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Abstract

The macroscale movement behaviour of a wide range of isolated migrating cells has been well

characterised experimentally. Recently, attention has turned to understanding the behaviour of

cells in crowded environments. In such scenarios it is possible for cells to interact mechanistically,

inducing neighbouring cells to move in order to make room for their own movements or progeny.

Although the behaviour of interacting cells has been modelled extensively through volume-exclusion

processes, no models, thus far, have explicitly accounted for the ability of cells to actively displace

each other.

In this work we consider both on and off-lattice volume-exclusion position-jump processes in

which cells are explicitly allowed to induce movements in their near neighbours in order to create

space for themselves (which we refer to as pushing). From these simple individual-level representa-

tions we derive continuum partial differential equations for the average occupancy of the domain.

We find that, for limited amounts of pushing, the comparison between the averaged individual-level

simulations and the population-level model is nearly as good as in the scenario without pushing

but, that for larger and more complicated pushing events the assumptions used to derive the

population-level model begin to break down. Interestingly, we find that, in the on-lattice case,

the diffusion coefficient of the population-level model is increased by pushing, whereas, for the

particular off-lattice model that we investigate, the diffusion coefficient is reduced. We conclude

therefore, that it is important to consider carefully the appropriate individual-level model to use

when representing complex cell-cell interactions such as pushing.

∗ Corresponding Author: c.yates@bath.ac.uk
† Website: http://people.bath.ac.uk/cy386/
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I. INTRODUCTION

In humans, cell migration is an integral feature of many developmental and homeostatic

mechanisms, including embryo formation [1], wound healing [2] and immune response [3]. In

addition, cell migration is critical for the development and progression of pathogeneses such

as cancer [4], vascular disease (e.g. atherosclerosis [5]) and chronic inflammatory diseases

(e.g. arthritis [6]).

Many of the mechanisms postulated for the migration of individual cells have been well

characterised in an experimental setting [7, 8]. Recently, attention has turned to studying cell

migration mechanisms for cells in densely crowded environments in which cell-cell contacts

are inevitable. In such environments it is possible for cells to interact mechanistically in order

to facilitate movement or proliferation events. In particular, in in vitro experiments cells have

been shown to facilitate their movement or proliferation into a region currently occupied by

a neighbouring cell either crudely, by exerting direct force upon their neighbours, or, more

subtly, through contact-mediated re-arrangement of a neighbouring cell’s actin-cytoskeleton

leading to its dispersive migration [9].

Cells have also been shown to exert pushing forces on their surroundings [10]. Over-

crowded groups of cells in developing epithelia have been shown to extrude cells from the

epithelial sheet in order to make more room for themselves to move and proliferate into

[11, 12]. Collective motion of cells, in part mediated by cell-cell pushing, has also been

demonstrated to be important for normal development [13] and for the progression of patho-

geneses such as cancer [9, 10]. Vroomans et al. [14] employ a cellular Potts model to infer

that the pushing of de-sensitised cells by T-cells sensitive to a chemotattractant is a possi-

ble explanation for the high scanning efficiency of antigen presenting dendritic cells in the

immune system.

Throughout the remainder of this paper we will refer to any contact-mediated action

initiated by one cell in order to displace another to make room for itself or its progeny as a

‘push’.

Cell migration and proliferation have been modelled extensively at both the population-

scale, in which deterministic partial differential equations (PDEs) are typically employed

to model the density of cells [15–18], and at the cell-scale, in which each cell is modelled

as an individual [19–25], often using in silico techniques to simulate the dynamics of the
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model. Both modelling regimes have their advantages and disadvantages (for a more detailed

discussion of these see, for example, Baker et al. [24], Yates et al. [25]). In this paper,

beginning with individual-level models (ILMs) that contain descriptions of the biological

processes described above (including migration, proliferation and, for the first time, cell-

cell pushing), we derive population-level models (PLMs) for the evolution of the expected

domain occupancy which can be thought of as being equivalent to the mean-field behaviour

of the ILM in an appropriate limit.

We consider two variants of the ILM: on-lattice and off-lattice, and use a flexible master

equation formalism to derive the corresponding PLM in each case. Although ILMs of cell

migration and proliferation and their continuum limits have been investigated previously

[19, 22], in this work we incorporate the ability of cells to displace neighbours that, in a

classical exclusion process, would restrict movement or proliferation. We discover that the

PDEs derived in the continuum limit from the on- and off-lattice ILMs have qualitatively

different behaviour: in on-lattice models we find that pushing enhances the effective diffusion

coefficient of the corresponding PDE whereas, with off-lattice models, we find that the

diffusion coefficient is reduced. We provide explanations for this disparity and emphasise

that it will have important ramifications for model selection when attempting to represent

biological phenomena that involve cell-cell pushing.

The remainder of this paper is structured as follows. In Section II we describe, in detail,

the elementary on-lattice ILM for cell-cell pushing. From this simple model we derive an

equivalent population-level PDE model and, through numerical simulation demonstrate the

importance of incorporating cell-cell pushing on the population-level behaviour of the cells.

In Section III we incorporate more complex cell pushing mechanisms in the ILM. From these

models we derive and interpret the corresponding set of PDEs that result when the appro-

priate continuum limit is taken. We present comparisons between the ILMs and the PLMs

and comment on the causes of any disparities. We introduce the off-lattice ILM in Section

IV and demonstrate the resulting PLM has some unexpected properties (in comparison to

the corresponding PLM derived from the on-lattice model). We conclude in Section V with

a discussion of our findings and suggestions of areas which merit further exploration.
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II. THE IMPORTANCE OF CELL PUSHING

In this section we introduce the basic on-lattice ILM and subsequently build its complexity

by incorporating the ability of cells to push one another in a simple manner. Using a master

equation formalism we then derive the corresponding PLM for pushing and compare the cell

density generated by this model to the expected cell density averaged over several repeats

of the ILM.

A. On-lattice individual-level model

Initially we model cell migration and proliferation using a simple on-lattice, two-

dimensional exclusion process in which each cell is represented by a single autonomous

‘agent’. In an exclusion process, at most one agent can occupy each lattice site. We consider

a square lattice (i.e. the lattice spacing is the same (∆) in both directions) with Lx sites

in the x−direction and Ly sites in the y−direction. Since an agent exclusively occupies a

single lattice site, ∆ can be thought of as equivalent to the diameter of the cells under con-

sideration. The occupancy of the lattice site with index (i, j) and position (x, y) = (i∆, j∆)

is denoted C(i, j). If lattice site (i, j) is occupied then C(i, j) = 1 otherwise C(i, j) = 0. We

initialise N agents on the lattice and the occupancies of the lattice sites change in discrete

time in the following manner. At each time-step, of duration τ , N agents are chosen uni-

formly at random, sequentially and with replacement. Selected agents attempt to move to

one of their four nearest-neighbour lattice sites with probability P m ∈ [0, 1] [19, 20, 26, 27].

If the site into which an agent attempts to move is occupied then that movement event

is aborted. Note that sampling with replacement allows one agent to move multiple times

during a single time-step and also for agents not to move at all. In what follows, we choose

lattice spacing ∆ = 1 and time-step τ = 1 noting that both time and space can be rescaled

in order to deal with specific experimentally derived parameters.

In the traditional exclusion process model, if an agent attempts to move or proliferate

into an occupied lattice site then that event will be aborted. In this work we relax this

assumption by allowing agents to push each other out of the way in order to complete a

movement or proliferation event into a currently occupied lattice site. In the most basic case

(see Fig. 1 (b)) we allow an agent at position (i, j) which has chosen to move rightward into
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an occupied site at (i + 1, j) to push the agent at (i + 1, j) to the right into site (i + 2, j),

with probability Qm, providing that site is unoccupied. If the site (i+2, j) is occupied then,

in this most basic case, the movement event is aborted (although we relax this condition

later).

(a) (b)

FIG. 1. Possible movement and proliferation events in the non-pushing and basic pushing exclusion

process models. Occupied sites are black and unoccupied sites are white. Sites of the lattice for

which the occupancy is not important for the depicted event are shown in grey. Possible movement

or proliferation directions are denoted by green arrows. (a) The selected agent at site (i, j) is free

to move (or to place a daughter agent, resp.) into any of its neighbouring unoccupied sites, with

probability P m/4 (P p/4, resp.). (b) The selected agent at site (i, j) has been chosen to move or

proliferate to the right into an occupied site (i + 1, j). With probability Qm (Qp for proliferation)

such that 0 ≤ Qm, Qp ≤ 1 this agent, originally at (i, j), pushes the agent at (i + 1, j) into

unoccupied site (i + 2, j) and takes its place (leaving behind a daughter agent at (i, j) in the case

of proliferation).

In Fig. 2 we present snap-shot comparisons of the lattice occupancy of the exclusion

process model described above, both with and without pushing and in the absence of pro-

liferation. Some simple but informative observations can be drawn from this figure. It is

evident by later times (c.f. Figs. 2 (c) and 2 (f)) that the agents that are allowed to push are

more evenly spread than those that are not, with fewer large clumps of agents evident. This

is to be expected as pushing agents that are clumped together are more likely to undergo

successful movement events in comparison to their non-pushing counterparts, leading to the

accelerated break up of such clumps. Perhaps surprisingly, the positions of the leading edge

of the groups of agents are not vastly different and, after initially diverging (c.f. Figs. 2 (b)

and 2 (e)), appear not to diverge more over time (c.f. Figs. 2 (c) and 2 (f)). This hints that,

after an initial transient, the position of the leading edge is dictated primarily by diffusion

events rather than by pushing. This makes intuitive sense when considering that pushing

events occur more often in areas of high agent density, and are therefore less prevalent where

density is low.
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FIG. 2. The evolution of the lattice occupancy for (a)-(c) the basic exclusion process model

(Qm = 0) and (d)-(f) the exclusion process model with agent-agent pushing (Qm = 1). Agents are

less clumped when they are allowed to push each other, although they do not appear to spread

much further than in the non-pushing case. For these figures and for other on-lattice individual-

level results presented later we have carried out simulations on a lattice with Lx = Ly = 100 and

reflecting boundary conditions on all sides We simulate on a sufficiently large domain that any

boundary effects are negligible. For clarity we only present the 21 × 100 cross-section from the

middle of the domain (1 ≤ x ≤ 100, 40 ≤ y ≤ 60) at each time point. All lattice sites in the region

41 ≤ x ≤ 60 are initially occupied. Simulation parameters are τ = 1, ∆ = 1, P m = 0.2, P p = 0.

To further quantify the difference between the spreading of the agents in the two models,

we next derive the continuum equation that describes the evolution of the mean occupancy

of the lattice. Comparing the effective diffusion coefficients of the model with and without

pushing will provide further insight into the effect that agent-agent pushing has on the

spreading of the agents.
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B. Continuum model for average occupancy

In order to derive the continuum equation for mean occupancy we first consider the

probability master equation (PME) which describes the evolution of average occupancy of

each site of the lattice. Let Cr
n(i, j) denote the occupancy of lattice site (i, j) at time n in

the rth repeat (of a total of R repeats) of the simulation. We define the average occupancy

of site (i, j) at time n as

Cn(i, j) =
1

R

R
∑

r=1

Cr
n(i, j). (1)

By considering the possible ways the average occupancy of site (i, j) could have changed over

the course of a time-step, we can write down the following PME for the exclusion process

with agent-agent pushing [28]:

Cn+1(i, j) − Cn(i, j) = −
P m

4
Cn(i, j)

[

(1 − Cn(i + 1, j)) + (1 − Cn(i − 1, j))

+ (1 − Cn(i, j + 1)) + (1 − Cn(i, j − 1))

+ Qm
{

Cn(i + 1, j)(1 − Cn(i + 2, j))

+ Cn(i − 1, j)(1 − Cn(i − 2, j))

+ Cn(i, j + 1)(1 − Cn(i, j + 2))

+ Cn(i, j − 1)(1 − Cn(i, j − 2))
}]

+
P m

4
(1 − Cn(i, j))

[

Cn(i + 1, j) + Cn(i − 1, j)

+ Cn(i, j + 1) + Cn(i, j − 1)

+ Qm
{

Cn(i + 1, j)Cn(i + 2, j)

+ Cn(i − 1, j)Cn(i − 2, j)

+ Cn(i, j + 1)Cn(i, j + 2)

+ Cn(i, j − 1)Cn(i, j − 2)
}]

. (2)

The terms that only have pre-factor P m correspond to occupancy changes due to simple

movement, whereas those with additional pre-factor Qm correspond to occupancy changes

related to movement-induced agent-agent pushing. For simplicity we ignore proliferation in

this PME, but note that it is straightforward to incorporate into the PME (and the following

derivation) in a similar manner.
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We assume that site occupancies are independent. This simplest of moment closure

assumptions can be justified in certain circumstances [19, 21, 27]. Indeed we find that for the

case of basic agent-agent pushing, presented here, the PLM derived under the independence

assumption agrees well with the average occupancy of the ILM (see Fig. 3 (b)). However,

(as we will discover later), when more long-range agent-agent interactions are introduced the

assumption begins to break down. This leads to a divergence between the mean occupancy

in the ILM and the occupancy predicted by the PLM. We note that there are a variety of

methods for obtaining more accurate PLMs (amongst them higher order moment closure and

spatial correlation functions [29, 30]), but we do not discuss them further in this manuscript.

Taylor expanding the terms of the PME (2) about lattice site (i, j) and taking the (diffu-

sive) limit of lattice size, ∆, and time-step, τ , both tending to zero such that ∆2/τ remains

constant we obtain the corresponding PDE:

∂C

∂t
= ∇ · [D(1 + 4QmC)∇C] . (3)

Here the diffusion constant, D, is given by

D = lim
τ,∆→0

P m∆2

4τ
. (4)

In the ILM we define the column-averaged occupancy at time n as follows:

Cn(i) =
1

Ly

Ly
∑

j=1

Cn(i, j). (5)

In Fig. 3 we compare the column-averaged occupancies of the ILM, both with and without

pushing, to the numerical solution of the corresponding PDE (4) in one dimension [31]. The

correspondence between PLM and averaged ILM is good in both cases (although marginally

better for simple diffusion than for pushing (see Fig. 7 for a quantitative comparison)). As

noted by considering the density profiles of the ILM the incorporation of pushing reduces

peak density levels by facilitating the movement of cells away from areas of high density.

This might have been predicted from equation (3) since the incorporation of agent-agent

pushing increases the effective diffusion coefficient by adding a term proportional to Qm.

This term is also density dependent, intimating that the effect of pushing will be greater

9



when the agent density is higher and less noticeable when agent density is lower, for example

at the leading edge of the profile. This density dependent phenomenon is consistent with

our previous observation, from the ILM, that the positions of the leading edge of agents in

the model with and without pushing are not vastly different.
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FIG. 3. A comparison of the column-averaged density profiles of the agents in the ILM (red

dashed curve) and the corresponding PDE (3) (black continuous curve) for (a) simple diffusion in

the absence of pushing (Qm = 0) and (b) diffusion with basic agent-agent pushing (Qm = 0.5).

The profiles are visualised at times t = 0, t = 50 and t = 200. The movement parameter in these

simulations is P m = 0.8. All other parameters, domain specifications, boundary conditions and

initial conditions are as in Fig 2. All individual-level results are averaged over 100 repeats.

In order to gain a greater insight into the possible biological effects of cell-cell pushing

we now generalise the types of interactions that agents can undergo with their neighbours

in the ILM and consider the effect these changes have on the resulting PDEs.

III. EXTENSIONS TO THE PUSHING PARADIGM

It seems unreasonable, perhaps, to restrict pushing-agents to moving neighbouring agents

only in their direction of movement or even for agents to be able only to move a single

neighbour out of the way. We now explore the effects of relaxing these restrictions. In what

follows each of the PDEs derived will be of the general form:

∂C

∂t
= ∇ · [D(C)∇C] + λS(C), (6)
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where D(C) represents an effective diffusion coefficient and S(C) a source of agents due to

proliferation. Rather than writing out many different PDEs, we summarise these coefficients

for each variant of the model in Table I. Note that D is as defined in equation (4) and λ is

defined as follows:

λ = lim
τ→0

P p

τ
. (7)

Pushing type Coefficients

Basic pushing D(C) D(1 + 4QmC)

S(C) C(1 − C)(1 + QpC)

Adjacent pushing I D(C) D
(

1 + 8
3
QmC

)

S(C) C(1 − C)(1 + QpC)

Adjacent pushing II D(C) D
(

1 + 8
3
Qm(C + C2 + C3)

)

S(C) C(1 − C)(1 + Qp(C + C2 + C3))

Linear pushing of D(C) D

(

1 +
K
∑

i=1

Qm
i (i + 1)2Ci

)

multiple agents S(C) C(1 − C)

(

1 +
K
∑

i=1

Qp
i Ci

)

TABLE I. Different forms for the diffusion and source terms in the general form of the PDE (6)

obtained from the different agent-agent pushing scenarios.

A. Pushing to adjacent positions

The first extension to the basic pushing mechanism we consider allows the agent being

pushed to move into any of the free sites around it rather than simply being pushed in

the direction of the movement of the pushing-agent. This can occur in two ways. In the

first scenario (which we refer to as type I adjacent pushing) the pushed-agent will choose to

move into one of the three potential target sites with equal probability, 1/3. If the attempted

move of the pushed agent is into an occupied site then the move and the initiating push

will be aborted. In the second scenario (which we refer to as type II adjacent pushing)

the pushed-agent will attempt to move only into the unoccupied sites around it, and do so

with equal probability. The agent changes how it moves based on short-range knowledge of

its local environment. The three possible type II adjacent pushing movements are shown

schematically in Figure 4.
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(a) (b) (c)

FIG. 4. Type II adjacent pushing events in which the agent being pushed can move to any

unoccupied neighbouring lattice site. The occupied sites are coloured black, whereas the unoccupied

neighbouring sites are coloured white. As before, sites which do not affect the movement event are

coloured grey. The selected agent at site (i, j) attempts to push to the right into the occupied site

(i + 1, j). If the push is successful (with probability Qm) the probability with which the pushed-

agent moves into an unoccupied lattice site depends upon which neighbouring sites are unoccupied.

(a) The three surrounding sites about the pushed-agent are all unoccupied and the pushed-agent

moves into any of them with probability 1/3. (b) Only two of the three possible sites are available

and the pushed-agent moves into either of them with probability 1/2. (c) There is only one possible

site for the pushed-agent to move into, which it does with certainty.

The PME for these cases become extremely lengthy and, as such, we omit them from

the main text, but refer the interested reader to Section I A of the supplementary material

(SM).

In Figs. 5 (a) and (b) we present a comparison of the column-averaged ILM and the

corresponding PDE for type I and type II adjacent pushing, respectively. In both cases

the agreement between the ILM and the corresponding PDE is good, although it is slightly

better in the case of type II adjacent pushing [32].

For type I adjacent pushing the peak density is not reduced as rapidly as it is for basic

pushing (c.f. Fig. 3 (b) and 5 (a)). Considering the possible pushing movements from the

step-function initial condition provides some insights. An agent which is one column away

from the front of the initial distribution attempting to move towards the front will now only

do so (by pushing an agent at the front to the right) with probability Qm/3, whereas in

the basic pushing case it would do so with probability Qm. There is some compensation for

the type I adjacent pushing process, in that an agent on the front which attempts to move

vertically (either up or down) will now do so (displacing the neighbouring agent, whose site

it moves into, out of the front in the horizontal direction) with probability Qm/3. In the

basic pushing model these two moves would be aborted. However, we note that moves of
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this sort only provide a net movement of one agent in the horizontal direction in comparison

to the net movement of two agents in the event of agents pushing from the column behind

the front. This helps to explain why spreading is retarded in the type I adjacent pushing

model.

In contrast, peak density in the type II adjacent pushing model decreases more rapidly

than in the basic pushing case (c.f. Figs. 3 (b) and 5 (b)). In an analogous manner this is due

to the completion of more successful pushing events; any proposed pushing event in which

the pushed-agent has at least one empty neighbour will be completed with probability Qm

in contrast to the type I adjacent and basic pushing models in which some of these pushing

events will be aborted.
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FIG. 5. A comparison of the averaged column density profiles of the agents in the ILM and the

corresponding PDE (6) with coefficients given in Table I for (a) type I adjacent pushing, (b) type

II adjacent pushing and (c) multiple-agent pushing (K = 2). The profiles are visualised at times

t = 0, t = 50 and t = 200. The comparison between the averaged individual results and the PDE

is good in all three cases, but there is a slight under-estimation of the peak density of the ILM

by the PDE for the case of multiple-agent pushing. Parameters are P m = 0.8, Qm = 0.5 and for

(c) Qm
1 = Qm

2 = 0.5. All other parameters, domain specifications, boundary conditions and initial

conditions are as in Fig 2. All individual-level results are averaged over 100 repeats.

B. Pushing multiple agents in a line

The next extension we consider is to allow a pushing-agent to push up to K other agents

in a straight line in a chosen direction (see Fig. 6). For each attempted push of k ≤ K

agents we introduce a probability of acceptance Qm
k .

The PME is, unsurprisingly, considerably more complicated than in the basic pushing case

and as such we present it in Section I B of the SM. In the usual diffusive limit, upon taking the

13



FIG. 6. An agent attempting to move into an occupied lattice site can push up to K agents in a

line to make room for itself. The selected agent at site (i, j) attempts to push to the right into

the occupied site (i + 1, j). Sites (i + 2, j) and (i + 3, j) are also occupied. With probability Qm
3

the focal agent, originally at (i, j), linearly pushes the agents blocking its path and moves into the

vacated site (i + 1, j). Figure descriptions are as in Fig. 1.

Taylor expansion about point (i, j), as before, we arrive at the PDE specified by equation (6)

and the coefficients in the final row of Table I. The independence assumption that we employ

in order to write down the PME (see equation (2) of the SM) becomes increasingly invalid

as the number of agents that a pushing-agent can move out of the way increases. Clearly

such pushing events introduce correlations between occupancies of both neighbouring and

non-neighbouring lattice sites. We should not necessarily expect therefore, the comparison

between the highly non-linear PDE that we derive and the averaged individual model results

to be as good as in the basic pushing case. This is borne out in Fig. 5 (c) where we compare

the column-averaged ILM and the corresponding PDE for linear pushing with the possibility

of pushing at most two agents (i.e. K = 2). The agreement between the models, although

slightly worse than the basic pushing case, is still at a good (see Fig. 7 for quantification). As

we increase the number of agents that a single agent can push out of the way the comparison

between the PLM and the averaged ILM becomes increasingly poor (See Fig. 1 of the SM).

C. Error comparison

In order to quantify the error between the ILM and the PDE in each of the above cases,

we compare averaged simulations of the ILM with the numerical solution of the PDE. Our

metric of choice is the histogram distance error (HDE) [25, 33, 34]:

H(t) =
Lx
∑

i=1

∣

∣

∣

∣

∣

ai(t) − bi(t)

2

∣

∣

∣

∣

∣

, (8)
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where ai and bi denote the values of the (normalised) column-averaged occupancies (aver-

aged also over several repeat simulations) of the on-lattice exclusion process and numerical

solution of the PDE, respectively, at lattice point i and time t.

Fig. 7 compares the evolution of the HDE for each of the above outlined cases. It is

clear to see that our qualitative conclusions based on a by-eye comparison of the density

profiles are borne out quantitatively by the HDE comparison. The scenario with the lowest

HDE is, as expected, simple diffusion, and the scenario with the worst comparison to its

‘corresponding’ PDE is the case of linear pushing of multiple agents.

0 50 100 150 200
0.000

0.005

0.010

0.015

0.020

time

 

 
Diffusion
Basic pushing
Adjacent pushing I
Adjacent pushing II
Linear pushing of multiple agents

FIG. 7. The evolution of the HDE over the time period t ∈ [0, 200] for each of the above presented

models. Model and simulation parameters and descriptions are as in previous figures. In each case

the HDE is low for the duration of the simulation. Line descriptions are as in the legend. The

scenario with the best long-term correspondence to the PDE is simple diffusion (solid red line)

although each of the pushing cases have similar HDEs.

We have presented results for an intermediate, representative value of the pushing pa-

rameter, Qm = 0.5. However, we have also carried out comparisons for lower probabilities

of successful pushing (Qm = 0.1) and higher probabilities (Qm = 1). The qualitative trends

observed are similar for each value of Qm that we considered, however, the HDE for the

pushing cases was elevated when Qm was increased and correspondingly reduced when Qm

was decreased, as might reasonably be expected (see Fig. 2 of the SM).

Similarly, although we have not presented results in which proliferation is included (for

the sake of brevity and in order to clearly distinguish the effect of pushing on the diffusion

coefficient) we have also carried out these simulations (results not shown) and the same

qualitative results are observed for the different on-lattice pushing mechanisms.
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Thus far we have considered on-lattice ILMs of cell migration. However, in reality cells

do not to migrate on a regular lattice. In the next section we will relax the on-lattice

assumption and explore the possibility of incorporating pushing into off-lattice models of

cell migration. In particular we will explore how changing the ILM affects a corresponding

PLM.

IV. OFF-LATTICE INDIVIDUAL-LEVEL MODEL

The lattice-based models presented above provided us with a convenient formalism to

incorporate agent-agent pushing into an ILM of cell migration, which was then used to

derive a PLM in the form of a PDE. However, although simple to formulate, these ILMs

make the important assumption that movement and proliferation events can be restricted

to an artificially imposed lattice structure. This limitation is clearly an important one and

it has been shown that on-lattice models can introduce artefacts which are not present in

the underlying biology [35].

It makes sense, therefore, for us to consider how the effects of agent-agent pushing are

altered in an off-lattice exclusion-process model of cell migration. These models are typically

over-looked because of the increased complexity of their simulation and the increased math-

ematical complication when attempting to derive a corresponding PLM. However, recently,

some excluding off-lattice models have been postulated. These models focus on considering

the effects of diffusion [22, 36, 37] and proliferation [38], but none thus-far have considered

the effects of agent-agent pushing.

When formulating the ILM and deriving a corresponding PLM we follow the approach

of Dyson et al. [22] and Dyson and Baker [23]. We consider N agents of radius R on a

line of length Lx. Agents are initially positioned so that the gap between the centres of

two adjacent agents is uniformly distributed on [2R, 12R]. In order to update the ILM we

again use a random sequential update algorithm. In each time step of length τ , N agents

are chosen to attempt to move. Moves are attempted with probability P m. A movement

event consists of an agent centred at position x attempting to jump to x ± ∆. If the chosen

movement would cause the moving agent to overlap with another agent, we allow a push

to occur with probability Qm, whereby the moving agent will displace the adjacent agent

enough for it to carry out movement over distance ∆. If this push is unsuccessful (with
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probability 1 − Qm) or the pushed cell would overlap another cell then the movement is

aborted. See Fig. 8 for the possible ways occupancy at position x can change due to a single

movement/pushing event.

A. Continuum model for average occupancy

We derive a PME in the same manner as for the on-lattice case, by considering the prob-

ability density functions for the positions of the agents. Let Ci(x, t) denote the probability

density function for the position of the centre of the i-th agent. Assuming independence

of agent positions, the probability of the centre of an agent j (which is not agent i), yj,

occupying the region [x + 2R, x + 2R + ∆) is given by

P

(

∃ j 6= i : yj(t) ∈ [x + 2R, x + 2R + ∆)
)

=
∑

j 6=i

∫ 2R+∆

2R
Cj(x + s, t)ds.

The PME can then be formulated by enumerating the possible changes in Ci(x, t) as pre-

sented in Fig 8:

Ci(x, t + τ) − Ci(x, t) =

−
P m

2
Ci(x, t)







1 −
∑

j 6=i

∫ −2R

−2R−∆

Cj(x + s, t)ds





+



1 −
∑

j 6=i

∫ 2R+∆

2R
Cj(x + s, t)ds





+ Qm
∑

j 6=i

∫ −2R

−2R−∆

Cj(x + s, t)



1 −
∑

j 6=i

∫ −2R+s

−4R−∆

Cj(x + S, t)dS



 ds

+ Qm
∑

j 6=i

∫ 2R+∆

2R
Cj(x + s, t)



1 −
∑

j 6=i

∫ 4R+∆

2R+s
Cj(x + S, t)dS



 ds

+ Qm
∑

j 6=i

∫ −2R

−2R−∆

Cj(x + s, t)



1 −
∑

j 6=i

∫ 4R+∆+s

2R
Cj(x + S, t)dS



 ds

+Qm
∑

j 6=i

∫ 2R+∆

2R
Cj(x + s, t)



1 −
∑

j 6=i

∫ −2R

−4R−∆+s
Cj(x + S, t)dS



 ds




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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Schematics of the possible occupancy changes of position x due to spontaneous movement

and pushing. In each panel the black agent is the agent which is moving, the red agent (if present)

is the agent being pushed and the grey agent is at the closest position which another agent can

be and not affect the movement or pushing of the other agents. Where it appears, 0 < ε < ∆.

(a) Occupancy at x decreases as an agent spontaneously moves away. (b) Occupancy decreases

as an agent spontaneously moves away and pushes another agent. (c) Occupancy decreases as

an agent is pushed away from x by another agent’s movement. (d) Occupancy increases as an

agent spontaneously moves to x. (e) Occupancy increases as an agent spontaneously moves to x

and pushes another agent. (f) Occupancy increases as one agent is pushed to position x by the

movement of another agent. Note that we have only shown occupancy changes due to rightward

agent movement. Equivalent scenarios exist for leftward movements.
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+
P m

2
Ci(x − ∆, t)



1 −
∑

j 6=i

∫ 2R

2R−∆

Cj(x + s, t)ds





+
P m

2
Ci(x + ∆, t)



1 −
∑

j 6=i

∫ −2R+∆

−2R
Cj(x + s, t)ds





+
P mQm

2
Ci(x − ∆, t)

∑

j 6=i

∫ 2R

2R−∆

Cj(x + s, t)



1 −
∑

j 6=i

∫ 4R

s+2R
Cj(x + S, t)dS



 ds

+
P mQm

2
Ci(x + ∆, t)

∑

j 6=i

∫ −2R+∆

−2R
Cj(x + s, t)



1 −
∑

j 6=i

∫ s−2R

−4R
Cj(x + S, t)dS



 ds

+
∑

j 6=i

P mQm

2
Cj(x − 2R − ∆, t)

∫ 0

−∆

Ci(x + s, t)



1 −
∑

j 6=i

∫ 2R

s+2R
Cj(x + S, t)dS



ds

+
∑

j 6=i

P mQm

2
Cj(x + 2R + ∆, t)

∫ ∆

0

Ci(x + s, t)



1 −
∑

j 6=i

∫ s−2R

−2R
Cj(x + S, t)dS



ds. (9)

Each of the 12 lines in the PME refers to one of the panels of Fig. 8 or its leftward-moving

counterpart (not shown).

We can Taylor expand these equations in S, provided 2R + ∆ is small compared to the

length scale on which C changes:

∫ 2R+∆

2R
Cj(x + S, t) dS =

∫ 2R+∆

2R

[

Cj(x, t) + S
∂C

∂x
(x, t) +

S2

2

∂2C

∂x2
(x, t) + . . .

]

dS

= ∆Cj +
∞
∑

n=1

n+1
∑

k=1

(2R)n+1−k∆k

k!(n + 1 − k)!

∂nC

∂xn
.

We then Taylor expand the resulting equations in s, in the same way, to obtain a PME free

of integrals. Ignoring terms of O(Rn∆m) for n + m ≥ 4, leads to the following PDE for the

evolution of the probability density function of agent i (after rearranging, dividing by τ and

taking the usual diffusive limit):

∂Ci

∂t
= D

∂2Ci

∂x2
+ 2DR (2 − Qm)

∂

∂x



Ci

∑

j 6=i

∂Cj

∂x



 , (10)

where, in analogy with equation (4),

D = lim
τ,∆→0

P m∆2

2τ
. (11)
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This equation for the evolution of the probability density of agent i is not closed, since it

contains the expressions for the density of all the other agents, Cj, j 6= i. However, if all agent

positions are initially chosen from the same distribution, then Ci(x, t) = Cj(x, t) ∀ i, j,

so
∑

j 6=i ∂Cj/∂x = (N −1)∂Ci/∂x. Defining the total density to be C(x, t) =
∑N

i=1 Ci(x, t) =

NCi(x, t) and summing equation (10) over i, yields:

∂C

∂t
= D

∂

∂x

(

(

1 + 2R(2 − Qm)
N − 1

N
C
)

∂C

∂x

)

. (12)

It is of comfort to note that upon setting the pushing coefficient, Qm, equal to zero we return

to the PDE for off-lattice volume-excluding agent movement derived by Dyson et al. [22].

In order to ascertain how closely our PLM represents the average behaviour of the agents

in the ILM we compare the evolution of agent density in each model. To facilitate this com-

parison each agent in the ILM is represented by a Gaussian kernel density function centred

on its position. These averaged and smoothed individual-level simulations are compared

directly to the numerical solution of equation (12) in Fig. 9. We see qualitatively that the

agreement between the PDE and the averaged individual density is very good in the case

of little or no pushing (panels (a) and (b) of Fig. 9, respectively). However, when pushing

increases the correspondence begins to break down (see Fig. 9 (c) and (d)). In particular,

the PDE over-estimates the average density of the ILM in the centre of the domain where

density is high and underestimates the density when the density is lower.

Previously Dyson et al. [22] and Dyson and Baker [23] have noted that agent radius, R,

and distance moved, ∆, are key parameters resulting in changes to the diffusion coefficient.

This remains true in the PDEs we derive for pushing. In particular, in Fig. 9 we do not see

a distinctive change in the behaviour of the solution of the PDE as we increase the pushing

parameter Qm. In part this can be explained by the particular choice of parameters. For

our relatively small choice of R, volume exclusion does not change the PDE significantly

from the diffusion equation. Since pushing occurs through the volume exclusion mechanism

its effects on the PDE are also limited by the magnitude of R. A larger choice of R may

lead to a greater ability to discern the effects of pushing in the PDE.

The evolution of the HDEs between the ILM and the PLM are shown in Figure 10.

The results corroborate our qualitative conclusions from the density comparison plots. The

quality of the correspondence between the two models decreases as the probability of pushing
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FIG. 9. A comparison of the averaged and smoothed agent density in the one-dimensional ILM

with N = 20 cells and the corresponding PDE (12) for a range of values of the pushing parameter

Qm. The profiles are visualised at times t = 50, t = 100 and t = 200. The comparison between

the PDE and the ILM reduces in quality as we increase the pushing parameter, Qm. Parameters

for these simulations were chosen as R = 0.17, d = 0.1, τ = 0.04, P m = 1. In each individual-level

simulation agents are initialised quasi-randomly in the region [35, 65] so that no agents overlap

with each other. The initial condition for the PDE is taken to be the average initial condition in the

ILM. Movements which would cause an agent to leave the domain are aborted. All individual-level

results are averaged over 10,000 repeats.

increases. We postulate that this is due, at least in part, to the break-down of our initial

independence assumption with the increased propensity to push. In the off-lattice model

pushing events tend to bring agents that were not previously touching into contact with each

other. As such it may lead to aggregation of agents; a phenomenon which clearly breaks the

independence assumption.
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FIG. 10. The evolution of the HDE over the time period t ∈ [0, 200] for the off-lattice model with

a range of values of Qm. Model and simulation parameters and descriptions are as in Fig. 9. The

scenarios with the best correspondence to the PDE are those with no or very little pushing (red

continuous line and blue dotted line, respectively).

This ‘clumping’ phenomenon may also help to explain the particular functional form

of the PDE we derive from the off-lattice ILM. The augmented diffusion coefficient has

the extra density dependent term −2RQm(N − 1)C/N in comparison to the non-pushing

case. Since this term is negative the particles spreading is retarded in comparison with

the non-pushing case, consistent with the idea that pushing events in the off-lattice ILM

tend to gather agents together rather than disperse them. This is in stark contrast to the

PDE derived from the on-lattice ILM in which pushing only serves to increase the diffusion

coefficient.

V. DISCUSSION

We have introduced a variety of on-lattice ILMs in which agent-agent pushing is explicitly

incorporated and we have attempted to discern how the macroscale behaviour of models with

pushing differ from their non-pushing counterparts. One quantitative way to do this is to

derive the corresponding mean-field PLM and consider the solution of the PDE for different

values of the pushing parameter. In each of the on-lattice cases we considered, pushing was

found to augment both the diffusion coefficient and the source term (due to proliferation),

in broad agreement with our findings when simulating the ILM. As we incorporated more

complicated pushing mechanisms such as the linear pushing of multiple agents (rather than
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just one) we found that the independence assumption used to derive the PLM begins to

breaks down as correlations are introduced into the ILM.

We also derived a continuum PDE from an off-lattice ILM that incorporates agent-agent

pushing. Interestingly, we found that, for the off-lattice model, pushing reduced the diffusion

coefficient in the corresponding PDE. In part this may be an artefact of the way we have

incorporated pushing into the off-lattice model. When one cell tries to move into a region

already occupied by another, it may push the obstructing cell to complete its movement

event, but will remain touching the obstructing cell. The two cells that were not in contact

when the movement event started are touching at the end of the movement event. As such,

pushing, implemented in this manner, may lead to slower dispersal of agents corresponding

to a reduced diffusion coefficient. There may be alternative off-lattice pushing mechanisms

(in which pushing agents do not remain touching after a push, but rather momentum is

transferred from one to the other (like billiard balls), for example) for which pushing serves

to augment the diffusion coefficient, as in the on-lattice case. This serves to illustrate

that it is important to accurately characterise the individual cell behaviour precisely when

modelling cell migration since inaccurate characterisation can lead to qualitatively different

behaviour in the resulting models.

Although we have attempted to investigate a range of different pushing mechanisms in

this work, there are many questions about the modelling of cell-cell pushing which remain

unaddressed. As intimated above, there are a variety of different ways to interpret cell-

cell pushing in both on- and off-lattice models. Some of these mechanisms may lead to

increased diffusion coefficients for the PLMs corresponding to the off-lattice model or con-

versely decreased diffusion coefficients for the PDEs corresponding to the on-lattice model.

Investigation of a variety of biologically motivated pushing mechanisms and their corre-

sponding continuum equivalents would, therefore, be an interesting line of exploration. In

addition, attempting to derive the PDE from the off-lattice ILM in higher dimensions and

incorporating proliferation remain open challenges.

It is possible that cells which are pushed but have no room to move into may instigate

pushes of their own in order to create space and consequently that the ‘second generation’

pushed cell instigate pushes on a third generation and so on. Although we have implemented

this idea for pushing in a straight line, it may be possible to incorporate such a ‘pushing

cascade’ for more complicated pushing mechanisms (such as the adjacent pushing mecha-
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nisms) into our individual-level models. However, the increased complexity of this situation

may mean that even if it is feasible to derive the corresponding continuum equation, the

correlations introduced by this ‘higher-order’ pushing may render the continuum approxi-

mation a poor representation of the ILMs. In order to address this problem, and indeed

the worsening correspondence between the ILM and PLM in the linear pushing model we

presented in Section III B as K increases, we could consider using higher order moment

closure schemes, (rather than the simple independence assumption) [39–42] or correlation

functions which explicitly account for two (or more)-point distribution functions [29, 30].

Although there remains a great deal to investigate, in this work we have taken the first

steps towards understanding the effects of cell-cell pushing on the macroscale migration

of groups of cells. Our results have highlighted that the incorporation of pushing can be

important for cell dispersal, producing qualitative changes in the corresponding macroscale

PDE. However, the explicit incorporation of pushing into the ILM must be done carefully

in order to capture the specific biological pushing mechanism, since different interpretations

of pushing can lead to significantly different outcomes at the population level.
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