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SINTESIS IN SITU SECARA ENZIMATIK BAGI HIDROGEL KOLAGEN-

KITOSAN MENGGUNAKAN KOLAGEN DIPRARAWAT DENGAN 

ULTRASONIK 

 

ABSTRAK 

 

Beberapa tahun kebelakangan ini, hidrogel suntik telah menunjukkan potensi 

yang besar untuk aplikasi bioperubatan kerana mempunyai ciri-ciri yang jelas 

berbeza, iaitu penggelan in situ. Dalam kajian ini, rawatan ultrasonik diperkenalkan 

untuk merawat kolagen daripada tendon untuk mengurangkan saiz fibril dan 

mencegah agregasi fibril. Kolagen (Kol) yang diperawat dengan ultrasonik telah 

digabungkan dengan kitosan (Kit) untuk meningkatkan sifat fizikal hidrogel. 

Komposit hidrogel dibentuk oleh gabungan oksidatif kumpulan fenolik hidroksil (Ph) 

dalam rantaian polimer dengan menggunakan peroksidase lobak kuda (HRP) dan 

hidrogen peroksida (H2O2). Kol-Kit-Ph yang terhasil dapat membentuk hidrogel 

yang cepat melalui tindak balas sambung silang yang dimangkin oleh peroksidase. 

Konsentrasi HRP dan H2O2 didapati mempengaruhi masa penggelan Kol-Kit-Ph. 

Selain itu, nisbah Kolagen kepada Kitosan (Kol:Kit) didapati mempengaruhi ciri 

fizikal, in vitro dan mekanikal hidrogel komposit dengan ketara. Hidrogel dengan 

komposisi chitosan yang lebih tinggi mempunyai penggelan yang lebih cepat, 

kekuatan mekanikal yang lebih tinggi, dan degradabiliti yang lebih rendah, tetapi 

menghasilkan keliangan matriks hidrogel yang lebih rendah. Keputusan yang 

diperolehi dalam kajian ini menunjukkan kepentingan nisbah kitosan kepada 

komposit hidrogel suntikan Kol-Kit-Ph. Keputusan yang paling ketara diperolehi 

dalam konjugat hidrogel dengan nisbah Kol:Khit 3:2, yang mempunyai kadar 



xviii 

pertumbuhan sel tertinggi berbanding yang lain selepas 5 hari inkubasi. Oleh itu, 

hidrogel ini mempunyai potensi untuk digunakan dalam bidang bioperubatan kerana 

ia stabil dari segi mekanikal dan menyokong fungsi selular. 
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IN SITU ENZYMATIC SYNTHESIS OF COLLAGEN-CHITOSAN 

HYDROGEL USING ULTRASONIC PRETREATED COLLAGEN 

 

ABSTRACT 

 

In recent years, injectable hydrogel has shown great potential for biomedical 

applications owing to its distinct properties of in situ gelation. In this research, 

ultrasonication was introduced to pretreat tendon collagen used in the project to 

reduce the size of fibrils and prevent fibril aggregation. The pretreated collagen (Col) 

was combined with chitosan (Chit) to improve the physical properties of hydrogels. 

Composite hydrogel was formed by oxidative coupling of the phenolic hydroxyl (Ph) 

groups in polymer chains using horseradish peroxidase (HRP) and hydrogen 

peroxide (H2O2). The resulting Col-Chit-Ph solutions were able to form rapid 

hydrogel via peroxidase-catalyzed crosslinking reaction. The concentration of HRP 

and H2O2 affected the gelation time of Col-Chit-Ph hydrogels. Besides, the Col to 

Chit (Col:Chit) ratio also significantly influenced the physical, in vitro and 

mechanical characteristics of composite hydrogels. The hydrogel with a higher 

composition of chitosan has faster gelation, higher mechanical strength, and lower 

degradability, but resulted in lower porosity of the hydrogel matrix. The results 

obtained in this study reveal the importance of the chitosan ratio to the Col-Chit-Ph 

injectable hydrogel composite. The most significant results were obtained in the 

conjugate hydrogel with Col:Chit ratio of 3:2, which has the highest cell growth rate 

compared to others after 5 days of incubations. Hence, this hydrogel has the potential for 

use in the biomedical fields as it is mechanically stable and supports cellular functions.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Development of injectable hydrogels 

 Injectable hydrogel, which is also known as in situ forming hydrogel, has 

attracted growing interest in biomedical fields recently. Numerous studies on 

adapting injectable hydrogels as biomaterials have been reported owing to its ability 

to undergo an in situ solution to gel transition when administrated into the body (Liu 

et al., 2016). When compared to preformed hydrogels transplantation, injectable 

systems are more desirable as they allow accurate filling of irregular-shaped defects 

by simple injection of the hydrogel precursor solution to defect site. Injectable 

hydrogels can be fabricated by several crosslinking methods, mainly classified into 

physical and chemical crosslinking. These conventional crosslinking methods 

generally exhibit limitation of operational complexity, low stability, inefficiency 

coupling reactions and potential cytotoxic effects. Instead, enzymatic crosslinking 

method is considered as an effective route for development of injectable in situ 

forming hydrogels due to its high site specificity, rapid gelation and relatively mild 

reaction conditions that are suitable for living cells (Liu et al., 2017). Besides, 

undesirable side effects to cells can be prevented owing to the substrate specificity of 

the enzyme. In this study, an injectable enzymatically crosslinked hydrogels was 

synthesized via horseradish peroxidase (HRP) catalyzed crosslinking reaction in the 

presence of hydrogen peroxide (H2O2).  

 

In addition to the crosslinking method, the biomaterials used for developing 

injectable hydrogels are of great importance (Heydarkhan-Hagvall et al., 2008). A 
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wide range of biomaterials, either naturally or synthetically-derived, have been 

exploited for biomedical uses. Naturally-derived biomaterials are the most common 

biomaterials used for synthesis of injectable hydrogels due to its intrinsic 

characteristic that promotes a better interaction with cells (Dhandayuthapani et al., 

2011). The natural materials used as injectable hydrogels include collagen, gelatin, 

chitosan, fibrin, alginate, heparin, hyaluronic acid and chondroitin sulphate (Liu et al., 

2017). Among these natural biomaterials, collagen is well-known for diverse 

biomedical applications owing to its biocompatibility, biodegradability and weak 

antigenic properties. It has been widely investigated for potential use as surgical 

suture, hemostatic agents, wound dressings and injectable biomaterials (Miller et al., 

1964, Cameron, 1978, Ruszczak, 2003, Kuo et al., 2015).  

 

In this study, collagen-based injectable hydrogel was prepared by integrating 

collagen with chitosan. Chitosan is a biomaterial known for being non-toxic, 

contains antibacterial properties and has structural similarity to glucosaminoglycans 

(GAGs) of the extracellular matrix. Previous studies confirmed that the combination 

of chitosan with collagen could improve the physical properties of injectable 

hydrogels (Chen et al., 2005). Nevertheless, there is no other research reported about 

the fabrication of this collagen (Col)-chitosan (Chit) composite hydrogel conjugated 

with phenolic hydroxyl (Ph) groups. The injectable Col-Chit conjugate hydrogels 

fabricated in this work may offer unique mechanical and biological properties for 

potential use in biomedical applications. 
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1.2 Problem Statement 

Collagen has been considered as the most popular biomaterials in biomedical 

fields due to its excellent biocompatibility, biodegradability and weakly antigenic 

properties. The advantages of collagen have been evidenced by extensive 

investigation, mainly as wound dressings, tissue engineered scaffolds or matrices for 

drug delivery (Ruszczak, 2003, Lee et al., 2001, Wallace & Rosenblatt, 2003). In 

spite of the many advantages of collagen, this natural material has poor physical 

characteristic and rapid degradation rate that limit their practical use. Its mechanical 

strength is insufficient to maintain the structural stability of scaffolding materials, 

such as collagen hydrogels (Tangsadthakun et al., 2007). The composite of collagen 

with chitosan could overcome the limitations of hydrogels fabricated with collagen 

alone (Lee et al., 2001). However, collagen-chitosan composites do not exist together 

as blends in nature. The composite hydrogel from these two materials could resemble 

the main features of ECM, where collagen fibrils provide an excellent environment 

for cell activity while chitosan improves the mechanical properties of the hydrogel. 

 

The collagen used in this study was extracted from ovine tendon, which is 

typically discarded as waste. Collagen extracted from ovine tendon is considered as 

cheap source of raw materials and large quantities of collagen can be isolated and 

purified for research purposes. However, compared to epidermal collagen fibrils 

which was proposed by Kuo et al. (2015) for the synthesis of injectable collagen-

phenolic hydroxyl (collagen-Ph) hydrogel, tendon collagen fibrils were found to 

have limitations in terms of having large fibrils and aggregation of fibrils (Gathercole 

et al., 1987). The large collagen fibrils limit modifications that could be done to it, 

such as the conjugation of phenolic hydroxyl groups conducted in the current study. 
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Preliminary work on the present study showed that untreated ovine tendon collagen 

not only did not mix homogenously with chitosan but also failed to gel in situ. Thus, 

an ultrasonic pretreatment was introduced to reduce the fibrils diameter and prevent 

collagen fibrils aggregation. Furthermore, the composite of ultrasonic pretreated 

collagen and chitosan, conjugated with phenolic hydroxyl (Ph) groups is novel for 

fabrication of in situ enzymatically crosslinked hydrogels. This ultrasonic 

pretreatment could be applied in biomedical applications when using collagen 

extracted from sources that will yield collagen with large fibrils. 

 

1.3 Objectives 

 The primary aim of this study is to develop a novel in situ forming collagen-

chitosan conjugates (Col-Chit-Ph) hydrogel through HRP-catalyzed crosslinking 

reaction.  

 

The specific objectives are: 

1) To study the effect of ultrasonication on the diameter and distribution of collagen 

fibrils 

2) To study the effect of horseradish peroxidase and H2O2 concentrations on the in 

situ gelation of collagen-chitosan composite 

3) To evaluate the physical, in vitro and mechanical characteristics of composite 

hydrogels at different Col:Chit ratio 
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