Understanding & Evaluating Corrosion in Wastewater Collection Systems

Jeff Maier, PE Summit Water Consulting, LLC P.O. Box 2391 Evergreen, CO 80437 303-229-0679

SWC Summit Water Consulting, LLC

Understanding & Evaluating Corrosion in Wastewater Collection Systems

<u>Part 1</u>:

The problem of corrosion in wastewater systems

<u>Part 2</u>:

Evaluating corrosion through proper inspection & condition assessment

Focus will be on gravity pipelines and manholes

Corrosion is a big problem!

- A primary cause of failure in wastewater systems
- Causes billions of dollars of damage annually
- Out-of-site, out-of-mind asset management approach not helping!

ASCE assigned a grade of "D" to our nation's wastewater infrastructure in 2013.

Corrosion is a big problem!

\$298 Billion is needed over the next 20 years for America's wastewater infrastructure!

> <u>Key Concerns</u>: Capacity Corrosion Capital

What can corrode in wastewater systems?

Does Corrode:

- Unlined concrete manholes, pipes, structures
- Steel & metallic pipe, structures , components
- Mortar in brick manholes & pipes

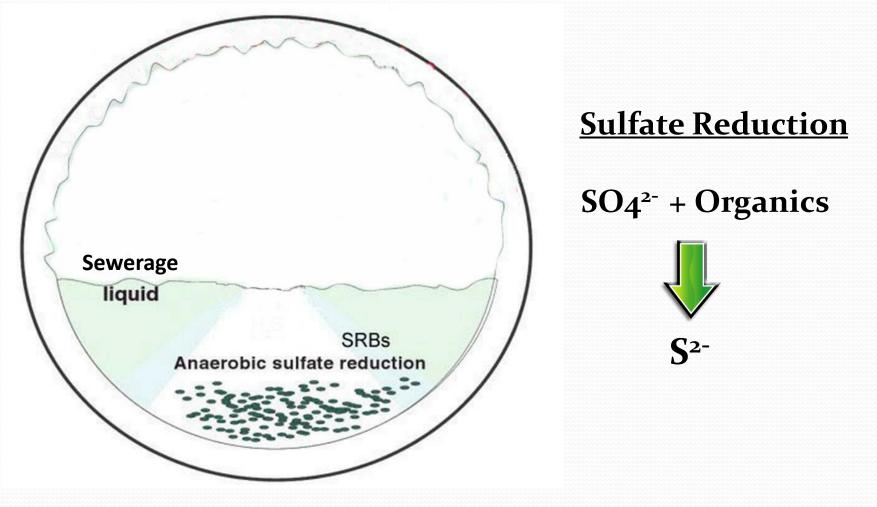
Does Not Corrode:

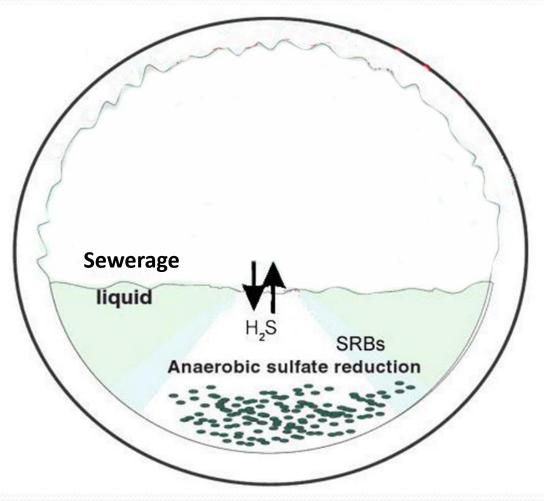
- PVC, HDPE & plastic pipe, structures, components
- Fiberglass/ FRP, composite pipe, lining & structures
- Clay pipe and bricks
- High performance coating/ lining materials

Why is my wastewater system corroding?

Possible Common Reasons:

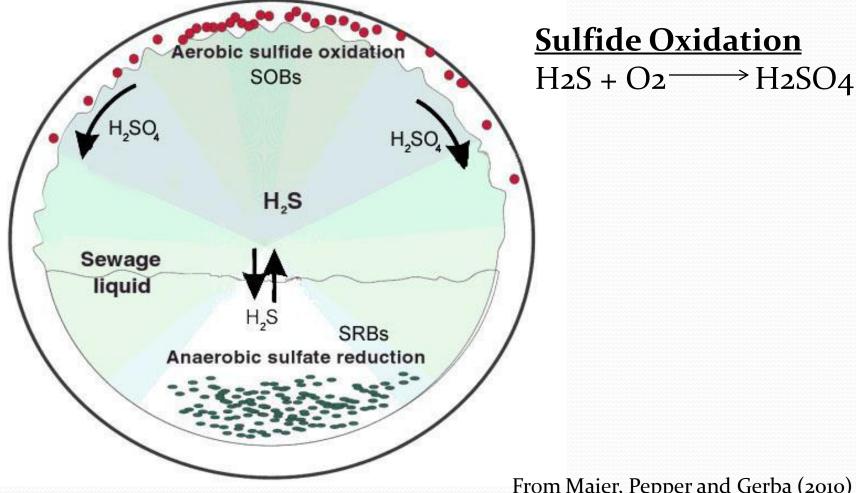
- Microbial-Induced Corrosion (MIC)
- Corrosive Soils
- Highly corrosive industrial waste dumping
- Cathodic protection issues (metallic only)


Most common cause of corrosion in wastewater pipelines and manholes is due to MIC

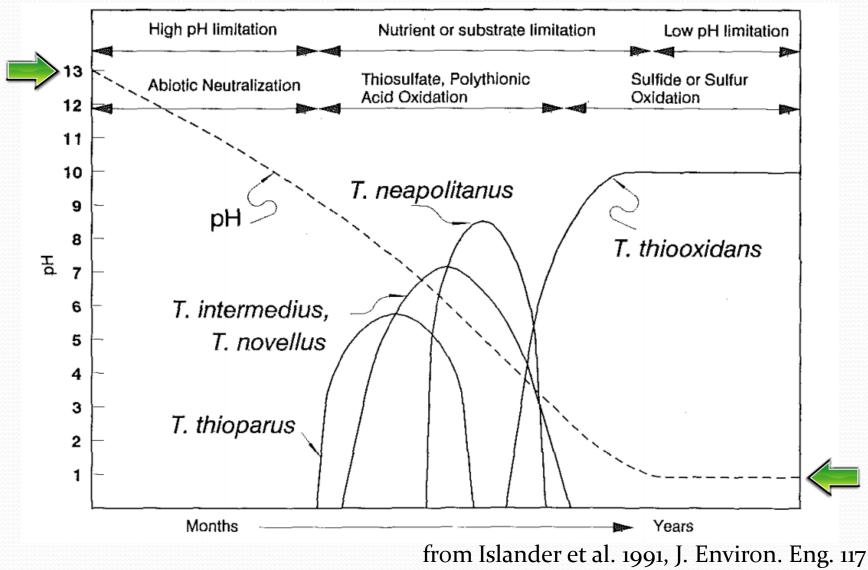

- Deterioration of wastewater collection systems from biogenic sulfide corrosion
 - Headspace (vapor phase) environments above flow of the waste stream
 - Characterized by elevated levels of hydrogen sulfide (H₂S)
 - Biological oxidation of H₂S to H₂SO₄ within headspace areas of enclosed wastewater structures

$$H_2S + O_2 \xrightarrow{Thiobacillus SOB} H_2SO_4$$

• H₂SO₄ attacks the matrix of the concrete above the waterline (*i.e., pipe crowns, walls, etc*)


From Maier, Pepper and Gerba (2010) Environmental Microbiology, AP

Sulfide Partitioning


$S^{2-} \longrightarrow HS^{-} \longrightarrow H2S Gas$

From Maier, Pepper and Gerba (2010) Environmental Microbiology, AP

From Maier, Pepper and Gerba (2010) Environmental Microbiology, AP

MIC Corrosion Bacterial Progression

Wastewater Corrosion Culprits

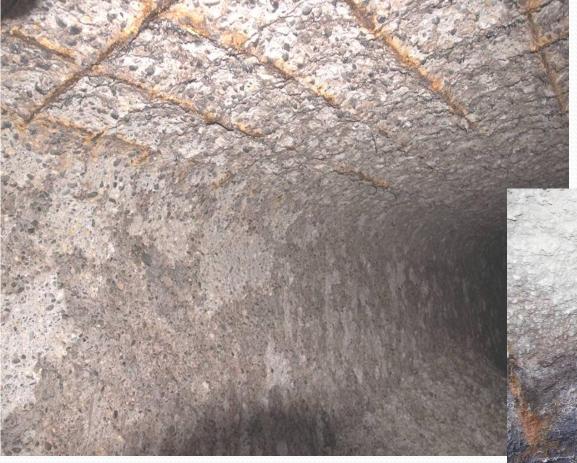
Contributing factors of MIC wastewater corrosion:

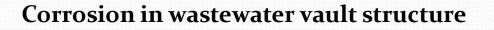
- Elevated HsS, CO2, ammonias, other sewer gases
- Turbulent flows
- High sulfide levels
- Elevated temperatures
- High BOD sources
- Industrial waste
- Stagnant, septic sewerage

Typical Wastewater Corrosion Hotspots

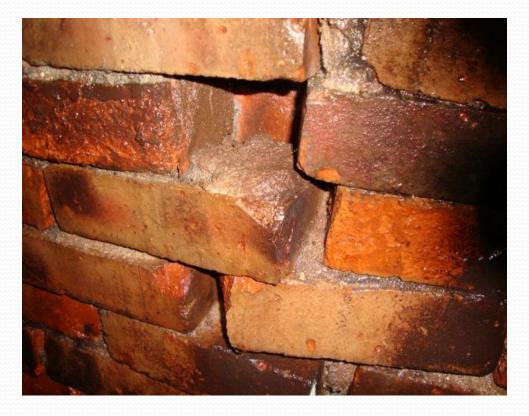
Elevated H₂S levels & MIC sulfide corrosion common in:

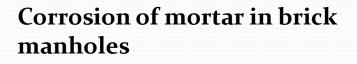
- Forcemain outfall locations
- Locations with turbulent flows
- Areas with poor air handling
- Drop manholes
- Junction structures
- Wet wells
- Siphons
- Larger systems


Corrosion in concrete manholes



Corrosion in concrete manholes




Corrosion in concrete pipelines

Corrosion of metallic manhole frame & cover

How to conquer corrosion problems:

- Education, training and experience
- Implement comprehensive inspection & condition assessment programs to identify corrosion problems before failures occur
- Proactive, instead of reactive asset management
- Understand your system, understand the problems...
 Find the solution!

Education and Training

NACE (National Association of Corrosion Engineers)

• Extensive corrosion training & certification programs

- CIP Coatings Inspector Programs
- Corrosion Technologist Programs
- Cathodic Protection Specialist Programs
- Pipeline Corrosion Integrity Management Programs
- Corrosion General Education

THE CORROSION SOCIETY

NACE (National Association of Corrosion Engineers)

Standards & Publications

- Substrate corrosion evaluation standards
- Surface preparation standards
- Quality control standards
- Published corrosion education materials

Task Groups

- Industry specific focus
- TG 466 Wastewater Corrosion

THE CORROSION SOCIETY

NACE (National Association of Corrosion Engineers)

• Task Group 466

- "Identifying Corrosion Problems and Mitigation Strategies in Wastewater Systems"
- Comprehensive document written by top industry experts
- Wastewater corrosion overview
- Rehabilitation solutions
- Balloting in progress

SSPC (Society for Protective Coatings)

- Training & Certification Programs
 - Protective Coatings Specialist (PCS)
 - Concrete coatings/ linings inspection programs
 - Inspector and contractor training & certification programs
 - Coatings/ linings, corrosion education
- Standards & Publications
 - Surface preparation standards
 - Quality control standards
 - Published educational materials

Other good resources:

- NASTT (North American Society for Trenchless Technology)
 - Condition assessment educational resources
 - Trenchless rehabilitation educational resources
 - No-Dig Conference and numerous short-course programs

- NASSCO (National Association of Sewer System Contractors)
 - PACP/ MACP/ LACP condition assessment inspector training
 - CIPP pipe rehab inspector training & certification
 - Educational resources

Finding the Solutions...

Understanding corrosion, understanding your system

- Proper inspection & condition assessment provides foundation for asset management and rehabilitation
- Understanding your rehabilitation options:
 - Choosing correct rehabilitation/ repair methods & products
 - Benefits of rehabilitation
 - Importance of surface preparation
 - Importance of qualified contractors
 - Understanding limitations
- Rehabilitation design QA/QC

Do it right the first time!

Evaluating Corrosion through Proper Inspection & Condition Assessment

Importance of Inspection & Condition Assessment

- Key component of successful asset management programs
- Proactive condition assessment prevents failures
- Basis for informed, risk management decision making
- Improves budgeting & capital management
- Critical for selecting rehabilitation/ repair methods

Collecting & analyzing data is relatively straightforward; Understanding what to do with it and how to apply the results requires experience.

Different Wastewater Assets Require Different Condition Assessment Approaches:

Gravity Pipelines

CCTV, Advanced Multi-Sensor Systems, Entry Inspection

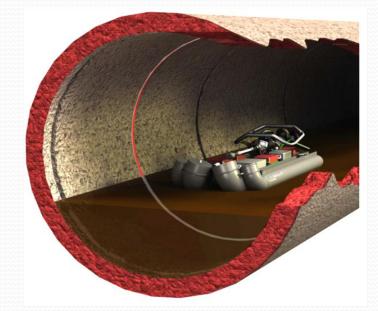
Manholes

- Surface inspection, Entry inspection, Advanced Systems
- Various inspection & condition assessment techniques should be considered *tools for the tool box*
- Total system understanding is important
- Focus initial inspections around "hot spots"

Regardless of approach taken and structure type inspected, having an expert involved with a trained eye is critical to performing inspection & condition assessment tasks properly.

Pipeline Inspection & Condition Assessment <u>CCTV Inspection</u>

- Most pipeline condition assessment data today is collected using CCTV systems
- Basic visual inspection information, above the waterline
- Basis for NASSCO PACP/ LACP rating system
- Cost effective
- Readily available
- Helps identify defects
- Non-quantifiable info


NASSCO PACP Pipe Condition Rating System

- Pipeline Assessment Certification Program
- Standardized condition assessment rating system for wastewater pipes
- Pipe condition & defects rated from 1 to 5 (1= good, 5= poor)
- Lateral condition assessment rating system (LACP)
- Features specific, detailed defect coding
 - Pipe structural defects (cracking, breakage, etc)
 - Corrosion
 - Infiltration
 - Deformation
 - Roots

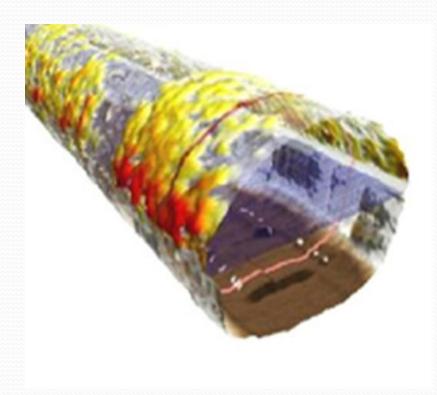
Advanced Pipeline Condition Assessment Technology

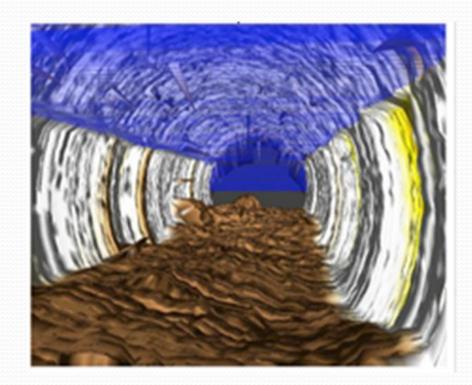
- Cutting edge robotic, multi-sensor systems
- Provides comprehensive, *quantifiable* inspection data
- Most accurate, but most expensive
- Less reliant on defect identification by operator
- Long & deep deployments
- Composite results package
- All systems include CCTV

Advanced Pipeline Condition Assessment Technology

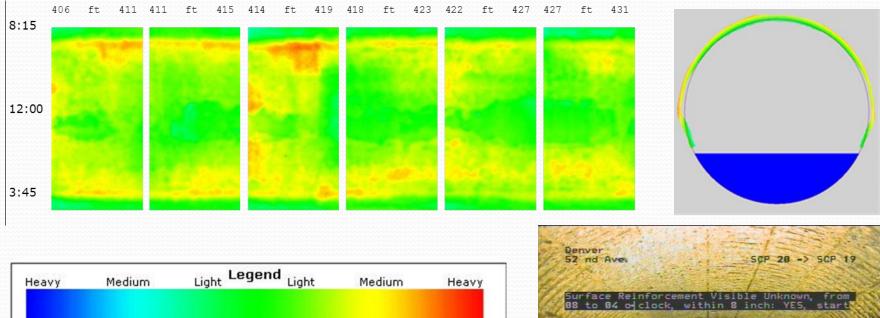
 Multi-sensor systems feature Laser Profiling, SONAR, Pipe Penetrating RADAR, HD-CCTV, Gas Detection, etc.

Advanced Pipeline Condition Assessment Technology


- LASER Profiling Detects defects in 3-D, ovality, corrosion damage, deflection, and material loss
- SONAR Detects defects under water, debris quantification
- *Pipe Penetrating RADAR* Ability to "see through" pipe wall, assess rebar condition, corrosion extents, detects defects
- HD-CCTV- Higher quality CCTV picture that is correlated to multi-sensor data
- Gas detection Can detect H2S gas levels within pipe, can be used to correlate corrosion patterns


Example inspection data from CCTV

Pipeline Inspection & Condition Assessment


Example 3-D inspection data from LASER profile/ SONAR system

Pipeline Inspection & Condition Assessment

Example flat graph inspection data from LASER profile/ SONAR system, with HD-CCTV image

-2.5	-1.5	-0.5	Ō	+0.5	+1.5	+2.5
Measured ID Decrease (in)		No ID Change			Measured ID Increase (in)	

Pipeline Inspection & Condition Assessment

Example inspection data from PPR system

Manhole Inspection & Condition Assessment Surface Inspection (Level 1)

- Provides basic visual impression of MH condition
- Faster & safer than entry inspection, but less accurate
- Requires no confined space set up & equipment
- Basic inspection info & be used to determine if entry inspection is necessary
- Inspection probes may be utilized

Manhole Inspection & Condition Assessment Entry Inspection (Level 2)

- More accurate than surface inspections
- Comprehensive inspection from top to bottom
- Requires confined space entry
- Proper safety procedures MUST be followed
- Multi-person crew required

Inspection information is only as good as the expertise of the people doing the actual inspection work and subsequent data assessment

Proper training, experience & safety is essential!

Gathering Essential Information: Step by Step

Manhole Inspection Procedures

All Confined Space regulations are to be followed as per OSHA 1910.146

Step 1 – Inspect MH Frame & Cover, Exterior

Photo A

Photo B

Missing chunks & cracks

No mating surface due to rusting/ corrosion

Photo C

Photo D

Good flat mating surface minimum of 5/8" in width. Clean with minimal rust

Photo E

Photo F

Rounded, tapered edge from rust and wear

Clean flat edges for load transfer.

Step 2 – MH Interior Inspection, Major Defect Identification & Safety Assessment

Missing barrel section

Step 3 - MH Entry Inspection - Measure & Quantify Extents of Corrosion

Courtesy of Joe Nuciforo - JPCI Services

Step 4 – Determine Total Material Loss due to Corrosion

- Clean spot on each side of manhole to solid concrete
- Measure distance across MH for new I.D.
- Typical 5' dia. MH = 59" to 61" new
- (New MH dia. measured MH dia.)/ 2 = Material lost on walls

Example :

New I.D. 67" 67"-61" =6" 6" / 2 = 3" lost

A new concrete barrel section is typically 6" to 7" thick so you know you have lost approximately ½ of the mass of the manhole.

Step 5 – Inspect Bench, Invert, and Pipes

- Probe bench & channel walls to measure extents of corrosion
- Inspect invert for irregular flow patterns
- Inspect pipe opening for cracks, failing PVC, other defects

Courtesy of Joe Nuciforo - JPCI Services

Bench has deteriorated and there is no invert left

<u>Record Inspection</u> <u>Information</u>

- Inspection forms for each MH
- Keep track of photos
- Accurate, detailed information is critical

NSPECTOR:	MANHOLE #
ROJECT	PROJECT
AME:	NUMBER:
OCATION:	
IPELINE AME:	
INSPECTION TYPE:	MANHOLE/STRUCTURE TYPE:
U SURFACE INSPECTION ENTRY INSPECTION	AIRVAC MANHOLE STRUCTURE
ATITUDE/ LONGITUDE: MANHOLE LOCATION DESC	
MANHOLE: DIAMETER BARREL CONDITON: MATERIAL:	SHOW FORCEMAIN
GOOD (1) BRICK	FLOW DIRECTION, MH N COVER LOCATION & N
FAIR (2) PRE-CAST CONCRETE PLATFORM	
POOR (4) PVC LINED CONE	FLATTOP
DEFECTS OBSERVED: FRAME & COVER: BENCH SURF	
OFFSET JOINTS GOOD CONDITION GRAVEL	
CRACKING FAIR CONDITION SOIL	
SPALLING RAISE/LOWER	$ \sim$
CORROSION BOLTED	
HYDRAULIC OBSERVATION:	MH ACCESS: SURFACE TYPE:
SURCHARGE EVIDENCE:	
WATER INFILTRATION:	PAVED DIRT/GRAVEL LANDSCAPE
OTHER:	
CORROSION OBSERVED/ DEPTH OF PENETRATION:	# STEPS FRAME OPENING SIZE # RISER RINGS
NONE 0"-1/4" 1/4"-1/2" 1/2"-1" 1"-2 2"+	CONDITION OF MANHOLE
LIST VIDEO #/# OF PHOTOS FOR INSPECTION:	- · · · · · · · · · · · · · · · · · · ·
NSPECTION EQUIPMENT USED:	
NSP. START TIME: FINISH TIME:	
INSPECTION NOTES:	
	
	7
	⊣ ∳ [
	and the second second
	的一般也是在此是一种意义。
	CONDITION OF BENCH/ BOTTOM:

NASSCO MACP Manhole Condition Rating System

- Manhole Assessment Certification Program
- Standardized condition assessment rating system for wastewater manholes
- MH condition & defects rated 1 to 5 (1= good, 5= poor)
- Features specific, detailed defect coding
 - Structural defects (cracking, missing sections, etc)
 - Corrosion issues
 - Frame & Cover Condition
 - o Infiltration
 - Steps

Advanced & Emerging MH Inspection Methods

• <u>Pole Cameras</u>

- Close visual inspection from surface
- Multiple people can see inspection footage
- No confined space entry

Manhole Inspection & Condition Assessment Advanced & Emerging MH Inspection Methods

- <u>Rapid Deployment 3-D Manhole Inspection Technologies</u>
 - Rapid deployment from surface
 - Complete capture of geometric and visual data
 - No confined space entry
 - 3-D Model verifies diameter & defects

The Importance of Doing Things Correctly...

- Inspection & Condition Assessment information are the basis for rehabilitation/ repair designs
- Critical asset management & budgeting decisions are based on the condition assessment info & prioritizations
- Often times, inexperienced junior office & field staff perform inspection work and condition assessment ratings
- Poorly managed inspection and condition assessment programs can lead to costly problems!

The Importance of Doing Things Correctly...

Getting *true experts* involved in your condition assessment & asset management programs will ensure:

- High quality, reliable inspection data is gathered
- Condition assessment ratings & prioritizations are accurate
- The right repair/ rehabilitation approach is recommended
- Proactive asset management strategies are implemented
- Less failures due to corrosion & fewer costly surprises
- More accurate budgeting, scheduling, and cost estimates
- Better details of existing conditions to contractors, thus reducing risk and ultimately bid prices
- More successful projects, better prices, less change orders

Your asset management program is only as good as the information and expertise you are working with.

Thank You!

Jeff Maier, PE Summit Water Consulting, LLC P.O. Box 2391 Evergreen, CO 80437 303-229-0679

jeff.maier@summitwaterconsulting.com

SWC Summit Water Consulting, LLC