
In-Network Computation is a 
Dumb Idea Whose Time Has Come

Marco Canini
KAUST



Is this a dumb idea?

• increased complexity
• new kinds of failure modes to address
• could affect application correctness
• will put application-specific logic in the network…

But I didn’t wake up at 4AM to tell you something dumb

2



network programmability is the 
holy grail
I was already “programming the network” with network processors 13 years ago…

3



today’s context is very different
Tremendous requirements: reliability, velocity, performance
New HW breed: programmable ASICs, no power or cost penalties

4



as networks become capable of 
computation,
what kinds of computation should 
networks perform?

5



Network machine architecture w/ PISA

Buffer
M M

Pr
og

ra
m

m
ab

le
Pa

rs
er

Match Logic
(Mix of SRAM and TCAM for lookup tables, counters, 
meters, generic hash tables)

Action Logic
(ALUs for standard boolean and arithmetic operations, header 
modification operations, hashing operations, etc.)

A

… …

Ingress match-action stages (pre-switching) Egress match-action stages (post-switching)

Slide courtesy: Changhoon Kim
6



Why is compute in the network 
different than a general purpose 
CPU?

7



Temporal vs spatial compute

CPU

01100110101001010101010101011101010111000110Instruction

Instruction
Instruction
Instruction

SWITCH

01100110101001010101010101011101010111000110
01100110101001010101010101011101010111000110
01100110101001010101010101011101010111000110
01100110101001010101010101011101010111000110
01100110101001010101010101011101010111000110

Instruction
Instruction
Instruction
Instruction

Temporal compute Spatial compute

Slide idea from: Microsoft Build 2017: Inside the Microsoft FPGA-based configurable cloud 
8



Inherent challenges

• Computing on this architecture corresponds to executing streaming 
algorithms with stringent constraints on number and type of ops

• Not Turing complete
• Limited memory size
• Limited set of actions (per stage & pipeline length)
• Few operations per packet (line rate execution guarantee)

9



Judicious in-network computing

• Bring high benefits at low costs
• Is the network the bottleneck? Reduce bytes or reduce latency?

• Must live within the confines of HW constraints
• Application correctness is paramount
• Should give benefits in common case and possibly during failures too
• In the limit, should be no worse than if without
• Should focus on primitives that are broadly applicable to class of apps
• Identify reusable, high-level abstractions that promote easy adoption

10



Tremendous opportunity

• Target important, widely used distributed services in the network
• Examples:

• Fault-tolerance protocols

• KV storage systems

• Distributed ML training

11



Paxos Made Switch-y

Huynh Tu Dang* Marco Canini† Fernando Pedone* Robert Soulé*

*Università della Svizzera italiana †Université catholique de Louvain

{huynh.tu.dang,fernando.pedone,robert.soule}@usi.ch marco.canini@uclouvain.be

ABSTRACT

The Paxos protocol is the foundation for building many fault-tolerant
distributed systems and services. This paper posits that there are
significant performance benefits to be gained by implementing Paxos
logic in network devices. Until recently, the notion of a switch-
based implementation of Paxos would be a daydream. However,
new flexible hardware is on the horizon that will provide customiz-
able packet processing pipelines needed to implement Paxos. While
this new hardware is still not readily available, several vendors and
consortia have made the programming languages that target these
devices public. This paper describes an implementation of Paxos in
one of those languages, P4. Implementing Paxos provides a critical
use case for P4, and will help drive the requirements for data plane
languages in general. In the long term, we imagine that consensus
could someday be offered as a network service, just as point-to-
point communication is provided today.

1. INTRODUCTION

Paxos [13] is one of the most widely used protocols for solv-
ing the problem of consensus, i.e., getting a group of participants
to reliably agree on some value used for computation. Paxos is
used to implement state machine replication [12, 27], which is the
basic building block for many fault-tolerant systems and services
that comprise the core infrastructure of data centers, such as Open-
Replica [22], Ceph [5], and Google’s Chubby [4]. Since most data
center applications critically depend on these services, Paxos has a
dramatic impact on the overall performance of the data center.

While Paxos is traditionally implemented as an application-level
service, this paper posits that there are significant performance ben-
efits to be gained by moving certain Paxos logic into network de-
vices. Specifically, the benefits would be twofold. First, since the
logic traditionally performed at servers would be executed directly
in the network, consensus messages would travel fewer hops and
be processed “on the wire”, resulting in decreased latencies. Sec-
ond, rather than executing server logic (including expensive mes-
sage broadcast operations) in software, the same operations could
be implemented in specialized hardware, improving throughput.

Until recently, the notion of a switch-based implementation of
Paxos would be a daydream. Paxos logic is more complex than the
standard match-action abstraction offered by most switches, as it
involves maintaining and consulting persistent state [8]. Moreover,
a switch-based Paxos would require a protocol specific header and
processing behavior, which would depend on a customized hard-
ware implementation (and possibly coordination with a vendor).

However, the landscape for network computing hardware has be-
gun to change. Forwarding devices are becoming more powerful,
and importantly, more programmable. Several devices are on the
horizon that offer flexible hardware with customizable packet pro-

cessing pipelines, including Protocol Independent Switch Archi-
tecture (PISA) chips from Barefoot networks [2], FlexPipe from
Intel [11], NFP-6xxx from Netronome [20], and Xpliant from Cav-
ium [30]. Such hardware significantly lowers the barrier for exper-
imenting with new dataplane functionality and network protocols.

While this new hardware is still not readily available for re-
searchers and practitioners to experiment with, several vendors and
consortia have made programming languages that target these de-
vices available. Notable examples include Huawei’s POF [28], Xil-
inx’s PX [3], and the P4 Consortium’s P4 [1]. Consequently, it is
now possible for researchers to write programs that will soon be
deployable on hardware, and run them in software emulators such
as Mininet [19].

In this paper, we describe an implementation of Paxos in the
P4 language [1]. Our choice for P4 is pragmatic: the language
is open and relatively more mature than other alternatives. Al-
though Paxos is a conceptually simple protocol, there are many
details that make an implementation challenging. Consequently,
there has been a rich history of research papers that describe Paxos
implementations, including attempts to make Paxos Simple [14],
Practical [17], Moderately Complex [29], and Live [6].

Our implementation artifact is interesting beyond presenting the
Paxos algorithm in a new syntax. It helps expose new practical con-
cerns and design decisions for the algorithm that have not, to the
best of our knowledge, been previously addressed. For example, a
switch-based implementation cannot synthesize new messages. In-
stead, we have to map the Paxos logic into a “routing decision”.
Moreover, targeting packet headers and switch hardware imposes
memory and field size constraints not present in an application li-
brary implementation.

Beyond these contributions, the exercise of implementing Paxos
serves as a non-trivial use case for P4 that involves logic far more
complex than the relatively small examples published in existing
literature [1]. A P4-based implementation helps drive the devel-
opment of the language by illustrating challenges and identifying
future directions for research. Finally, for users of P4, we hope that
making the code publicly available with an extensive description
will provide a useful, concrete example of techniques that can be
applied to other dataplane applications. All source code, as well
as a demo running in Mininet, is publicly available under an open
source license1.

The rest of this paper is organized as follows. We first provide
short summaries of the Paxos protocol (§2) and the P4 language
(§3). We then discuss our implementation in detail (§4), followed
by a discussion of optimizations, challenges, and future work (§5).
Finally, we discuss related work (§6), and conclude (§7).

1https://github.com/usi-systems/p4paxos

ACM SIGCOMM Computer Communication Review 19 Volume 46, Number 2, April 2016

SIGCOMM CCR 2016

Consensus at line rate

12



Example: NetPaxos

Proposer Proposer

Learner

Coordinator

AcceptorAcceptorAcceptor

Coordinator Backup

Learner

Facilitate
software API

Alleviate
bottlenecks

μs P4FPGA SDNet Netronome

Forwarding 0.37 0.73 -

Coordinator 0.72 1.21 0.33±0.01

Acceptor 0.79 1.44 0.81±0.01

Consensus is a 
fundamental 

problem for fault-
tolerant systems

• Offering consensus as a network service has 
significant performance benefits

• Implement Paxos logic in network devices
• Demonstrate consensus at 9 M msgs / s

(4.3x improvement) and low latency (80% 
reduction)



Data aggregation for ML and graph analytics

14

HotNets 2017



Example: DAIET

Data aggregation is 

a common task in 

many DC apps; high 

potential for ML

• Offload aggregation task to switches to 

alleviate communication bottlenecks and 

improve overall training time

• Exploit full network bandwidth of workers

https://sands.kaust.edu.sa/daiet/

Worker 1 

Updates

Worker 2 

Updates
… Worker N 

Updates

Sum updates

Aggregation micro-benchmark:
• 1.28GB, 320M-element tensor

• Tofino switch

• 2 to 8 workers at 10Gbps

Results:

Transfer time 1.9 s (1.56s optimal limit)

https://sands.kaust.edu.sa/daiet/


Time has come for in-network computing
The ball is in your court
• Some other ideas:

• Congestion control, resource allocation (HotCoCoA, Sweden, Sharma et al. NSDI ’17)
• Network measurements (Marple, Sonata, Dapper, INT)
• Load balancing (SilkRoad)

• Consensus protocols (NetPaxos, NoPaxos, Eris, NetChain)
• Caching (IncBricks, NetCache)
• Stream processing (Linear Road)

With great powers come great responsibilities
Use in-network computing judiciously!

16


