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Abstract

In this white paper we show how to use the CUSPARSE and CUBLAS
libraries to achieve a 2× speedup over CPU in the incomplete-LU and
Cholesky preconditioned iterative methods. We focus on the Bi-Conjugate
Gradient Stabilized and Conjugate Gradient iterative methods, that can
be used to solve large sparse nonsymmetric and symmetric positive defi-
nite linear systems, respectively. Also, we comment on the parallel sparse
triangular solve, which is an essential building block in these algorithms.

1 Introduction

The solution of large sparse linear systems is an important problem in computa-
tional mechanics, atmospheric modeling, geophysics, biology, circuit simulation
and many other applications in the field of computational science and engineer-
ing. In general, these linear systems can be solved using direct or preconditioned
iterative methods. Although the direct methods are often more reliable, they
usually have large memory requirements and do not scale well on massively
parallel computer platforms.

The iterative methods are more amenable to parallelism and therefore can
be used to solve larger problems. Currently, the most popular iterative schemes
belong to the Krylov subspace family of methods. They include Bi-Conjugate
Gradient Stabilized (BiCGStab) and Conjugate Gradient (CG) iterative meth-
ods for nonsymmetric and symmetric positive definite (s.p.d.) linear systems,
respectively [2, 11]. We describe these methods in more detail in the next section.

In practice, we often use a variety of preconditioning techniques to improve
the convergence of the iterative methods. In this white paper we focus on the
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incomplete-LU and Cholesky preconditioning [11], which is one of the most popu-
lar of these preconditioning techniques. It computes an incomplete factorization
of the coefficient matrix and requires a solution of lower and upper triangular
linear systems in every iteration of the iterative method.

In order to implement the preconditioned BiCGStab and CG we use the
sparse matrix-vector multiplication [3, 15] and the sparse triangular solve [8, 16]
implemented in the CUSPARSE library. We point out that the underlying im-
plementation of these algorithms takes advantage of the CUDA parallel pro-
gramming paradigm [5, 9, 13], which allows us to explore the computational
resources of the graphical processing unit (GPU). In our numerical experiments
the incomplete factorization is performed on the CPU (host) and the resulting
lower and upper triangular factors are then transferred to the GPU (device)
memory before starting the iterative method. However, the computation of the
incomplete factorization could also be accelerated on the GPU.

We point out that the parallelism available in these iterative methods de-
pends highly on the sparsity pattern of the coefficient matrix at hand. In our
numerical experiments the incomplete-LU and Cholesky preconditioned itera-
tive methods achieve on average more than 2× speedup using the CUSPARSE
and CUBLAS libraries on the GPU over the MKL [17] implementation on the
CPU. For example, the speedup for the preconditioned iterative methods with
the incomplete-LU and Cholesky factorization with 0 fill-in (ilu0) is shown in
Fig. 1 for matrices resulting from a variety of applications. It will be described
in more detail in the last section.

Figure 1: Speedup of the incomplete-LU and Cholesky (with 0 fill-in) prec. iterative methods
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In the next sections we briefly describe the methods of interest and comment
on the role played in them by the parallel sparse matrix-vector multiplication
and triangular solve algorithms.

2 The Preconditioned Iterative Methods

Let us consider the linear system

Ax = f (1)

where A ∈ Rn×n is a nonsingular coefficient matrix and x, f ∈ Rn are the solution
and right-hand-side vectors.

In general, the iterative methods start with an initial guess and perform a
series of steps that find more accurate approximations to the solution. There
are two types of iterative methods: (i) the stationary iterative methods, such
as the splitting-based Jacobi and Gauss-Seidel (GS), and (ii) the nonstationary
iterative methods, such as the Krylov subspace family of methods, which includes
CG and BiCGStab. As we mentioned earlier we focus on the latter in this white
paper.

The convergence of the iterative methods depends highly on the spectrum of
the coefficient matrix and can be significantly improved using preconditioning.
The preconditioning modifies the spectrum of the coefficient matrix of the linear
system in order to reduce the number of iterative steps required for convergence.
It often involves finding a preconditioning matrix M , such that M−1 is a good
approximation of A−1 and the systems with M are relatively easy to solve.

For the s.p.d. matrix A we can let M be its incomplete-Cholesky factoriza-
tion, so that A ≈ M = R̃T R̃, where R̃ is an upper triangular matrix. Let us
assume that M is nonsingular, then R̃−TAR̃−1 is s.p.d. and instead of solving
the linear system (1), we can solve the preconditioned linear system

(R̃−TAR̃−1)(R̃x) = R̃−T f (2)

The pseudocode for the preconditioned CG iterative method is shown in Alg. 1.
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Algorithm 1 Conjugate Gradient (CG)

1: Letting initial guess be x0, compute r← f−Ax0

2: for i← 1, 2, . . . until convergence do
3: Solve Mz← r . Sparse lower and upper triangular solves
4: ρi ← rT z
5: if i == 1 then
6: p← z
7: else
8: β ← ρi

ρi−1

9: p← z + βp
10: end if
11: Compute q← Ap . Sparse matrix-vector multiplication
12: α← ρi

pTq
13: x← x + αp
14: r← r− αq
15: end for

Notice that in every iteration of the incomplete-Cholesky preconditioned CG
iterative method we need to perform one sparse matrix-vector multiplication and
two triangular solves. The corresponding CG code using the CUSPARSE and
CUBLAS libraries in C programming language is shown below.

/***** CG Code *****/
/* ASSUMPTIONS:

1 . The CUSPARSE and CUBLAS l i b r a r i e s have been i n i t i a l i z e d .
2 . The appropr ia te memory has been a l l o c a t e d and s e t to zero .
3 . The matrix A ( valA , csrRowPtrA , csrColIndA ) and the incomplete−

Cholesky upper t r i a n gu l a r f a c t o r R ( valR , csrRowPtrR , csrColIndR )
have been computed and are pre sent in the dev i ce (GPU) memory . */

// c r e a t e the i n f o and ana lyse the lower and upper t r i a n gu l a r f a c t o r s
cusparseCreateSolveAnalysisInfo(&inforRt ) ;
cusparseCreateSolveAnalysisInfo(&inforR ) ;
cusparseDcsrsv_analysis ( handle , CUSPARSE_OPERATION_TRANSPOSE ,

n , descrR , valR , csrRowPtrR , csrColIndR , inforRt ) ;
cusparseDcsrsv_analysis ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE ,

n , descrR , valR , csrRowPtrR , csrColIndR , inforR ) ;

// 1 : compute i n i t i a l r e s i d u a l r = f − A x0 ( us ing i n i t i a l guess in x )
cusparseDcsrmv ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE , n , n , 1 . 0 ,

descrA , valA , csrRowPtrA , csrColIndA , x , 0 . 0 , r ) ;
cublasDscal (n ,−1.0 , r , 1) ;
cublasDaxpy (n , 1 . 0 , f , 1 , r , 1) ;
nrmr0 = cublasDnrm2 (n , r , 1) ;
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// 2 : r epeat un t i l convergence ( based on max . i t . and r e l a t i v e r e s i d u a l )
f o r ( i=0; i<maxit ; i++){

// 3 : So lve M z = r ( spar s e lower and upper t r i a n gu l a r s o l v e s )
cusparseDcsrsv_solve ( handle , CUSPARSE_OPERATION_TRANSPOSE ,

n , 1 . 0 , descrpR , valR , csrRowPtrR , csrColIndR ,
inforRt , r , t ) ;

cusparseDcsrsv_solve ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE ,
n , 1 . 0 , descrpR , valR , csrRowPtrR , csrColIndR ,
inforR , t , z ) ;

// 4 : \ rho = r ˆ{T} z
rhop= rho ;
rho = cublasDdot (n , r , 1 , z , 1) ;
i f ( i == 0) {

// 6 : p = z
cublasDcopy (n , z , 1 , p , 1) ;

}
e l s e {

// 8 : \beta = rho { i } / \ rho { i−1}
beta= rho/rhop ;
// 9 : p = z + \beta p
cublasDaxpy (n , beta , p , 1 , z , 1) ;
cublasDcopy (n , z , 1 , p , 1) ;

}

// 11 : Compute q = A p ( spar s e matrix−vec to r mu l t i p l i c a t i o n )
cusparseDcsrmv ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE , n , n , 1 . 0 ,

descrA , valA , csrRowPtrA , csrColIndA , p , 0 . 0 , q ) ;

// 12 : \ alpha = \ rho { i } / (pˆ{T} q )
temp = cublasDdot (n , p , 1 , q , 1) ;
alpha= rho/temp ;
// 13 : x = x + \ alpha p
cublasDaxpy (n , alpha , p , 1 , x , 1) ;
// 14 : r = r − \ alpha q
cublasDaxpy (n ,−alpha , q , 1 , r , 1) ;

// check f o r convergence
nrmr = cublasDnrm2 (n , r , 1) ;
i f ( nrmr/nrmr0 < tol ) {

break ;
}

}

// dest roy the ana l y s i s i n f o ( f o r lower and upper t r i a n gu l a r f a c t o r s )
cusparseDestroySolveAnalysisInfo ( inforRt ) ;
cusparseDestroySolveAnalysisInfo ( inforR ) ;

For the nonsymmetric matrix A we can let M be its incomplete-LU factor-
ization, so that A ≈ M = L̃Ũ , where L̃ and Ũ are lower and upper triangular
matrices, respectively. Let us assume that M is nonsingular, then M−1A is
nonsingular and instead of solving the linear system (1), we can solve the pre-
conditioned linear system

(M−1A)x = M−1f (3)
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The pseudocode for the preconditioned BiCGStab iterative method is shown in
Alg. 2.

Algorithm 2 Bi-Conjugate Gradient Stabilized (BiCGStab)

1: Letting initial guess be x0, compute r← f−Ax0

2: Set p← r and choose r̃, for example you can set r̃← r

3: for i← 1, 2, . . . until convergence do
4: ρi ← r̃T r
5: if ρi == 0.0 then
6: method failed
7: end if
8: if i > 1 then
9: if ω == 0.0 then

10: method failed
11: end if
12: β ←

(
ρi
ρi−1

)
×
(
α
ω

)
13: p← r + β(p− ωv)
14: end if
15: Solve M p̂← p . Sparse lower and upper triangular solves
16: Compute q← Ap̂ . Sparse matrix-vector multiplication
17: α← ρi

r̃Tq
18: s← r− αq
19: x← x + αp̂
20: if ||s||2 ≤ tol then
21: method converged
22: end if
23: Solve M ŝ← s . Sparse lower and upper triangular solves
24: Compute t← Aŝ . Sparse matrix-vector multiplication

25: ω ← tTs
tT t

26: x← x + ωŝ
27: r← s− ωt
28: end for

Notice that in every iteration of the incomplete-LU preconditioned BiCGStab
iterative method we need to perform two sparse matrix-vector multiplications
and four triangular solves. The corresponding BiCGStab code using the CUS-
PARSE and CUBLAS libraries in C programming language is shown below.
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/***** BiCGStab Code *****/
/* ASSUMPTIONS:

1 . The CUSPARSE and CUBLAS l i b r a r i e s have been i n i t i a l i z e d .
2 . The appropr ia te memory has been a l l o c a t e d and s e t to zero .
3 . The matrix A ( valA , csrRowPtrA , csrColIndA ) and the incomplete−

LU lower L ( valL , csrRowPtrL , csrColIndL ) and upper U ( valU ,
csrRowPtrU , csrColIndU ) t r i a n gu l a r f a c t o r s have been
computed and are pre sent in the dev i ce (GPU) memory . */

// c r e a t e the i n f o and ana lyse the lower and upper t r i a n gu l a r f a c t o r s
cusparseCreateSolveAnalysisInfo(&infoL ) ;
cusparseCreateSolveAnalysisInfo(&infoU ) ;
cusparseDcsrsv_analysis ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE ,

n , descrL , valL , csrRowPtrL , csrColIndL , infoL ) ;
cusparseDcsrsv_analysis ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE ,

n , descrU , valU , csrRowPtrU , csrColIndU , infoU ) ;

// 1 : compute i n i t i a l r e s i d u a l r = b − A x0 ( us ing i n i t i a l guess in x )
cusparseDcsrmv ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE , n , n , 1 . 0 ,

descrA , valA , csrRowPtrA , csrColIndA , x , 0 . 0 , r ) ;
cublasDscal (n ,−1.0 , r , 1) ;
cublasDaxpy (n , 1 . 0 , f , 1 , r , 1) ;
// 2 : Set p=r and \ t i l d e { r}=r
cublasDcopy (n , r , 1 , p , 1) ;
cublasDcopy (n , r , 1 , rw , 1 ) ;
nrmr0 = cublasDnrm2 (n , r , 1) ;

// 3 : r epeat un t i l convergence ( based on max . i t . and r e l a t i v e r e s i d u a l )
f o r ( i=0; i<maxit ; i++){

// 4 : \ rho = \ t i l d e { r }ˆ{T} r
rhop= rho ;
rho = cublasDdot (n , rw , 1 , r , 1) ;
i f ( i > 0) {

// 12 : \beta = (\ rho { i } / \ rho { i −1}) ( \ alpha / \omega )
beta= ( rho/rhop ) *( alpha/omega ) ;
// 13 : p = r + \beta (p − \omega v )
cublasDaxpy (n ,−omega , q , 1 , p , 1) ;
cublasDscal (n , beta , p , 1) ;
cublasDaxpy (n , 1 . 0 , r , 1 , p , 1) ;

}
// 15 : M \hat{p} = p ( spar s e lower and upper t r i a n gu l a r s o l v e s )
cusparseDcsrsv_solve ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE ,

n , 1 . 0 , descrL , valL , csrRowPtrL , csrColIndL ,
infoL , p , t ) ;

cusparseDcsrsv_solve ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE ,
n , 1 . 0 , descrU , valU , csrRowPtrU , csrColIndU ,
infoU , t , ph ) ;

// 16 : q = A \hat{p} ( spa r s e matrix−vec to r mu l t i p l i c a t i o n )
cusparseDcsrmv ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE , n , n , 1 . 0 ,

descrA , valA , csrRowPtrA , csrColIndA , ph , 0 . 0 , q ) ;

// 17 : \ alpha = \ rho { i } / (\ t i l d e { r }ˆ{T} q )
temp = cublasDdot (n , rw , 1 , q , 1) ;
alpha= rho/temp ;
// 18 : s = r − \ alpha q
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cublasDaxpy (n ,−alpha , q , 1 , r , 1) ;
// 19 : x = x + \ alpha \hat{p}
cublasDaxpy (n , alpha , ph , 1 , x , 1) ;

// 20 : check f o r convergence
nrmr = cublasDnrm2 (n , r , 1) ;
i f ( nrmr/nrmr0 < tol ) {

break ;
}

// 23 : M \hat{ s } = r ( spar s e lower and upper t r i a n gu l a r s o l v e s )
cusparseDcsrsv_solve ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE ,

n , 1 . 0 , descrL , valL , csrRowPtrL , csrColIndL ,
infoL , r , t ) ;

cusparseDcsrsv_solve ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE ,
n , 1 . 0 , descrU , valU , csrRowPtrU , csrColIndU ,
infoU , t , s ) ;

// 24 : t = A \hat{ s } ( spa r s e matrix−vec to r mu l t i p l i c a t i o n )
cusparseDcsrmv ( handle , CUSPARSE_OPERATION_NON_TRANSPOSE , n , n , 1 . 0 ,

descrA , valA , csrRowPtrA , csrColIndA , s , 0 . 0 , t ) ;

// 25 : \omega = ( t ˆ{T} s ) / ( t ˆ{T} t )
temp = cublasDdot (n , t , 1 , r , 1) ;
temp2= cublasDdot (n , t , 1 , t , 1) ;
omega= temp/temp2 ;
// 26 : x = x + \omega \hat{ s }
cublasDaxpy (n , omega , s , 1 , x , 1) ;
// 27 : r = s − \omega t
cublasDaxpy (n ,−omega , t , 1 , r , 1) ;

// check f o r convergence
nrmr = cublasDnrm2 (n , r , 1) ;
i f ( nrmr/nrmr0 < tol ) {

break ;
}

}

// dest roy the ana l y s i s i n f o ( f o r lower and upper t r i a n gu l a r f a c t o r s )
cusparseDestroySolveAnalysisInfo ( infoL ) ;
cusparseDestroySolveAnalysisInfo ( infoU ) ;

As shown in Fig. 2 the majority of time in each iteration of the incomplete-
LU and Cholesky preconditioned iterative methods is spent in the sparse matrix-
vector multiplication and triangular solve. The sparse matrix-vector multiplica-
tion has already been extensively studied in the following references [3, 15]. The
sparse triangular solve is not as well known, so we briefly point out the strategy
used to explore parallelism in it and refer the reader to the NVIDIA technical
report [8] for further details.

To understand the main ideas behind the sparse triangular solve, notice
that although the forward and back substitution is an inherently sequential
algorithm for dense triangular systems, the dependencies on the previously ob-

8



Figure 2: The splitting of total time taken on the GPU by the preconditioned iterative method

tained elements of the solution do not necessarily exist for the sparse triangular
systems. We pursue the strategy that takes advantage of the lack of these
dependencies and split the solution process into two phases as mentioned in
[1, 4, 6, 7, 8, 10, 12, 14].

The analysis phase builds the data dependency graph that groups indepen-
dent rows into levels based on the matrix sparsity pattern. The solve phase
iterates across the constructed levels one-by-one and computes all elements of
the solution corresponding to the rows at a single level in parallel. Notice that
by construction the rows within each level are independent of each other, but
are dependent on at least one row from the previous level.

The analysis phase needs to be performed only once and is usually signifi-
cantly slower than the solve phase, which can be performed multiple times. This
arrangement is ideally suited for the incomplete-LU and Cholesky preconditioned
iterative methods.

3 Numerical Experiments

In this section we study the performance of the incomplete-LU and Cholesky
preconditioned BiCGStab and CG iterative methods. We use twelve matrices
selected from The University of Florida Sparse Matrix Collection [18] in our
numerical experiments. The seven s.p.d. and five nonsymmetric matrices with
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the respective number of rows (m), columns (n=m) and non-zero elements (nnz)
are grouped and shown according to their increasing order in Tab. 1.

# Matrix m,n nnz s.p.d. Application

1. offshore 259,789 4,242,673 yes Geophysics
2. af shell3 504,855 17,562,051 yes Mechanics
3. parabolic fem 525,825 3,674,625 yes General
4. apache2 715,176 4,817,870 yes Mechanics
5. ecology2 999,999 4,995,991 yes Biology
6. thermal2 1,228,045 8,580,313 yes Thermal Simulation
7. G3 circuit 1,585,478 7,660,826 yes Circuit Simulation
8. FEM 3D thermal2 147,900 3,489,300 no Mechanics
9. thermomech dK 204,316 2,846,228 no Mechanics
10. ASIC 320ks 321,671 1,316,085 no Circuit Simulation
11. cage13 445,315 7,479,343 no Biology
12. atmosmodd 1,270,432 8,814,880 no Atmospheric Model.

Table 1: Symmetric positive definite (s.p.d.) and nonsymmetric test matrices

In the following experiments we use the hardware system with NVIDIA
C2050 (ECC on) GPU and Intel Core i7 CPU 950 @ 3.07GHz, using the 64-
bit Linux operating system Ubuntu 10.04 LTS, CUSPARSE library 4.0 and
MKL 10.2.3.029. The MKL NUM THREADS and MKL DYNAMIC environ-
ment variables are left unset to allow MKL to use the optimal number of threads.

We compute the incomplete-LU and Cholesky factorizations using the MKL
routines csrilu0 and csrilut with 0 and threshold fill-in, respectively. In the
csrilut routine we allow three different levels of fill-in denoted by (5, 10−3),
(10, 10−5) and (20, 10−7). In general, the (k, tol) fill-in is based on nnz/n + k
maximum allowed number of elements per row and the dropping of elements
with magnitude |lij |, |uij | < tol × ||aTi ||2, where lij , uij and aTi are the elements
of the lower L, upper U triangular factors and the i-th row of the coefficient
matrix A, respectively.

We compare the implementation of the BiCGStab and CG iterative methods
using the CUSPARSE and CUBLAS libraries on the GPU and MKL on the CPU.
In our experiments we let the initial guess be zero, the right-hand-side f = Ae
where eT = (1, . . . , 1)T , and the stopping criteria be the maximum number of
iterations 2000 or relative residual ||ri||2/||r0||2 < 10−7, where ri = f − Axi is
the residual at i-th iteration.
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ilu0 CPU GPU Speedup

# fact. copy solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. vs.

time(s)time(s)time(s) time(s) ilu0

1 0.38 0.02 0.72 8.83E-08 25 1.52 8.83E-08 25 0.57
2 1.62 0.04 38.5 1.00E-07 569 33.9 9.69E-08 571 1.13
3 0.13 0.01 39.2 9.84E-08 1044 6.91 9.84E-08 1044 5.59
4 0.12 0.01 35.0 9.97E-08 713 12.8 9.97E-08 713 2.72
5 0.09 0.01 107. 9.98E-08 1746 55.3 9.98E-08 1746 1.92
6 0.40 0.02 155. 9.96E-08 1656 54.4 9.79E-08 1656 2.83
7 0.16 0.02 20.2 8.70E-08 183 8.61 8.22E-08 183 2.32
8 0.32 0.02 0.13 5.25E-08 4 0.52 5.25E-08 4 0.53
9 0.20 0.01 72.7 1.96E-04 2000 40.4 2.08E-04 2000 1.80
10 0.11 0.01 0.27 6.33E-08 6 0.12 6.33E-08 6 1.59
11 0.70 0.03 0.28 2.52E-08 2.5 0.15 2.52E-08 2.5 1.10
12 0.25 0.04 12.5 7.33E-08 76.5 4.30 9.69E-08 74.5 2.79

Table 2: csrilu0 preconditioned CG and BiCGStab methods

ilut(5, 10−3) CPU GPU Speedup

# fact. copy solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. vs. vs.

time(s) time(s) time(s) time(s) ilut(5, 10−3) ilu0

1 0.14 0.01 1.17 9.70E-08 32 1.82 9.70E-08 32 0.67 0.69
2 0.51 0.03 49.1 9.89E-08 748 33.6 9.89E-08 748 1.45 1.39
3 1.47 0.02 11.7 9.72E-08 216 6.93 9.72E-08 216 1.56 1.86
4 0.17 0.01 67.9 9.96E-08 1495 26.5 9.96E-08 1495 2.56 5.27
5 0.55 0.04 59.5 9.22E-08 653 71.6 9.22E-08 653 0.83 1.08
6 3.59 0.05 47.0 9.50E-08 401 90.1 9.64E-08 401 0.54 0.92
7 1.24 0.05 23.1 8.08E-08 153 24.8 8.08E-08 153 0.93 2.77
8 0.82 0.03 0.12 3.97E-09 2 1.12 3.97E-09 2 0.48 1.10
9 0.10 0.01 54.3 5.68E-03 2000 24.5 1.58E-01 2000 2.21 1.34
10 0.12 0.01 0.16 4.89E-11 4 0.08 6.45E-11 4 1.37 1.15
11 4.99 0.07 0.36 1.40E-08 2.5 0.37 1.40E-08 2.5 0.99 6.05
12 0.32 0.03 39.2 7.05E-08 278.5 10.6 8.82E-08 270.5 3.60 8.60

Table 3: csrilut(5, 10−3) preconditioned CG and BiCGStab methods

The results of the numerical experiments are shown in Tables 2 – 5, where
we state the speedup obtained by the iterative method on the GPU over CPU
(speedup), number of iterations required for convergence (# it.), achieved rel-

ative residual ( ||ri||2
||r0||2 ) and time in seconds taken by the factorization (fact.),
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ilut(10, 10−5) CPU GPU Speedup

# fact. copy solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. vs. vs.

time(s) time(s) time(s) time(s) ilut(10, 10−5) ilu0

1 0.15 0.01 1.06 8.79E-08 34 1.96 8.79E-08 34 0.57 0.63
2 0.52 0.03 60.0 9.86E-08 748 38.7 9.86E-08 748 1.54 1.70
3 3.89 0.03 9.02 9.79E-08 147 5.42 9.78E-08 147 1.38 1.83
4 1.09 0.03 34.5 9.83E-08 454 38.2 9.83E-08 454 0.91 2.76
5 3.25 0.06 26.3 9.71E-08 272 55.2 9.71E-08 272 0.51 0.53
6 11.0 0.07 44.7 9.42E-08 263 84.0 9.44E-08 263 0.59 1.02
7 5.95 0.09 8.84 8.53E-08 43 17.0 8.53E-08 43 0.64 1.68
8 2.94 0.04 0.09 2.10E-08 1.5 1.75 2.10E-08 1.5 0.64 3.54
9 0.11 0.01 53.2 4.24E-03 2000 24.4 4.92E-03 2000 2.18 1.31
10 0.12 0.01 0.16 4.89E-11 4 0.08 6.45E-11 4 1.36 1.18
11 28.9 0.09 0.44 6.10E-09 2.5 0.48 6.10E-09 2.5 1.00 33.2
12 0.36 0.03 36.6 7.05E-08 278.5 10.6 8.82E-08 270.5 3.35 8.04

Table 4: csrilut(10, 10−5) preconditioned CG and BiCGStab methods

ilut(20, 10−7) CPU GPU Speedup

# fact. copy solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. vs. vs.

time(s) time(s) time(s) time(s) ilut(20, 10−7) ilu0

1 0.82 0.02 47.6 9.90E-08 1297 159. 9.86E-08 1292 0.30 25.2
2 9.21 0.11 32.1 8.69E-08 193 84.6 8.67E-08 193 0.44 1.16
3 10.4 0.04 6.26 9.64E-08 90 4.75 9.64E-08 90 1.10 2.36
4 8.12 0.10 15.7 9.02E-08 148 22.5 9.02E-08 148 0.78 1.84
5 8.60 0.10 21.2 9.52E-08 158 53.6 9.52E-08 158 0.48 0.54
6 35.2 0.11 29.2 9.88E-08 162 80.5 9.88E-08 162 0.56 1.18
7 23.1 0.14 3.79 7.50E-08 14 12.1 7.50E-08 14 0.76 3.06
8 5.23 0.05 0.14 1.19E-09 1.5 2.37 1.19E-09 1.5 0.70 6.28
9 0.12 0.01 55.1 3.91E-03 2000 24.4 2.27E-03 2000 2.25 1.36
10 0.14 0.01 0.14 9.25E-08 3.5 0.07 7.19E-08 3.5 1.28 1.18
11 218. 0.12 0.43 9.80E-08 2 0.66 9.80E-08 2 1.00 247.
12 15.0 0.21 12.2 3.45E-08 31 4.95 3.45E-08 31 1.35 5.93

Table 5: csrilut(20, 10−7) preconditioned CG and BiCGStab methods

iterative solution of the linear system (solve), and cudaMemcpy of the lower and
upper triangular factors to the GPU (copy). We include the time taken to com-
pute the incomplete-LU and Cholesky factorization as well as to transfer the
triangular factors from the CPU to the GPU memory in the computed speedup.
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The summary of performance of BiCGStab and CG iterative methods pre-
conditioned with different incomplete factorizations on the GPU is shown in
Fig. 3, where “*” indicates that the method did not converge to the required
tolerance. Notice that in general in our numerical experiments the performance
for the incomplete factorizations decreases as the threshold parameters are re-
laxed and the factorization becomes more dense, thus inhibiting parallelism due
to data dependencies between rows in the sparse triangular solve. For this rea-
son, the best performance on the GPU is obtained for the incomplete-LU and
Cholesky factorization with 0 fill-in, which will be our point of reference.

Figure 3: Performance of BiCGStab and CG with incomplete-LU/Cholesky preconditioning

Although the incomplete factorizations with a more relaxed threshold are
often closer to the exact factorization and thus result in fewer iterative steps, they
are also much more expensive to compute. Moreover, notice that even though the
number of iterative steps decreases, each step is more computationally expensive.
As a result of these tradeoffs the total time, the sum of the time taken by the
factorization and the iterative solve, for the iterative method does not necessarily
decrease with a more relaxed threshold in our numerical experiments.

The speedup based on the total time taken by the preconditioned iterative
method on the GPU with csrilu0 preconditioner and CPU with all four pre-
conditioners is shown in Fig. 4. Notice that for majority of matrices in our
numerical experiments the implementation of the iterative method using the
CUSPARSE and CUBLAS libraries does indeed outperform the MKL.
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Figure 4: Speedup of prec. BiCGStab & CG on GPU (with csrilu0) vs. CPU (with all)

Finally, the average of the obtained speedups is shown in Fig. 5, where we
have excluded the runs with cage13 matrix for ilut(10, 10−5) and runs with off-
shore and cage13 matrices for ilut(20, 10−7) incomplete factorizations because
of their disproportional speedup. However, the speedup including these runs
is shown in parenthesis on the same plot. Consequently, we can conclude that
the incomplete-LU and Cholesky preconditioned BiCGStab and CG iterative
methods obtain on average more than 2× speedup on the GPU over their CPU
implementation.

Figure 5: Average speedup of BiCGStab and CG on GPU (with csrilu0) and CPU (with all)
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4 Conclusion

The performance of the iterative methods depends highly on the sparsity pattern
of the coefficient matrix at hand. In our numerical experiments the incomplete-
LU and Cholesky preconditioned BiCGStab and CG iterative methods imple-
mented on the GPU using the CUSPARSE and CUBLAS libraries achieved an
average of 2× speedup over their MKL implementation.

The sparse matrix-vector multiplication and triangular solve, which is split
into a slower analysis phase that needs to be performed only once and a faster
solve phase that can be performed multiple times, were the essential building
blocks of these iterative methods. In fact the obtained speedup was usually
mostly influenced by the time taken by the solve phase of the algorithm.

Finally, we point out that the use of multiple-right-hand-sides would increase
the available parallelism and can result in a significant relative performance
improvement in the preconditioned iterative methods. Also, the development of
incomplete-LU and Cholesky factorizations using CUDA parallel programming
paradigm can further improve the obtained speedup.
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