1. Scattering RT Calculations

“We come spinning out of mothingness, scattering
stars like dust.” - Jalal ad-Din Rumi (Persian Poet,
1207-1278)

We’ve considered solutions to the radiative trans-
fer equation for the obvious situation in which there
is no source function. We’ve also solved the radiative
transfer for an isotropic source function, by making
the common approximation that the atmosphere can
be subdivided into plane parallel levels that are thin
enough that the temperature and composition can be
assumed to be constant within the layer. In this case
the source function is not only isotropic but also con-
stant within the layer.

Here we consider that case where the source func-
tion is neither constant, nor isotropic. This case ap-
plies to the scattering of sunlight off of planetary at-
mospheres, particularly for Titan, which has hazy at-
mosphere, with particles that are highly forward scat-
tering. To address the non-constant nature of the
source function, we again subdivide the atmosphere
into homogeneous layers. To address the anisotropic
nature of the source function we discretize the angu-
lar integration of the source function. However, it is
important to note that there are other ways of solv-
ing the radiative transfer equation, that don’t involve
any of these quantization tricks.

1.1. Phase Function

To quantify the scattering of particulates we de-
fine the phase function, p(¢’,¢’, 0, ¢), which depends
on the direction of the incident light, characterized by
0" and ¢, and the direction of the outgoing radiation
of direction # and ¢. As such the scattering charac-
teristics of one oddly shaped particle depends on four
variables, and can be quite complicated. However, in
an atmosphere the suspended particles usually have
no preferred orientation. In this case, there is no pre-
ferred orientation, and the scattering phase function
depends only on the scattering angle, i.e. the angle
(©) between the direction of incident and scattered
radiation (Fig. 1). Exceptions to this rule are snow
flakes, which become oriented, and raindrops, which
become pie-shaped, as they fall.

The phase function is defined as the angular cross
section per particle, o(8’, ¢, 0, ¢), normalized to the
angular cross section integrated over a complete solid
angle:
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or, assuming “disoriented” particles such that

p(0',¢',0,¢) = p(cos ©),

we have:
B o(cos ©)
pleos ©) = [, A o(cos ©) /4m’
Thus: o
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The probability of a scattering event in a region of
solid angle of df? around © is
p(cos O)

o (3)

Incident Light

Fig. 1.— Definition of the scattering angle, O.

A particle’s phase function depends on it’s size rel-
ative to the wavelength of incident light, A\, which is
defined by the size parameter, x:

r=—"), 4)

where r is the size or radius. In addition the phase
function depends on the particle’s shape. Fig. 2
shows how spherical particles display more forward
scattering the larger the size parameter. If the size pa-
rameter is small enough then light is scattered equally
in the forward and backward direction. This can
be seen from Rayleigh scattering (named after Lord
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Fig. 2— Phase functions for different z.

Rayleigh, who in 1871 worked out its properties),
which is the scattering of particles for which x << 1.
It characterizes therefore the scattering of sunlight by
the molecules in an atmosphere.

1.2. Source Function for Scattering

From the definition of intensity of light, I,,, we can
write the energy incident normally on an area dA in
the direction (6’,¢’) , within the solid angle dQ' in
time dt and frequency interval dv centered at v is:

dE!, = 1,(0',¢') dA dt dv d

The energy scattered is attenuated by ogsds (where
ds is the path length and oy is the scattering cross
section).

Now p(¢',¢'; 0, @) /4w is essentially the probability
density function, as evident from Eq. 1. Therefore the
incoming intensity of light multiplied by this proba-
bility density tells us what fraction of light, coming
from the direction (¢’,¢’), is scattered into the solid
angle dQ in the direction (0, ¢). The total scattering
energy emerging in a direction (6, ¢) from a volume
element dV=ds dA from all the radiation from all in-
cident solid angles can then be derived by integrating
over the incoming incident angles:

dE, = o(v) dV dt dv d2 dsy ]%?IV(H', @).
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The emission coefficient for scattering is then:
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And the source function for scattering is:
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where o, is the total extinction coefficient, equal to
the sum of the scattering and absorption cross sec-
tions, o5 and o,. The term o4/, = 05/(0s + 04) =
ay is called the single scattering albedo and, less than
unity, is the probability of a scattering for each ex-
tinction. The probability for absorption is then 1-a,.
The radiative transfer equation for multiple scatter-
ing and emission can be written as:

—dL' =—-I,+[1—-a,B,(T)
dr
aV ! / /
i | a2 .. (6)

We integrate the incident intensity (primes) over all
solid angles to determine the contribution of scattered
intensity into the particular solid angle of interest.

For many problems, the atmosphere can be treated
as a collection of overlying parallel layers, which if
subdivided finely enough, are of uniform composi-
tion and temperature. For such a plane-parallel at-
mosphere it is common to designate 7 as the verti-
cal optical depth such that the actual path of light
through a layer depends on the zenith angle, 6, at
which photons enter the layer. The optical depth of
this slant path is then:

s = 7/lul; (7)

where |p| = |cos 6.

2. Particle Scattering

Generally gas and particles do not scatter isotrop-
ically. The phase function, scattering efficiency, and
single scattering albedo depend on the size of the scat-
terers relative to the wavelength of light, the shape of
the particles, and for large particles, the indices of
refraction. Scattering can change the polarization of
light, which then also must be considered in a full de-
scription of scattering effect. We will begin by defin-
ing a few terms and then examine a few particular
cases of the single scattering of light.



3. Rayleigh Scattering

Rayleigh scattering describes the scattering of sun-
light by gas molecules in the atmosphere, and was
originally formulated by Lord Rayleigh (1871) to ex-
plain the color and polarization of the light from the
sky. More generally, it describes the scattering of light
by particles much smaller than the wavelength of the
light, and smaller than the wavelength of the light
divided by the magnitude, |n|, of the index of refrac-
tion (n, —in;). In fact, the scattering properties of
light depend on the size to wavelength ratio. For this
reason we define the size parameter, x as:

_ 2qr

T= (5)

For Rayleigh scattering, z|n| << .

When such a small particle is exposed to E-M
waves, every part of it experiences simultaneously the
E-M field. As a result the particle becomes polarized,
such that the negative charges are displaced from the
more massive (and therefore more fixed) positive nu-
cleus. As a result of the charge separation the par-
ticle acquires a dipole moment, p, which oscillates
because of the externally applied electric field'. The
particle then radiates as a result of the accelerating
charges. An oscillating dipole produces an oscillat-
ing electric field, Egcat, (and therefore an outward
propagating EM wave), which is proportional to the
frequency of the oscillation squared. Since the inten-
sity, i.e. the emitted areal power, is proportional to
the square of the amplitude of the E field, the result-
ing cross section to Rayleigh scattering depends on
wavelength roughly as frequency to the forth power,
i.e. ORray o< A% which paints most sunsets (Fig.
2). The Rayleigh scattering optical depth for an
atmosphere of a particular composition can be ob-
tained from the following website: http : //pds —
atmospheres.nmsu.edu/education,nd,utreach

For a particle of isotropic polarizability the induced
dipole moment of the particle is in the same direction
as the externally applied electric field. Similar to a
classical dipole, the resulting radiation field, i.e. the
electric field of the scattered light, has an amplitude,
E, that is proportional to the projection of the dipole
moment in the direction of the observer. Thus the
intensity of the scattered light, which is proportional
to E2 is proportional to sin?(f), where 6 is the angle

1A dipole moment equals the amount of the charge times the
effective displacement distance of the charges.
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Fig. 3.— Rayleigh scattering of vertically polar-
ized (top) and horizontally (middle) polarized
light scatter polarized light in the different di-
rections shown. Unpolarized light is made up
the sum of equal amounts of the orthogonally
polarized components. (From Petty)



Fig. 4— Sunset. Ipanema, Rio de Janeiro.

between the direction of the dipole moment and the
scattered radiation. Thus the phase function depends
on the polarization state of the incident light. In ad-
dition, Rayleigh scattered light is, depending on the
scattering angle, polarized (Fig. 1).

3.1. Polarization

Consider light moving in the X direction, that is
linearly polarized with an E field in the Z direction
(Fig. 1, top). The dipole moment is then in the Z
direction. The resulting scattered light is then polar-
ized in the Z direction, and has the highest intensity
in the ¥ direction (where 6=0), and has zero intensity
in the Z direction. Now for transverse EM waves, the
E-field is perpendicular to the propagation direction.
Therefore, natural unpolarized light can be consid-
ered as the sum of two linearly polarized waves (in
the § and Z directions) of equal intensity (Fig. 1,
bottom). Therefore, for a single scattering event, un-
polarized light scattered at ©=90° scattering angle
is 100% polarized. In contrast, in the forward and
backward directions (©=0° and ©=180°) light is un-
polarized (Fig. 1). The degree of polarization is:

_ 1—cos?©

14 cos?20° (6)

However for multiple scattering events the the am-
bient light becomes unpolarized. In addition air
molecules (i.e. N3) are non-spherical and therefore

are not entirely of isotropic polarizability. Also scat-
tering due to clouds and aerosols does not polarize
light, and therefore diminishes the polarization of the
sky. The phase function of Rayleigh scattering looks
rather like a symmetric potato, and depends on the
scattering angle as:

TRay(cos ©) = = (1 + cos?(9)). (7)
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3.2. Mie Scattering

If the particles are of similar size or a bit larger
than the wavelength, the Rayleigh approximation can
not be used. The scattering of spherical particles can
be solved analytically, and is called Mie Scattering af-
ter Gustav Mie (18-69-1957) the first to publish the
solution. There are numerous codes available to cal-
culate Mie Scattering both using fortran, C or matlab;
in addition, there is an online Mie Scattering Calcu-
lator at http : //omlc.ogi.edu/calc/miecale.html and

hitp : / Jwww.lightscattering.de/MieCalc/eindex.html.

We will not go into the derivation of the Mie Scat-
tering solution, and instead examine the results of
geometrical optics approximation of scattering off a
single spherical particle, as discussed in Hansen and
Travis (1974) and derived by Liou and Hansen (1971).
They consider the paths of a number of parallel rays
incident on the particle and calculate the reflection
and transmission coefficients from Fresnel’s equations
and the direction of refracted rays from Snell’s law.
The scattered light from all incident rays is summed
to derive the phase function, and polarization of the
scattered light.

TERMINOLOGY FOR
CONTRIBUTIONS TO
2 SCATTERED LIGHT :
B -DIFFRACTION
|- EXTERNAL REFLECTION
2-TWICE REFRACTED RAYS

3-ONE INTERNAL REFLECTION

4-TWO INTERNAL REFLECTIONS

Fig. 5.— The paths of rays encountering a
spherical particle. From Hansen and Travis
(1974).

They subdivide the paths of the rays into cate-
gories that depend on the number of times, [, the ray
encounters the boundary of the sphere. Rays that



entirely miss the particle (I=0) are diffracted in the
forward direction (Fig. 4). The amount of diffracted
light equals the amount striking the particle, inde-
pendent of the particle shape and refractive index.
Therefore the scattering efficiency?, Qscat, of large
non-absorbing particles is 2. For non-absorbing par-
ticles the diffraction constitutes half of the scattered
light. For fully absorbing particles the scattered light
consists mainly of diffracted light, and Q) scq¢ drops to
nearly 1. The polarization of diffracted light mimics
the incident light.

Rays that experience one external reflection (I=1)
causes radiation scattered a 80-120 scattering angle to
be positively polarized. However this component to
the overall scattered light is smaller than that of re-
fracted twice light (I=2) for transparent and partially
transparent spheres. The refracted light concentrates
in the forward direction, and is negatively polarized
(Fig. 3). Light that is internally reflected (I>3) repre-
sents only a small percent of the scattered light. The
single reflection component (I=3) gives rise to a rain-
bow; the second reflection component (I=4) causes a
secondary weaker arc. On Earth, rainbows are seen
at an angle of 42° from the Sun. On Titan, since the
raindrop is made out of methane, which has differ-
ent indices of refraction from water, rainbows would
appear at 49°.

3.3. Indices of refraction

The scattering behavior of particles depend not
only on their size and shape but also on the refractive
indezx, n, of the material:

n=n, +1in;.

The real part of the index, n,, represents the phase
speed of the wave, while the imaginary part, n;, rep-
resents the absorption of light propagating through
the medium. More precisely:

Ny = —,

v
where c is the velocity of light in a vacuum and v is
the velocity in a medium. The change in the speed of
light across a medium, effectively causes the light to
bend. That is, the angle of the light ray to the normal
of the interface between two media, 6, changes as light

2Qscat is defined as the ratio of the scattering cross section,
Oscat to the geometrical cross section, i.e. wr? for a sphere.

Fig. 6.— The scattering efficiency of a material of

n, = 1.33, like water as a function of size parameter
and n;. From Hansen and Travis (1974).

passes from material of one refraction index, n,; to
another, n,.o:

sinf; v Ngo

. b
sinfy Vo Nl

where the angles are shown in Fig. 5

This called Snell’s law in the USA after the Dutch
astronomer Willebrord Snellius (1580-1626). It is
called Descartes’ law in France after the French math-
ematician René Descartes (1596-1650). You can imag-
ine that the real index of refraction affects the re-
fracted light within the particle, giving rise to a dif-
ferent angle between the Sun and a rainbow (Table
1). In addition it affects the phase function of the
particle, through the destructive an constructive in-
terference of light rays.

3.4. Asymmetry Factor

In general, forward scattering increases with par-
ticle size. This can be seen by calculating the asym-
metry factor, g, which is the mean cosine of the scat-
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Fig. 7.— Light passing from a medium of index n..
to index n,s where n,.o > n,q, since 81 > 0.

Table 1: Indices of Refraction

| Material n, (0.59 pm) |
Air 1.0003
Methane 1.29
Water 1.33
Human Lenz 1.40
Crown glass 1.52
Diamond 2.42
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Fig. 8.— The asymmetry factor of a material of n, =
1.33, like water as a function of size parameter and
n,. From Hansen and Travis (1974).

tering angle, weighted by the phase function:

g= [ P(8) cosh dS.
4m

A plot of the asymmetry factor as a function of size
parameter shows how forward scattering increases
with particle size. In addition you can see that it
increases with decreasing n,, because the construc-
tive interference of the diffraction (I=0) and refracted
light (1=2) is enhanced (Fig. 6). Let’s end this sec-
tion with a Mie Scattering sunset (Fig. 7). Now what
about this image is Mie?



Fig. 9.— Mie scattering in a sunset.



