrow H ₂ SO ₃ (<i>aq</i>) + H ₂ O(<i>l</i>)	0.20	
	$Cu^{2+}(aq) + e^{-}$	\longrightarrow Cu ⁺ (aq)	0.16	
	$Sn^{4+}(aq) + 2e^{-}$	\longrightarrow Sn ²⁺ (aq)	0.15	
	$2 H^+(aq) + 2 e^-$	\longrightarrow H ₂ (g)	0	
	$Fe^{3+}(aq) + 3e^{-}$	\longrightarrow Fe(s)	-0.036	
	$Pb^{2+}(aq) + 2e^{-}$	$\longrightarrow Pb(s)$	-0.13	
	$Sn^{2+}(aq) + 2e^{-}$	\longrightarrow Sn(s)	-0.14	
	$Ni^{2+}(aq) + 2e^{-}$	\longrightarrow Ni(s)	-0.23	
	$Cd^{2+}(aq) + 2e^{-}$	\longrightarrow Cd(s)	-0.40	
	$Fe^{2+}(aq) + 2e^{-}$	\longrightarrow Fe(s)	-0.45	
	$Cr^{3+}(aq) + e^{-}$	$\longrightarrow Cr^{2+}(aq)$	-0.50	
	$Cr^{\gamma}(aq) + 3e$	$\longrightarrow Cr(s)$	-0.73	
	$Zn^{2+}(aq) + 2e^{-}$	\longrightarrow Zn(s)	-0.76	
	$2 H_2 O(l) + 2 e^{-1}$	\longrightarrow H ₂ (g) + 2 OH ⁻ (aq)	-0.83	
	$Mn^{2+}(aq) + 2e^{-}$	\longrightarrow Mn(s)	-1.18	
	$Al^{3+}(aq) + 3e^{-}$	\longrightarrow Al(s)	-1.66	
	$Mg^{2+}(aq) + 2e^{-}$	$\longrightarrow Mg(s)$	-2.37	
	$Na^+(aq) + e^-$	\longrightarrow Na(s)	-2.71	
	$\operatorname{Ca}^{2+}(aq) + 2 e^{-}$	\longrightarrow Ca(s)	-2.76	
	$Ba^{2+}(aq) + 2e^{-}$	\longrightarrow Ba(s)	-2.90	
Weaker	$\mathbf{K}^{+}(aq) + \mathbf{e}^{-}$	$\longrightarrow K(s)$	-2.92	Stronger
oxidizing agent	$\mathrm{Li}^+(aq) + \mathrm{e}^-$	\longrightarrow Li(s)	-3.04	reducing agent

Copyright © 2008 Pearson Prentice Hall, Inc.

Calculating standard cell potentials

For the zinc-copper cell, $Zn(s) \rightarrow Zn^{2+}(aq) + 2 e^{-} \qquad E^{\circ}$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \qquad \frac{E^{\circ}}{E^{\circ}_{cell}} =$

From the table of **<u>reduction</u>** potentials:

 $Cu²⁺(aq) + 2e⁻ → Cu(s) \qquad E[°]_{red} = 0.34 V$ Zn²⁺(aq) + 2 e⁻ → Zn(s) E[°]_{red} = -0.76 V

Simply add the oxidation potential and the reduction potential. Don't forget to switch the sign of the oxidation.

Since cell potentials are *intensive* properties, you only need to add the values - they **do not** depend on number of electrons or any coefficients.

Write the balanced equation and calculate the standard cell potential (E°_{cell}) for Cr(s) | Cr³⁺(aq) || Cl₂(g) | Cl⁻(aq).

Predicting the direction of spontaneous change

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \qquad E^{\circ}_{red} = 0.34 V$ 2 H⁺(aq) + 2 e⁻ \rightarrow H₂(g) $E^{\circ}_{red} = 0.00 V$ Zn²⁺(aq) + 2 e⁻ \rightarrow Zn(s) $E^{\circ}_{red} = -0.76 V$

Which of the reactions above has the strongest tendency to occur in the forward direction as written?

That is the most favorable ______ reaction.

So, _____ is the strongest ______ agent.

The reaction with the **weakest** tendency to occur as written is the **most favorable** ______ reaction.

So, _____ is the strongest ______ agent.

What is the spontaneous reaction that will occur when a cell is constructed from Cd(s), $Cd^{2+}(aq)$, Pb(s), and $Pb^{2+}(aq)$

Cell potential, free energy, and the equilibrium constant

A spontaneous redox reaction has:

E_{cell} ΔG_{rxn} Κ

 $\Delta G^{\circ} = -nFE^{\circ}_{cell}$

n = moles of electrons transferred in balanced eqn *F* = 96,485 C / mol e^-

Calculate ΔG° (in kJ) for 2 Ag⁺ + Mg \rightarrow Mg²⁺ + 2 Ag. Is the reaction spontaneous? What 2 ways can you tell? Cell potential, free energy, and equilibrium constant

 $\Delta G^{\circ} = -nFE^{\circ}_{cell} = -RT \ln K$ $E^{\circ}_{cell} = \frac{RT}{nF} \ln K = \frac{0.0592 \text{ V}}{n} \log K$ $\Delta G^{\circ} = -nFE^{\circ}_{cell} \qquad \Delta G^{\circ} = -RT \ln K$

If $E^{\circ}_{cell} = 3.18$ V and n = 2 mol e^{-} , what is K under standard conditions?

 $E_{\text{cell}}^{\circ} = \frac{0.0592 \text{ V}}{n} \log K$

Copyright © 2008 Pearson Prentice Hall, Inc

Nonstandard states in voltaic cells

Recall $\Delta G = \Delta G^{\circ} + RT \ln Q$

Nernst equation:
$$E_{cell} = E_{cell}^{\circ} - \frac{0.0592 \text{ V}}{n} \log Q$$

The standard zinc-copper cell has a potential of 1.10 V. Standard conditions are:

 $Zn(s) \rightarrow Zn^{2+}(aq) + 2 e^{-}$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

How will the cell potential change if we double the concentration of $Zn^{2+}(aq)$?

What if we double the concentration of $Cu^{2+}(aq)$?

A voltaic cell can be driven a difference in concentration between two otherwise identical half-cells.

Voltaic vs electrolytic cells

Electrolytic Cell

Electrolysis and electroplating

Copyright © 2008 Pearson Prentice Hall, Inc.

Copyright © 2008 Pearson Prentice Hall, Inc.