(

In-Network Computation is a
Dumb Idea Whose Time Has Come

Marco Canini
KAUST

s this a dumb idea?

* increased complexity
* new kinds of failure modes to address
 could affect application correctness

* will put application-specific logic in the network...

But | didn’t wake up at 4AM to tell you something dumb

network programmability is the
holy grail

| was already “programming the network” with network processors 13 years ago...

today’s context is very different

Tremendous requirements: reliability, velocity, performance

New HW breed: programmable ASICs, no power or cost penalties

as networks become capable of
computation,

what kinds of computation should
networks perform?

Network machine architecture w/ PISA

Match Logic Action Logic
(Mix of SRAM and TCAM for lookup tables, counters, (ALUs for standard boolean and arithmetic operations, header
meters, generic hash tables) modification operations, hashing operations, etc.)
’_/ Buffer
—_> M |A _ M _—
=3 _11 — —_—>
=3 — —>
—2 _111 == <
3 — -> e -> -> —p -_—> -> YY) = e = —_—
11— —>
—2 —_—> —>
= == =
—_> :lIl — —_—
—
Ingress match-action stages (pre-switching) Egress match-action stages (post-switching)

Slide courtesy: Changhoon Kim

Why is compute in the network

different than a general purpose
CPU?

Temporal vs spatial compute

0110011010100
0110011010100

01010111000110 {
(
0110011010100 (
(
(

011001101010

0110011010100

0110011010100

Temporal compute Spatial compute

Slide idea from: Microsoft Build 2017: Inside the Microsoft FPGA-based configurable cloud

Inherent challenges

* Computing on this architecture corresponds to executing streaming
algorithms with stringent constraints on number and type of ops

* Not Turing complete

* Limited memory size

 Limited set of actions (per stage & pipeline length)

* Few operations per packet (line rate execution guarantee)

Judicious in-network computing

* Bring high benefits at low costs
* |s the network the bottleneck? Reduce bytes or reduce latency?

* Must live within the confines of HW constraints

* Application correctness is paramount

* Should give benefits in common case and possibly during failures too
* In the limit, should be no worse than if without

* Should focus on primitives that are broadly applicable to class of apps
* |dentify reusable, high-level abstractions that promote easy adoption

Tremendous opportunity

* Target important, widely used distributed services in the network
e Examples:

* Fault-tolerance protocols
* KV storage systems

 Distributed ML training

Consensus at line rate

Paxos Made Switch-y

Huynh Tu Dang® Marco Caninit
*Universita della Svizzera italiana

{huynh.tu.dang,fernando.pedone,robert.soule}@usi.ch marco.canini@uclouvain.be

ABSTRACT

The Paxos protocol is the foundation for building many fault-tolerant
distributed systems and services. This paper posits that there are
significant performance benefits to be gained by implementing Paxos
logic in network devices. Until recently, the notion of a switch-
based implementation of Paxos would be a daydream. However,
new flexible hardware is on the horizon that will provide customiz-
able packet processing pipelines needed to implement Paxos. While
this new hardware is still not readily available, several vendors and

SIGCOMM CCR 2016

Fernando Pedone® Robert Soulé®
fUniversité catholique de Louvain

cessing pipelines, including Protocol Independent Switch Archi-
tecture (PISA) chips from Barefoot networks [2], FlexPipe from
Intel [11], NFP-6xxx from Netronome [20], and Xpliant from Cav-
ium [30]. Such hardware significantly lowers the barrier for exper-
imenting with new dataplane functionality and network protocols.
While this new hardware is still not readily available for re-
searchers and practitioners to experiment with, several vendors and
consortia have made programming languages that target these de- 12

vices available. Notable examples include Huawei’s POF [28], Xil-
v’ DV I'271 aevAd 41ha DA A e~ en frr14v’ DA TT1T1 £ A vt en 1«r 3¢ 14

Example: NetPaxos

ConsenSUS iS d ProposerLA - / Proposer
fundamental

[azzsaszz [smzzsz: Alleviate
Facilitate

problem for fault- o ftware AP cOg,dmat Wackup bottlenecks
tolerant systems |HEEE—— /

T
nnnnnnnnnnnnnnnnnnn

Acceptor vAccepto Acceptor
Learner Learner

e Offering consensus as a network service has
significant performance benefits

* Implement Paxos logic in network devices

* Demonstrate consensus at 9 M msgs /s Forwarding | 0.37 0.73]
(4.3x improvement) and low latency (80% Coordinator | 072 | 1.21 | 033:0.01
reduction) Acceptor 0.79 144 | 0.81#0.01

Data aggregation for ML and graph analytics

HotNets 2017

In-Network Computation is a Dumb Idea
Whose Time Has Come

Amedeo Sapio#, Ibrahim Abdelaziz, Abdulla Aldilaijan,

Marco Canini, Panos Kalnis
KAUST

ABSTRACT

Programmable data plane hardware creates new opportuni-
ties for infusing intelligence into the network. This raises a
fundamental question: what kinds of computation should be
delegated to the network?

In this paper, we discuss the opportunities and challenges
for co-designing data center distributed systems with their
network layer. We believe that the time has finally come for
offloading part of their computation to execute in-network.
However, in-network computation tasks must be judiciously
crafted to match the limitations of the network machine archi-
tecture of programmable devices. With the help of our exper-
iments on machine learnine and eraph analvtics workloads.

Programmable networks create the opportunity for in-
network computation, i.e., offloading a set of compute opera-
tions from end hosts into network devices such as switches
and smart NICs. In-network computation can offer substan-
tial performance benefits, as it is for example the case with
consensus protocols [9, 10] and in-network caches [20]. Al-
though traditional networks are not capable of computation,
the idea of using the network not just to move data, but also
to perform computation on transmitted data is reminiscent
of Active Networks [30], which proposed to replace packets
with small programs called “capsules’ that are executed at
each traversed switch. However, for the past two decades
the hardware capabilities were lacking. This appears to be

Exa m p | e . DAl ET https://sands.kaust.edu.sa/daiet/ Sum updates

Data aggregation is
a common task in

many DC apps; high

i Worker 1 Worker 2 Worker N
pOtent|a| for ML Updates Updates Updates
» Offload aggregation task to switches to Aggregation micro-benchmark:
alleviate communication bottlenecks and) 1'2_868' 3.20M-element tensor
improve overall training time * Tofino switch
* Exploit full network bandwidth of workers .Reszuf’?sg workers at 10Gbps

Transfer time 1.9 s (1.56s optimal limit)

https://sands.kaust.edu.sa/daiet/

‘ime has come for in-network computing
"'he ball is in your court

 Some other ideas:
* Congestion control, resource allocation (HotCoCoA, Sweden, Sharma et al. NSDI '17)
* Network measurements (Marple, Sonata, Dapper, INT)

Load balancing (SilkRoad)

Consensus protocols (NetPaxos, NoPaxos, Eris, NetChain)
Caching (IncBricks, NetCache)
Stream processing (Linear Road)

With great powers come great responsibilities
Use in-network computing judiciously!

